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NEW REFINEMENTS OF HOLDER AND MINKOWSKI
INEQUALITIES WITH WEIGHTS

L. HORVATH, K. ALI KHAN AND J. PECARIC

ABSTRACT. In this paper, we present on new refinements of the dis-
crete Jensen’s inequality given in [3] and [4]. Our results are more
general than the refinement results given in [5]. Also the parameter
dependent results correspond to some new refinements of Hoélder’s
and Minkowski’s inequalities.
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1. INTRODUCTION AND PRELIMINARY RESULTS

The well known discrete Jensen’s inequality says: Let U be a convex
subset of a real linear space, and let f : U — R be a convex function. If

n
z; €U (1 <i<n)and p; >0 (1 <i<n)aresuch that > p; =1, then

i=1

f(z_jp) < épifm) 1)

holds.
Let I C R be an interval, let h : I — R be a continuous and strictly
monotone function, let a = (a1,...,a,) € I, and let p = (p1,...,pn) be a

n

nonnegative n-tuple such that > p; = 1. The quasi-arithmetic h-mean of
i=1

a with weights p is defined by

hn(a;p) = hn(a;;1 <i < n;p) = h(a;pm) = h™' (Zpﬂ(w))-
i=1
If p; = % (1 <4i<n), then p will be ignored from the previous notations.
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The following hypothesis is utilized in [5] to extend Beck’s results (see
[1]):

(Ay) Let Ly : Iy = R (¢t =1,...,m) and N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f:I x---x I, — Iy be a continuous function. Let x() .. . x(™) ¢ R"
(n > 2) be such that x® := (;vit),...,xsf))e I} for each t = 1,...,m, and
let p = (p1,...,pn) be a nonnegative n-tuple such that > . | p; = 1.

The following extension of Beck’s result, given in [5], is a simple conse-
quence of the discrete Jensen’s inequality.

Theorem 1.1. Assume (Ay). If N is an increasing function, then the
inequality

f (Ll(x(l); p;n), ..., Lm(x(m); p; n)) >
=N (iw(ﬂxﬂ - ,xi’”)))), (2)
i=1

holds for all possible x¥) (t = 1,...,m) and p, if and only if the function
H defined on Ly(I1) X -+ X Lpy,(Im) by

H(ty, ... tm) =N (f (L7 (t1), -, Ly ()

is concave. The inequality in (2) is reversed for all possible x*) (t =
1,...,m) and p, if and only if H is convez.

Beck’s original result was the special case of Theorem 1.1, where m = 2
and I = [k1, ko], Io = [l1,12] and Iy = [n1,ns] (see [2], p. 249).

In the case m = 2 we shall use the following simplified form of (A;):

(Ag) Let K : Ix - R, L : 1, — Rand N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f:Ix x I, — In be a continuous function. Let a, b € R™ (n > 2) such
that a € I} and b € I}, and let p = (p1,...,pn) be a nonnegative n-tuple
such that 1 p; = 1.

Then (2) has the form

f(Kn(a§ p)7Ln(b§p)) > Nn(f(a,b);p), (3)

where f(aa b) = (f(a’lv bl)a ) f(anv bn))

The following results (see [5]) are important special cases of Theorem 1.1,
and generalize the corresponding results of Beck [5]. The next hypothesis
will be used:

(As) Let K : Ix - R, L : 1, — Rand N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R such that
either Ix+1;, C Iy and f(z,y) = 2+y ((x,y) € Ix xIL) or Ik, I, C]0, 0],
Ig - I, C Iy and f(z,y) =2y ((z,y) € Ix x Ip). Assume further that the
functions K, L and N are twice continuously differentiable on the interior
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of their domains, respectively. Let a, b € R™ (n > 2) be such that a € I}
and b € I}, and let p = (p1,...,pn) be a nonnegative n-tuple such that
imipi=1

A° means the interior of A C R.

Corollary 1.2. Assume (A3) with f(x,y) =z +y ((x,y) € Ix x Ir),
and assume that K', L', N', K", L' and N" are all positive. Introducing
E = %, F = #, G = %, (3) holds for all possible a, b and p if and
only if

E(z)+ F(y) <Gz +y), (z,y) €l xI}.
Corollary 1.3. Assume (A3) with f(z,y) = zy ((z,y) € Ix X Ip).

Suppose the functions A(x) := %, B(x) = % and

C(zx) = % are defined on Iy, I} and I}, respectively. Assume
further that K', L', N', A, B and C are all positive. Then (3) holds for all

possible a, b and p if and only if
A(z) + Bly) < Clzy),  (v,y) € [ x I1.
In [3], Mitrinovi¢ and Pecari¢ obtained a new inequality like (3), which

is based on the following refinement of the discrete Jensen’s inequality (see
Pecari¢ and Volenec [9]):

Lemma A. Let f be a real valued convex function defined on a convex
set U from a real linear space. If x1,...,2, € U, and

fk,n = fk,n(xla ce 7xn) =

:(Z>_1 ) f<]1€(xil+...+xik)>, 1<k<n, (4)

1<ip < <ig<n
then

n n

i=1 i=1
Assume (Ag). We denote by af (1 < i < v) and gF(1 < i < v) the
>. Following [7], we

> 3

k-tuples of a and b respectively, where v = (
introduce the mixed N-K-L means of a and b:
M(N, K, L; k) := Ny (f(Kp(af), Le(BF)); 1 < i <w), 1<k<n,
and
M(N,K,L;1) :=N,(f(a,b)),
M(N,K, L;n) :=f (K,(a), L,(b)) .
These means are studied in [7] (see also [8] page 195):
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Theorem A. Assume (Az). Let N be an increasing (decreasing) func-
tion, and let

H:K(Ix)x L(IL) =R, H(s,t):=N(f (K '(s),L7'(1)))
be a convex (concave) function. Then
M(N,K,L;k+1) < M(N,K,L;k), k=1,...,n— 1. (6)

If N is increasing (decreasing) but H is concave (convex) then the inequal-
ities in (6) are reversed.

In analogy of Corollary 1.2 and Corollary 1.3, the following consequences
of Theorem A are given in [5, 7, §].

Corollary A. Assume (As) with f(x,y) = 2 +y ((z,y) € Ix x Ir).
Assume further that K', L', N', K", L' and N are all positive and E(x)+
F(y) < Gz +y) (x,y) € Iy x I3), where B = & F:= L G.= N
Then (6) with reverse inequality is valid.

Corollary B. Assume (As) with f(z,y) = zy ((x,y) € Ix xIL). Suppose

the functions A(x) := %, B(z) = % and C(x) :=

7N,(IJ)VJ;;9§\),,,($) are defined on I, I and I3, respectively. If K', L', M', A,
B and C are all positive and A(x) + B(y) < C(zy) ((z,y) € Iy x I7), then

(6) with reverse inequality is valid.

The results given in [7] are without weights. By using the refinement of
the discrete Jensen’s inequality from [6], we gave results in [5] with weights,
which cause the improvement of the results in [7]. But in this paper we
work on the refinement given in [3] to establish the generalizations of the
corresponding results given in [5]. Also we present some parameter depen-
dent refinements of Hélder and Minkowski’s inequalities with the help of
[4]. First, we give the notations from [3]:

Let X be a set. The power set of X is denoted by P(X). |X| means the
number of elements in X. For every nonnegative integer d, let

Pu(X):={Y c X |[Y|=d}.

In the sequel we also need the following hypotheses:

(Hy) Let U be a convex set in R™, x1,...,x, € U.

(Hs) Let p := (p1,...,pn) be a positive n-tuple such that > ; p; = 1.
(H3) Let f: U — R be a convex function.

(Hy) Let Sy, ...,S, be finite, pairwise disjoint and nonempty sets, let

S =

J

S;,

n
=1
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and let ¢ be a function from S into R such that
c(s) >0, s€S, and Z c(s)=1, j=1,...,n.
SESj
Let the function 7: S — {1,...,n} be defined by
T(s) =y, if seS;.
(Hs) Suppose A C P(S) is a partition of S into pairwise disjoint and
nonempty sets. Let
k:=max {|A| | A€ A},
and let
A={AcAl|Al=1}, I=1,... k.
(We note that A; (I =1,...,k—1) may be the empty set, and of course,

k
|S] = >> 1]A;].) The empty sum of numbers or vectors is taken to be zero.
=

1
The following refinement of the discrete Jensen’s inequality is developed
in [3]:

Theorem B. If (Hy)—(Hs) are satisfied, then

f(zijJ) SMp<My1 < < Mp < Mi=3 pif(xy),
j=1 i=1

where
Z C(S)pr(s)xr(s)

k
My, = Z Z Z C(S)p'r(s) f €4 (s ) (7)
Z ( )p‘r(s)

=1 AeA; sEA seA

and for every 1 < d < k — 1 the number My_q is given by

d k d!
My—q:=Y_ ( > <ZC(8)pT<s)f(xr(s>)>> + > ((l—l)(l—d)

I=1 \AeA;, ‘scA I=d+1

( %C(S)PT(S)XT(S)
S (Tt | -
A€eA; \BeP,_4(A) s€B Sgg c(8)Pr(s)

A parameter dependent refinement of the discrete Jensen’s inequality is
obtained in [4].

Theorem C. For any real number A > 1, we suppose (H;)—(Hs) and con-
sider the sets

Ty, ZZ{(il,...,in)ENn

Zn:z'j:k}, ke N. (9)
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Let
Ck(A) - Ok(xla <o XniPly -y P >‘) =
1 k! n ) Ap;X;
L : i j=
T (nrA-1)F 2. il i !(ZA p3>f n » (10)
(i1,eeeyin ) ESk nNj=1 '21 Niip;
J:

for any £ € N. Then
()~ G < <G s <Y nf), ke
j=1 j=1
2. NEW GENERALIZATIONS OF BECK’S RESULT
Assume (A;) with positive n-tuple p, (Hy) and (Hs). Let
%C(S)PT(S)Lt(xg(l))
L x(t);cp;B =L
g ) ! > c(8)pr(s)

seB
t=1,....m, BCS,

and let
X; = (xgl),...,xz(-m)), 1=1,...,n.

Then weighted mixed means corresponding to (7) and (8) are defined in the
following ways:

M} ::M,i(Ll,...,Lm;x(l),...,x(m);cp) =

_ N(z ( S (S etes )

=1 AeA; seEA
-N(f(L1(X(”;0p;A)7.--,Lm(X(W;CP;A))))))
and for 1 <d<k-1
M} ;= M,Ld(Ll,...,Lm;x(l)w..,x(m);cp) =

d
_ N—l{ 3 ( 3 (z:c(s)pT<s>J\f(f(><T<s>))>)Jr

=1 AcA; sEA

> ((lndacz) 2 ( Y (Zeomn)

I=d+1 A€A, \ BEP,_4(A)
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~N(f(Ll(x(l);cp;B),...,Lm(x(m);cp;B)))>>> }

Now, we get an interpolation of (2) by the direct application of Theorem
B as follows.

Theorem 2.1. Assume (Ay) with a positive n-tuple p, (Hy) and (Hs).
If N is a strictly increasing (decreasing) function, then the inequalities

f (L1(X(1);p;n),~-~,Lm(x(m);p;n)) <MI<M}! <. <
<My <Mj=N"" (ZmN(f(xi))), (11)
=1

hold for all possible x®) (t = 1,...,m) and p, if and only if the function
H defined in Theorem 1.1 is convex (concave). If N is a strictly increas-
ing (decreasing) function, then the inequalities in (11) are reversed for all
possible x\) (t =1,...,m) and p, if and only if H is concave (convex).

Proof. 1t follows from Theorem B and Theorem 1.1. We apply Theorem B

to m-tuples
<L1 (l’g”),...,Ll ($Em))>7 i:l,...,n,

and the function H if either H is convex and N is strictly increasing or H is
concave and N is strictly decreasing. —H is used if either H is convex and
N is strictly decreasing or H is concave and N is strictly increasing. O

The following applications of Theorem 2.1 are based on special cases of
Theorem B from [3].

Example 2.2. Let n > 1 and & > 1 be fixed integers, and let I}, C
{1,...,n}* such that

aps =21, 1<i<n,

where aj, ; means the number of occurrences of ¢ in the sequences i :=
(i1,...,1k) € I. For j =1,...,n we introduce the sets

swz{mhmngnuhn¢@e@,1g1§h u:ﬁ.

n
Let ¢ be a positive function on S := |J S; such that
j=1

> c((iyy. .. ig),)=1, j=1,....n

((B1,e-vix),1) €S;
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Assume (A;) with a positive n-tuple p. Then the corresponding weighted
mixed means are

M} :N—1< > ((zk:c((il,...,ik),l)pil)

(il,...,’ik)efk =1
. N(f(Ll(x(l); cp;ik), .- -, Lm(x(m); cp; lk)))> ,

where

Ly(xW;epsig) =Lt =1 ,

while for 1 <d <k -1,

M}, ::N‘1{< dt .
(k—1)...(k—d)

> ( > (<k§:nc((i1’-~-7ik)’lj)pi,j)~

(21,eeeyin)EIR 1<hi<..<lp—a<lk Jj=1

: N(f(L1(x(1); ep; iki lema), -+ Lin (X" epy i l’“_d))>)>> }

where

k—d
C((ila s 1ik)7 lj)Pilj Lt(ng))
=1 J

Li(xW; epsig; ly_a) = Ly !

k—d

Z C((il, ce ,Z'}g),lj)pilj

j=1
1<h< - <lp_qg<Ek 1<t<m.

If N is strictly increasing and the function H defined in Theorem 1.1 is
convex, then Theorem 2.1 gives

f (L1(X(1);p;n)7...,Lm(X(m);p;n)> SMi<Mi_ <<

<M< M} = N (Zpifv(f(xﬁll . ,x§m>>>). (12)
=1

Taking

C((il,...,ik),l):%: , ((il,...,ik)J)ESj,
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in (12) we get Theorem 2.1 of [5].

Example 2.3. Let n, d, r be fixed integers, where n > 3, d > 2 and
1 <r <n-—2. In this example, for every i = 1,2,...,n and for every
Il =0,1,...,r the integer ¢+ will be identified with the uniquely determined
integer j from {1,...,n} for which

l+i=j (modn). (13)
Introducing the notation

D:={1,....n} x{0,...,7},

let for every j € {1,...,n}

-:{ (i,)eDl]i+l=j modn}U{J},

n

and let A C P(S) (S := U ;) contain the following sets:

A= {(Z,Z)GDH:O,...,T}, 1=1,...,n

and
A:={1,...,n}.
Let ¢ be a positive function on S such that
Yooeli)+ce()=1, j=1,...,n
(i,0)eSs;

A careful verification shows that the sets Sy, ..., Sy, the partition A and
the function ¢ defined above satisfy the conditions (H4) and (Hs),

T(,0)=i+1l, (i,1)eD
(by the agreement (see (13)), i + 1 is identified with j)

7(5) = 4, ji=1...,n

|Sj|=’l“+2, j=1...,n,
and

|Ail=r+1, i=1,...,n, |Al=n.
Assume (A;) with a positive n-tuple p. If N is increasing and the function

H defined in Theorem 1.1 is convex, then from Theorem 2.1 we get

f (L1(X(1);p;n)7 . .7Lm(x(’”);p;n)) <
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< N1<ipiN(f(:c§1),...,zgm)))),
i=1

where
S (®)
Z c (Za l)piJrlLt (xi.t,_l)
Lt(x(),cp;i)—Ltl =0 P )
> (i, 1) piyi
1<i<n, 1<t<m,
and .
2 clipsLae?)
L(X(t),cp)*L_1 = — , 1<t<m
> c(h)p;
j=1

Example 2.4. Let n and k be fixed positive integers. Let
D= {(z’l,...,in) {1, kY it g :n+k—1},
and for each j = 1,...,n, denote S the set
Sj =D x {]}
For every i, := (i1,...,i,) € D designate by A, . ;) the set
Ay iy = (i1, yd0) ) [ L= 1,...,n}.

It is obvious that S; (j = 1,...,n) and Ag, . ;. ((i1,...,i,) € D) are
decompositions of S := |J S, into pairwise disjoint and nonempty sets,

j=1
respectively. Let ¢ be a function on S such that

c((ity-vyin),3) >0, ((i1,...,4n),4) €S
and
S cllinyeein), ) =1, j=1,...,n.
(i15vsin ) ED
In summary we have that the conditions (Hs) and (Hg) are valid, and
T((i1y o yin),3) =4, ((i1,...,1n),7) €S.
Assume (Ap) with positive n-tuple p. If N is strictly increasing and the
function H defined in Theorem 1.1 is convex, then from Theorem 2.1 we
get

f(L1(X(1); P;n), .y Lin(x™); p; n)) <

< N1< > <<ic((i1,...,in),l)pl>'

(#1500nyin)ED =1
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1 .2 .3
. N(f(Ll(x( ), cp;i,), -, Lm(x(m), cp; 1n))>>> <

S Nil <ZP1N(.}C($§1)7 R 7x£m)))>7
i=1
where

S e ((ins - vin) 1) prLe(zl?)
L(xY, epsi,) =Ly ' | =2

n 3

ZC((ilw"vin)vl)pl

I=1
i,eD,1<t<m.

Now assume (Aj), consider a real number A > 1, and let Sy be the set
defined in (9). Then the mixed means corresponding to (10) are

ME(N) : = M,f(Ll,...,Lm;x(l) —x™p: A) =

) 7

1 k! LI
e, B, alEr)
((n+)\1k Z il ip! ]; bi

01y eyin €Sk
N(f(Ll(X(l)a p; in,k; )‘)7 s 7L7n(x(m>; p; in,k; A))))) )

where

Nip;Ly(z)
=1

Li(x®;psip s A) =Lt | 2

n )

> Alip;

j=1

imkESk, 1<t<m.
In this case Theorem C gives another interpolation of (2) as follows:
Theorem 2.5. Assume (Aq), let A > 1 be a real number, and let Sy be

the set defined in (9). If N is a strictly increasing (decreasing) function,
then the inequalities

f(L1(X(”;p;n), . -,LT,L(X(m>;p;n)> =MZ(\) < Mi(A\) < <

<Mi(A) <---< N7 (ipiN(f(xgl),...,xgm)))), keN, (14)
=1

hold for all possible x¥) (t = 1,...,m) and p, if and only if the func-
tion H defined in Theorem 1.1 is convex (concave). If N is an increasing
(decreasing) function, then the inequalities in (14) are reversed for all pos-
sible x) (t =1,...,m) and p, if and only if H is concave (convez).
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Proof. Similar to the proof of Theorem 2.1. O

3. NEwW GENERALIZATIONS OF THE CONSEQUENCES OF BECK’S RESULT

Assume (Az) with positive n-tuple p, (Hy) and (Hs). Then for m = 2,
the reverse of (11) can be written as

f(Kn(a;p), Ln(b;p)) > My > M >--- > M| =
— N1<ijN(f(aj,bj))). (15)

Analogous to the results of Corollary A and Corollary B (see [7] and also
[8], p- 195), we have immediately from Theorem 2.1 and Corollaries 1.2, 1.3
that

Corollary 3.1. Assume (Ag) with f(x,y) =z+y ((v,y) € Ix xIL) and

with positive n-tuple p, assume (Hy)—(Hs), and assume that K', L', N',

o . ’ !
K", L' and N" are all positive. Introducing FE = %, F .= %, = s

(15) holds for all possible a, b and p if and only if
E@)+F(y) <Gx+y), (v,y)€lxxI].

In this case

M, : = My (K, L;a,b;cp) := N~" (zk: ( > ((ZC(S)pT(S)).

- N((K(a;cp; A) +L(b;0p;A)))>)>7 (16)

and for 1 <d<k-—1
M}_q:=M}_4(K,L;a,b;cp) :=

= N_l{ zd: < > ( > e()pr(s)Nlar(s) + bT(s))> > +

I=1 “A€A; “seA
k
+l:zd;1 (l_l)d'(l_d) A%,:Al (B;L:d(A)<<§E;BC(S)PT(S)>~
(i B) + Lo B)>)>) } (17)

Corollary 3.2. Assume (Hy), (Hs) and consider (As) with f(x,y) =
zy ((z,y) € Ik x IL) and with positive n-tuple p. Suppose the functions

- K'(z) . L'(z) - N'(z)
Alz) == K’(:p)+aﬁ(”(z)’ B(z) := L’(w)Jr:rxL”(m) and C(z) := N'(z)+z3§v~($) are

defined on I, I3 and I3, respectively. Assume further that K', L', M', A,
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B and C are all positive. Then (15) holds for all possible a, b and p if and
only if

A(z) + B(y) < C(zy), (x,y) € I x I7.
In this case

My := M, (K, L;a,b;cp) := N~! (i ( > ((Zc(s)pﬂs))

=1 AeA; seA

‘N (K (a; cp; A)L(b; cp; A))))) : (18)
and for 1 <d<k-1,
M} ;= Mé_d(K,L;a,b;cp) =
d
= Nl{ Z < Z (Z C(S)p‘r(s)N(aT(s)b‘r(s)))>+

=1 AeA; seA
k

S (s 2 (2 (Seowe)

l=d+1 A€A; “BeP_4(A) sEB
N (K(a cp;B)L(b;cp;B)))))}. (19)

Under the considerations of examples in Section 2, we show some special
cases of the Corollaries 3.1 and 3.2.

Remark 3.3. Under the settings of Example 2.2, if f(x1,22) = 1 + X2,
then (16) becomes

M := M} (K,L;a,b;cp) :=

:N—1< Z ((ic((il,...,ik),l)ph)

(i1,vin)E€Ig =1
- N (K (a; cp;ix) + L(b; cp; ik))) ) ;

and for 1 <d <k —1 (17) becomes
M,i_d i = M,i (K,L;a,b;cp) =

o dl
=N (((k—n...(k—d)'
k—m

> ( > (<ZC((ilv"'vik)vlj)pilj>‘

(i1, k)€l N 1<hi<...<lg-a<k Jj=1
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- N (K (a; ep;ig; Le—q) + L(b; cp; ix; lk_d)))> )

Under the conditions of Corollary 3.1, we have

Kn(a;p) + Ly(a;p) > M > My > -+ > M| =

= Nl(épi]\f(ai +b,-)>. (20)

Similarly, if f(x1,z2) = x122, then from (18) we have
My - = My (K, L;a, b;cp) :=
k

Nl( 3 <<Zc((il,...,ik),z)pil>.

(%15eemstn ) ELR =1
) N(K(a; cp; i) L(b; cp; ik))))
and for 1 < d <k — 1, we have from (19)
M}_,:= M}(K, L;a,b;cp) =

_ d!
=N 1((k_1)...(k—d)'
k—m

> < 3 ((ZC((il,...,ik),zj)pilj)

(i1 yip)El, N 1<hi<...<lg—a<k Jj=1

- N (K (a; cp; ix; le—q) L(b; cp; ig; 1kd)>>~

Under the conditions of Corollary 3.2, we have
n
Ky (a;p)Ly(a;p) > My > M, _ > ->M{=N"" <ZpiN(aibi)> . (21)
i=1

Taking
1 1

C((il,...,i}c),l) = m = ar
J ks

, ((il,...,ik)7l)65j

in (20) and (21), we get Corollary 3.1 and Corollary 3.2 of [5], respectively.

Remark 3.4. We consider Example 2.3. If f(z1,22) = 21+ 22, then under
the conditions of Corollary 3.1 we have

Ky(a;p) + Ln(b;p) >

T

> Nl{ Z <Zc(i,l)pi+l)N(Kr(aa cp; i) + Ly (b, cp; 1))+

i=1 =0
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+(f}mm)wmﬁwm+bﬂ”p} (gpza“)

Jj=1

Similarly, if f(x1,x2) = 122, then under the conditions of Corollary 3.2
we have

Kn(a;p)Ln(b;p) >

>

=1 =0

SRt
(i s N e ) = 37 (v )

T

c(i pH_l)N(K,»(a; cp;i)Lr(b;Cp;i))—l—

Remark 3.5. We now consider Example 2.4. If f(x1,22) = 21 + 22, then
under the conditions of Corollary 3.1 we have

Kn(a;p) + Ln(b;p) >

>N1<(“ > ((ic T l)pl>

i1,eeesin ) ED
. N(Kn(a; ep, in + L, (b; cp, 1n))> > N1<ZpiN(a7; + bl)>
i=1

Similarly, if f(z1,22) = x1x2, then under the conditions of Corollary 3.2 we
have

K, (a;p)Lyn(b;p) >

> N—1< > » ((ic((il,...,in),l)pl)-

(i1,--0s%m)

. N(Kn(a7 cp, in) Ly (b, cp, ln))> > N1 (ZPiN(aibi> .
i=1

Next, assume (Az), let A > 1, and let T be the set defined in (9). Then
for m = 2, the reverse of (14) becomes

f(Kn(a;p), Ln(b;p)) = Mg(A) > M{(A) > -+ > ME(A) > - >

(Z flai,b > keN, (22)

where

ME(N) 1 = MP(K, L;a,b;p; ) :=
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(41,90 ) €Sk Jj=1
- N (f (K (a3 ps ki A)s Lo (x5 Py i3 /\))>> .

By using Theorem 2.5 (for m = 2) and Corollaries 1.2, 1.3, we get parameter
dependent generalizations of Beck’s results.

Corollary 3.6. Assume (As) with f(z,y) =x+y ((z,y) € Ix xI), let
A > 1, and let Ty, be the set defined in (9). Assume further that K', L', N’,

K", L" and N" are all positive. Introducing F := KL/I/, F .= LL—,/,, G:= %,”

(22) holds for all possible a, b and p if and only if
E(x)+ F(y) < Gz +vy), (z,y)€li xI].
In this case for k € N, we have
MZ(A) : = MP(K, L;a, b;p; A) :=

1 k! "
— N1 g ).
=N ((n+A—1)k 2 (m...m(,_ﬁ pﬂ)

(14eenyin )ESk i
N (Kn(2;Psin i A) + L (X piing; /\))>>~

Corollary 3.7. Assume (Ag) with f(z,y) = zy ((v,y) € Ix x I1), let

A > 1, and let Ty, be the set defined in (9). Suppose the functions A(x) :=
K'(z) — L' (x) — N'(z)

m, B(l‘) = m and C(Z‘) = m are deﬁned

on I5., I and I3, respectively. Assume further that K', L', M', A, B and

C are all positive. Then (22) holds for all possible a, b and p if and only if

A(x) + B(y) < Clzy), (x,y) € [ x If.
In this case for k € N, we have
M?(N\) : = MA(K,L;a,b;p; \) :=

n

(e, 2 ()

(i15e-1in ) ESk j=1

4. GENERALIZATION OF MINKOWSKI’S INEQUALITY

We need the following hypothesis:
(A4) Let I be an interval in R, and let M : I — R be a continuous and
strictly monotone function. Let x; € I"™ (i =1,...,n), let p = (p1,...,Dn)
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be a positive n-tuple such that > . p; = 1, and let w = (wq,...,wy,) be
a nonnegative m-tuple such that 2111 w; = 1.

We give a generalization of the Minkowski’s inequality by using Theo-
rem B.

Theorem 4.1. Assume (A4), (Hs) and (Hs). Further, assume that the
quasi-arithmetic mean function

X — My(x;w), xelI™ (23)

is convex. Then
Mm(zprxr;w) SAk gAk—l S"'§A2§A1:2prMm(xr;w)a
r=1 r=1

where

Z C(S)pT(S)XT(S)

k
Ak Z:Z Z (Z C(S)pT(s)>Mm SGAZ C(S)pr(s) W ’ (24)

se

d
Ap—q: = Z < Z <Z C(S)PT(S)Mm(XT(s);W))> +

AeA; SEA

g d!
: Z m ' A;‘lz BEI;z(A) <<S€ZBC(S)pT(S)>
Z C(S)pT(S)XT(s)

M, | =2 . 25
> C(S)pr(s); w (25)
SEB

Proof. We apply Theorem B to the convex function M,,(-; w) and the vec-
torsx; (i =1,...,n). Weget Ag (k>d>1)in (24) and (25) from (7) and
(8) respectively. O

Similarly, by using Theorem C we get

Theorem 4.2. Let A > 1 be a real number, assume (Ay) and suppose
Ty, (k € N) is the set given in (9). If the quasi-arithmetic mean function 23
is convez, then
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where

Ck(A) - Ck(le'";Xn;pla"'apn;)‘) =

1 k! -
T (nA— 1) > zﬂ...%!(jz_:lApj)'

(ilv---ain)esk
n .
A pix;
=1
M, | 2 — ;w |, kelN.
> Alip;
=1

The following result gives a necessary and sufficient condition for the
quasi-arithmetic mean function to be convex (see [8], p. 197):

Theorem D. If M : [m1,ms] — R has continuous derivatives of sec-
ond order and it is strictly increasing and strictly convez, then the quasi-
arithmetic mean function M,,(-;w) is convex if and only if M'/M" is a
concave function.

(As) Let M :]0,00[—]0, oo[ be a continuous and strictly monotone func-

tion such that lirrb M(z) = occor lim M(x)=o0. Let x = (x1,...,%m) and
xTr— xr— 00
w = (w1, ..., W) be positive m-tuples such that w; > 1 (i =1,...,m). Let

n

p = (p1,-..,pn) be a positive n-tuple such that > p; = 1.

i=1
Then we define
) = 217 (3 widd () ) (26)
i=1

The following result is also given in ([8], page 197):

Theorem E. If M :]0,00[—]0, c0[ has continuous derivatives of second
order and it is strictly increasing and strictly convex, then Mm(-;w) is a
convex function if M/M' is a convex function.

By using (26) we have

Theorem 4.3. Assume (As) and let

x — My (x;w), x€]0,00[™

be a convex function.
(a) Consider (Hsq) and (Hs). Then Theorem 4.1 remains valid for

Mm(x; w) instead of M,,(x;w).
(b) Consider A € R such that A > 1 and suppose Ty, (k € N) is the set

defined in (9). Then Theorem 4.2 also remains valid for M, (x;w) instead
of My, (x;w).
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Remark 4.4. All special cases (as given in Section 2) can also be consid-
ered for Theorem 4.1, Theorem 4.2 and Theorem 4.3.
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