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NEW REFINEMENTS OF HÖLDER AND MINKOWSKI
INEQUALITIES WITH WEIGHTS

L. HORVÁTH, K. ALI KHAN AND J. PEČARIĆ

Abstract. In this paper, we present on new refinements of the dis-
crete Jensen’s inequality given in [3] and [4]. Our results are more
general than the refinement results given in [5]. Also the parameter
dependent results correspond to some new refinements of Hölder’s
and Minkowski’s inequalities.

îâäæñéâ. ïðŽðæŽöæ éëùâéñèæŽ [3] áŽ [4] êŽöîëéâĲöæ éæôâĲñèæ
áæïçîâðñèæ æâêïâêæï ñðëèëĲæï áŽäñïðâĲâĲæ. ŽéŽïåŽêŽãâ, ìŽîŽéâ-
ðîäâ áŽéëçæáâĲñèæ öâáâàæ öââïŽĲŽéâĲŽ ßâèáâîæïŽ áŽ éæêçëãïçæï
ñðëèëĲâĲæï ŽýŽè áŽäñïðâĲâĲï.

1. Introduction and Preliminary Results

The well known discrete Jensen’s inequality says: Let U be a convex
subset of a real linear space, and let f : U → R be a convex function. If

xi ∈ U (1 ≤ i ≤ n) and pi ≥ 0 (1 ≤ i ≤ n) are such that
n∑

i=1

pi = 1, then

f

( n∑

i=1

pixi

)
≤

n∑

i=1

pif(xi) (1)

holds.
Let I ⊂ R be an interval, let h : I → R be a continuous and strictly

monotone function, let a = (a1, . . . , an) ∈ In, and let p = (p1, . . . , pn) be a

nonnegative n-tuple such that
n∑

i=1

pi = 1. The quasi-arithmetic h-mean of

a with weights p is defined by

hn(a;p) = hn(ai; 1 ≤ i ≤ n;p) = h(a;p;n) := h−1

( n∑

i=1

pih(ai)
)

.

If pi = 1
n (1 ≤ i ≤ n), then p will be ignored from the previous notations.
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The following hypothesis is utilized in [5] to extend Beck’s results (see
[1]):

(A1) Let Lt : It → R (t = 1, . . . ,m) and N : IN → R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f : I1 × · · · × Im → IN be a continuous function. Let x(1), . . . ,x(m) ∈ Rn

(n ≥ 2) be such that x(t) := (x
(t)

1 , . . . , x
(t)
n )∈ In

t for each t = 1, . . . ,m, and
let p = (p1, . . . , pn) be a nonnegative n-tuple such that

∑n
i=1 pi = 1.

The following extension of Beck’s result, given in [5], is a simple conse-
quence of the discrete Jensen’s inequality.

Theorem 1.1. Assume (A1). If N is an increasing function, then the
inequality

f
(
L1(x(1);p; n), . . . , Lm(x(m);p; n)

)
≥

≥ N−1

( n∑

i=1

piN(f(x(1)
i , . . . , x

(m)
i ))

)
, (2)

holds for all possible x(t) (t = 1, . . . , m) and p, if and only if the function
H defined on L1(I1)× · · · × Lm(Im) by

H(t1, . . . , tm) := N
(
f

(
L−1

1 (t1), . . . , L−1
m (tm)

))

is concave. The inequality in (2) is reversed for all possible x(t) (t =
1, . . . , m) and p, if and only if H is convex.

Beck’s original result was the special case of Theorem 1.1, where m = 2
and I1 = [k1, k2], I2 = [l1, l2] and IN = [n1, n2] (see [2], p. 249).

In the case m = 2 we shall use the following simplified form of (A1):
(A2) Let K : IK → R, L : IL → R and N : IN → R be continuous

and strictly monotone functions whose domains are intervals in R, and let
f : IK × IL → IN be a continuous function. Let a, b ∈ Rn (n ≥ 2) such
that a ∈ In

K and b ∈ In
L, and let p = (p1, . . . , pn) be a nonnegative n-tuple

such that
∑n

i=1 pi = 1.
Then (2) has the form

f
(
Kn(a;p), Ln(b;p)

) ≥ Nn(f(a,b);p), (3)

where f(a,b) := (f(a1, b1), . . . , f(an, bn)).
The following results (see [5]) are important special cases of Theorem 1.1,

and generalize the corresponding results of Beck [5]. The next hypothesis
will be used:

(A3) Let K : IK → R, L : IL → R and N : IN → R be continuous
and strictly monotone functions whose domains are intervals in R such that
either IK +IL ⊂ IN and f(x, y) = x+y ((x, y) ∈ IK×IL) or IK , IL ⊂]0,∞[,
IK · IL ⊂ IN and f(x, y) = xy ((x, y) ∈ IK × IL). Assume further that the
functions K, L and N are twice continuously differentiable on the interior
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of their domains, respectively. Let a, b ∈ Rn (n ≥ 2) be such that a ∈ In
K

and b ∈ In
L, and let p = (p1, . . . , pn) be a nonnegative n-tuple such that∑n

i=1 pi = 1.

A◦ means the interior of A ⊂ R.

Corollary 1.2. Assume (A3) with f(x, y) = x + y ((x, y) ∈ IK × IL),
and assume that K ′, L′, N ′, K ′′, L′′ and N ′′ are all positive. Introducing
E := K′

K′′ , F := L′
L′′ , G := N ′

N ′′ , (3) holds for all possible a, b and p if and
only if

E(x) + F (y) ≤ G(x + y), (x, y) ∈ I◦K × I◦L.

Corollary 1.3. Assume (A3) with f(x, y) = xy ((x, y) ∈ IK × IL).
Suppose the functions A(x) := K′(x)

K′(x)+xK′′(x) , B(x) := L′(x)
L′(x)+xL′′(x) and

C(x) := N ′(x)
N ′(x)+xN ′′(x) are defined on I◦K , I◦L and I◦N , respectively. Assume

further that K ′, L′, N ′, A, B and C are all positive. Then (3) holds for all
possible a, b and p if and only if

A(x) + B(y) ≤ C(xy), (x, y) ∈ I◦K × I◦L.

In [3], Mitrinović and Pečarić obtained a new inequality like (3), which
is based on the following refinement of the discrete Jensen’s inequality (see
Pečarić and Volenec [9]):

Lemma A. Let f be a real valued convex function defined on a convex
set U from a real linear space. If x1, . . . , xn ∈ U , and

fk,n = fk,n(x1, . . . , xn) :=

=
(

n
k

)−1 ∑

1≤i1<···<ik≤n

f

(
1
k

(xi1 + · · ·+ xik
)
)

, 1 ≤ k ≤ n, (4)

then

f

( n∑

i=1

1
n

xi

)
= fn,n ≤ · · · ≤ fk,n ≤ · · · ≤ f1,n =

1
n

n∑

i=1

f(xi). (5)

Assume (A2). We denote by αk
i (1 ≤ i ≤ v) and βk

i (1 ≤ i ≤ v) the

k-tuples of a and b respectively, where v =
(

n
k

)
. Following [7], we

introduce the mixed N -K-L means of a and b:

M(N, K,L; k) := Nv

(
f(Kk(αk

i ), Lk(βk
i )); 1 ≤ i ≤ v

)
, 1 < k < n,

and

M(N,K, L; 1) :=Nn(f(a,b)),

M(N,K, L; n) :=f (Kn(a), Ln(b)) .

These means are studied in [7] (see also [8] page 195):
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Theorem A. Assume (A2). Let N be an increasing (decreasing) func-
tion, and let

H : K(IK)× L(IL) → R, H(s, t) := N
(
f

(
K−1(s), L−1(t)

))

be a convex (concave) function. Then

M(N,K, L; k + 1) ≤ M(N, K, L; k), k = 1, . . . , n− 1. (6)

If N is increasing (decreasing) but H is concave (convex) then the inequal-
ities in (6) are reversed.

In analogy of Corollary 1.2 and Corollary 1.3, the following consequences
of Theorem A are given in [5, 7, 8].

Corollary A. Assume (A3) with f(x, y) = x + y ((x, y) ∈ IK × IL).
Assume further that K ′, L′, N ′, K ′′, L′′ and N ′′ are all positive and E(x)+
F (y) ≤ G(x + y) ((x, y) ∈ I◦K × I◦L), where E := K′

K′′ , F := L′
L′′ , G := N ′

N ′′ .
Then (6) with reverse inequality is valid.

Corollary B. Assume (A3) with f(x, y) = xy ((x, y) ∈ IK×IL). Suppose
the functions A(x) := K′(x)

K′(x)+xK′′(x) , B(x) := L′(x)
L′(x)+xL′′(x) and C(x) :=

N ′(x)
N ′(x)+xN ′′(x) are defined on I◦K , I◦L and I◦N , respectively. If K ′, L′, M ′, A,
B and C are all positive and A(x) + B(y) ≤ C(xy) ((x, y) ∈ I◦K × I◦L), then
(6) with reverse inequality is valid.

The results given in [7] are without weights. By using the refinement of
the discrete Jensen’s inequality from [6], we gave results in [5] with weights,
which cause the improvement of the results in [7]. But in this paper we
work on the refinement given in [3] to establish the generalizations of the
corresponding results given in [5]. Also we present some parameter depen-
dent refinements of Hölder and Minkowski’s inequalities with the help of
[4]. First, we give the notations from [3]:

Let X be a set. The power set of X is denoted by P (X). |X| means the
number of elements in X. For every nonnegative integer d, let

Pd(X) :=
{
Y ⊂ X | |Y | = d

}
.

In the sequel we also need the following hypotheses:
(H1) Let U be a convex set in Rm, x1, . . . ,xn ∈ U .
(H2) Let p := (p1, . . . , pn) be a positive n-tuple such that

∑n
i=1 pi = 1.

(H3) Let f : U → R be a convex function.
(H4) Let S1, . . . , Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃

j=1

Sj ,
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and let c be a function from S into R such that

c(s) > 0, s ∈ S, and
∑

s∈Sj

c(s) = 1, j = 1, . . . , n.

Let the function τ : S → {1, . . . , n} be defined by

τ(s) := j, if s ∈ Sj .

(H5) Suppose A ⊂ P (S) is a partition of S into pairwise disjoint and
nonempty sets. Let

k := max
{ |A| | A ∈ A}

,

and let
Al :=

{
A ∈ A | |A| = l

}
, l = 1, . . . , k.

(We note that Al (l = 1, . . . , k− 1) may be the empty set, and of course,

|S| =
k∑

l=1

l |Al|.) The empty sum of numbers or vectors is taken to be zero.

The following refinement of the discrete Jensen’s inequality is developed
in [3]:

Theorem B. If (H1)–(H5) are satisfied, then

f

( n∑

j=1

pjxj

)
≤ Mk ≤ Mk−1 ≤ · · · ≤ M2 ≤ M1 =

n∑

j=1

pjf(xj),

where

Mk :=
k∑

l=1


 ∑

A∈Al




( ∑

s∈A

c(s)pτ(s)

)
f




∑
s∈A

c(s)pτ(s)xτ(s)

∑
s∈A

c(s)pτ(s)








 , (7)

and for every 1 ≤ d ≤ k − 1 the number Mk−d is given by

Mk−d :=
d∑

l=1

( ∑

A∈Al

( ∑

s∈A

c(s)pτ(s)f(xτ(s))
))

+
k∑

l=d+1

(
d!

(l − 1) . . . (l − d)
·

·
∑

A∈Al


 ∑

B∈Pl−d(A)




( ∑

s∈B

c(s)pτ(s)

)
f




∑
s∈B

c(s)pτ(s)xτ(s)

∑
s∈B

c(s)pτ(s)











 . (8)

A parameter dependent refinement of the discrete Jensen’s inequality is
obtained in [4].

Theorem C. For any real number λ ≥ 1, we suppose (H1)–(H3) and con-
sider the sets

Tk :=
{

(i1, . . . , in) ∈ Nn
∣∣∣

n∑

j=1

ij = k

}
, k ∈ N. (9)



102 L. HORVÁTH, K. ALI KHAN AND J. PEČARIĆ

Let

Ck(λ) = Ck(x1, . . . ,xn; p1, . . . , pn; λ) :=

=
1

(n+λ−1)k

∑

(i1,...,in)∈Sk

k!
i1! . . . in!

( n∑

j=1

λij pj

)
f




n∑
j=1

λij pjxj

n∑
j=1

λij pj


 , (10)

for any k ∈ N. Then

f

( n∑

j=1

pjxj

)
= C0(λ) ≤ C1(λ) ≤ · · · ≤ Ck(λ) ≤ · · · ≤

n∑

j=1

pjf(xj), k ∈ N.

2. New Generalizations of Beck’s Result

Assume (A1) with positive n-tuple p, (H4) and (H5). Let

Lt(x(t); cp; B) = L−1
t




∑
s∈B

c(s)pτ(s)Lt(x(t)
τ(s)

)
∑

s∈B

c(s)pτ(s)


 ,

t = 1, . . . ,m, B ⊂ S,

and let
xi :=

(
x

(1)
i , . . . , x

(m)
i

)
, i = 1, . . . , n.

Then weighted mixed means corresponding to (7) and (8) are defined in the
following ways:

M1
k :=M1

k (L1, . . . , Lm;x(1), . . . ,x(m); cp) :=

= N−1

(
k∑

l=1

( ∑

A∈Al

(( ∑

s∈A

c(s)pτ(s)

)
·

·N
(
f
(
L1(x(1); cp; A), . . . , Lm(x(m); cp;A)

)))))
,

and for 1 ≤ d ≤ k − 1

M1
k−d : = M1

k−d

(
L1, . . . , Lm;x(1), . . . ,x(m); cp

)
:=

= N−1

{
d∑

l=1

( ∑

A∈Al

( ∑

s∈A

c(s)pτ(s)N(f(xτ(s)))
))

+

+
k∑

l=d+1

(
d!

(l − 1) . . . (l − d)

∑

A∈Al

( ∑

B∈Pl−d(A)

(( ∑

s∈B

c(s)pτ(s)

)
·
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·N
(
f
(
L1(x(1); cp;B), . . . , Lm(x(m); cp;B)

)))))}
.

Now, we get an interpolation of (2) by the direct application of Theorem
B as follows.

Theorem 2.1. Assume (A1) with a positive n-tuple p, (H4) and (H5).
If N is a strictly increasing (decreasing) function, then the inequalities

f
(
L1(x(1);p; n), . . . , Lm(x(m);p;n)

)
≤ M1

k ≤ M1
k−1 ≤ · · · ≤

≤ M1
2 ≤ M1

1 = N−1

( n∑

i=1

piN(f(xi))
)

, (11)

hold for all possible x(t) (t = 1, . . . , m) and p, if and only if the function
H defined in Theorem 1.1 is convex (concave). If N is a strictly increas-
ing (decreasing) function, then the inequalities in (11) are reversed for all
possible x(t) (t = 1, . . . , m) and p, if and only if H is concave (convex).

Proof. It follows from Theorem B and Theorem 1.1. We apply Theorem B
to m-tuples

(
L1

(
x

(1)
i

)
, . . . , L1

(
x

(m)
i

))
, i = 1, . . . , n,

and the function H if either H is convex and N is strictly increasing or H is
concave and N is strictly decreasing. −H is used if either H is convex and
N is strictly decreasing or H is concave and N is strictly increasing. ¤

The following applications of Theorem 2.1 are based on special cases of
Theorem B from [3].

Example 2.2. Let n ≥ 1 and k ≥ 1 be fixed integers, and let Ik ⊂
{1, . . . , n}k such that

αIk,i ≥ 1, 1 ≤ i ≤ n,

where αIk,i means the number of occurrences of i in the sequences ik :=
(i1, . . . , ik) ∈ Ik. For j = 1, . . . , n we introduce the sets

Sj :=
{

((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j
}

.

Let c be a positive function on S :=
n⋃

j=1

Sj such that

∑

((i1,...,ik),l)∈Sj

c ((i1, . . . , ik) , l) = 1, j = 1, . . . , n.
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Assume (A1) with a positive n-tuple p. Then the corresponding weighted
mixed means are

M1
k : = N−1

( ∑

(i1,...,ik)∈Ik

(( k∑

l=1

c ((i1, . . . , ik) , l) pil

)
·

·N
(
f
(
L1(x(1); cp; ik), . . . , Lm(x(m); cp; ik)

))))
,

where

Lt(x(t); cp; ik)=L−1
t




k∑
l=1

c ((i1, . . . , ik) , l) pil
Lt(x(t)

il
)

k∑
l=1

c ((i1, . . . , ik) , l) pil


 ,

ik∈Ik, 1 ≤ t ≤ m,

while for 1 ≤ d ≤ k − 1,

M1
k−d :=N−1

{(
d!

(k − 1) . . . (k − d)
·

·
∑

(i1,...,ik)∈Ik

( ∑

1≤l1<...<lk−d≤k

(( k−m∑

j=1

c
(
(i1, . . . , ik), lj)pilj

)
·

·N
(
f
(
L1(x(1); cp; ik; lk−d), . . . , Lm(x(m); cp; ik; lk−d)

)))))}
,

where

Lt(x(t); cp; ik; lk−d) = L−1
t




k−d∑
j=1

c
(
(i1, . . . , ik), lj

)
pilj

Lt(x(t)
ilj

)

k−d∑
j=1

c
(
(i1, . . . , ik), lj

)
pilj


 ,

1 ≤ l1 < · · · < lk−d ≤ k, 1 ≤ t ≤ m.

If N is strictly increasing and the function H defined in Theorem 1.1 is
convex, then Theorem 2.1 gives

f
(
L1(x(1);p; n), . . . , Lm(x(m);p;n)

)
≤ M1

k ≤ M1
k−1 ≤ · · · ≤

≤ M1
2 ≤ M1

1 = N−1

( n∑

i=1

piN(f(x(1)
i , . . . , x

(m)
i ))

)
. (12)

Taking

c((i1, . . . , ik), l) =
1
|Sj | =

1
αIk,j

, ((i1, . . . , ik), l) ∈ Sj ,
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in (12) we get Theorem 2.1 of [5].

Example 2.3. Let n, d, r be fixed integers, where n ≥ 3, d ≥ 2 and
1 ≤ r ≤ n − 2. In this example, for every i = 1, 2, . . . , n and for every
l = 0, 1, . . . , r the integer i+l will be identified with the uniquely determined
integer j from {1, . . . , n} for which

l + i ≡ j (mod n). (13)

Introducing the notation

D := {1, . . . , n} × {0, . . . , r} ,

let for every j ∈ {1, . . . , n}
Sj :=

{
(i, l) ∈ D | i + l ≡ j (mod n)

} ⋃
{j},

and let A ⊂ P (S)
(
S :=

n⋃
j=1

Sj

)
contain the following sets:

Ai :=
{
(i, l) ∈ D | l = 0, . . . , r

}
, i = 1, . . . , n

and
A := {1, . . . , n}.

Let c be a positive function on S such that
∑

(i,l)∈Sj

c (i, l) + c (j) = 1, j = 1, . . . , n.

A careful verification shows that the sets S1, . . . , Sn, the partition A and
the function c defined above satisfy the conditions (H4) and (H5),

τ (i, l) = i + l, (i, l) ∈ D,

(by the agreement (see (13)), i + l is identified with j)

τ (j) = j, j = 1, . . . , n,

|Sj | = r + 2, j = 1, . . . , n,

and
|Ai| = r + 1, i = 1, . . . , n, |A| = n.

Assume (A1) with a positive n-tuple p. If N is increasing and the function
H defined in Theorem 1.1 is convex, then from Theorem 2.1 we get

f
(
L1(x(1);p; n), . . . , Lm(x(m);p;n)

)
≤

≤ N−1

{
n∑

i=1

( r∑

l=0

c(i, l)pi+l

)
N

(
f
(
L1(x(1), cp; i), . . . , Lm(x(m), cp; i)

))
+

+
( n∑

j=1

c(j)pj

)
N

(
f
(
L1(x(1), cp), . . . , Lm(x(m), cp)

))
}
≤
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≤ N−1

( n∑

i=1

piN
(
f
(
x

(1)
i , . . . , x

(m)
i

)))
,

where

Lt(x(t), cp; i) = L−1
t




r∑
l=0

c (i, l) pi+lLt(x
(t)
i+l)

r∑
l=0

c (i, l) pi+l


 ,

1 ≤ i ≤ n, 1 ≤ t ≤ m,

and

Lt(x(t), cp) = L−1
t




n∑
j=1

c(j)pjLt(x
(t)
j )

n∑
j=1

c(j)pj


 , 1 ≤ t ≤ m.

Example 2.4. Let n and k be fixed positive integers. Let

D :=
{

(i1, . . . , in) ∈ {1, . . . , k}n | i1 + · · ·+ in = n + k − 1
}

,

and for each j = 1, . . . , n, denote Sj the set

Sj := D × {j} .

For every in := (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . , n} .

It is obvious that Sj (j = 1, . . . , n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are

decompositions of S :=
n⋃

j=1

Sj into pairwise disjoint and nonempty sets,

respectively. Let c be a function on S such that

c ((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and ∑

(i1,...,in)∈D

c ((i1, . . . , in) , j) = 1, j = 1, . . . , n.

In summary we have that the conditions (H5) and (H6) are valid, and

τ ((i1, . . . , in) , j) = j, ((i1, . . . , in) , j) ∈ S.

Assume (A1) with positive n-tuple p. If N is strictly increasing and the
function H defined in Theorem 1.1 is convex, then from Theorem 2.1 we
get

f
(
L1(x(1);p;n), . . . , Lm(x(m);p; n)

)
≤

≤ N−1

( ∑

(i1,...,in)∈D

(( n∑

l=1

c
(
(i1, . . . , in), l

)
pl

)
·
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·N
(
f
(
L1(x(1), cp; in), . . . , Lm(x(m), cp; in)

))))
≤

≤ N−1

( n∑

i=1

piN
(
f(x(1)

i , . . . , x
(m)
i )

))
,

where

Lt(x(t), cp;in)=L−1
t




n∑
l=1

c ((i1, . . . , in) , l) plLt(x
(t)
l )

n∑
l=1

c ((i1, . . . , in) , l) pl


 ,

in ∈ D, 1 ≤ t ≤ m.

Now assume (A1), consider a real number λ ≥ 1, and let Sk be the set
defined in (9). Then the mixed means corresponding to (10) are

M2
k (λ) : = M2

k

(
L1, . . . , Lm;x(1), . . . ,x(m);p; λ

)
:=

= N−1

(
1

(n + λ− 1k

∑

i1,...,in∈Sk

(
k!

i1! . . . in!

( n∑

j=1

λij pj

)
·

·N
(
f
(
L1(x(1);p; in,k; λ), . . . , Lm(x(m);p; in,k;λ)

))))
,

where

Lt(x(t);p; in,k;λ) = L−1
t




n∑
j=1

λij pjLt(x
(t)
j )

n∑
j=1

λij pj


 ,

in,k ∈ Sk, 1 ≤ t ≤ m.

In this case Theorem C gives another interpolation of (2) as follows:

Theorem 2.5. Assume (A1), let λ ≥ 1 be a real number, and let Sk be
the set defined in (9). If N is a strictly increasing (decreasing) function,
then the inequalities

f
(
L1(x(1);p;n), . . . , Lm(x(m);p; n)

)
= M2

0 (λ) ≤ M2
1 (λ) ≤ · · · ≤

≤ M2
k (λ) ≤ · · · ≤ N−1

( n∑

i=1

piN
(
f
(
x

(1)
i , . . . , x

(m)
i

)))
, k ∈ N, (14)

hold for all possible x(t) (t = 1, . . . ,m) and p, if and only if the func-
tion H defined in Theorem 1.1 is convex (concave). If N is an increasing
(decreasing) function, then the inequalities in (14) are reversed for all pos-
sible x(t) (t = 1, . . . ,m) and p, if and only if H is concave (convex).
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Proof. Similar to the proof of Theorem 2.1. ¤

3. New Generalizations of the Consequences of Beck’s Result

Assume (A2) with positive n-tuple p, (H4) and (H5). Then for m = 2,
the reverse of (11) can be written as

f
(
Kn(a;p), Ln(b;p)

) ≥ M1
k ≥ M1

k−1 ≥ · · · ≥ M1
1 =

= N−1

( n∑

j=1

pjN
(
f(aj , bj)

))
. (15)

Analogous to the results of Corollary A and Corollary B (see [7] and also
[8], p. 195), we have immediately from Theorem 2.1 and Corollaries 1.2, 1.3
that

Corollary 3.1. Assume (A3) with f(x, y) = x+y ((x, y) ∈ IK×IL) and
with positive n-tuple p, assume (H4)–(H5), and assume that K ′, L′, N ′,
K ′′, L′′ and N ′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N ′

N ′′ ,
(15) holds for all possible a, b and p if and only if

E(x) + F (y) ≤ G(x + y), (x, y) ∈ I◦K × I◦L.

In this case

M1
k : = M1

k (K, L;a,b; cp) := N−1

(
k∑

l=1

( ∑

A∈Al

(( ∑

s∈A

c(s)pτ(s)

)
·

·N(
(K(a; cp; A) + L(b; cp; A))

))))
, (16)

and for 1 ≤ d ≤ k − 1

M1
k−d : = M1

k−d

(
K, L;a,b; cp

)
:=

= N−1

{
d∑

l=1

( ∑

A∈Al

( ∑

s∈A

c(s)pτ(s)N(aτ(s) + bτ(s))
))

+

+
k∑

l=d+1

(
d!

l − 1) . . . (l − d)

∑

A∈Al

( ∑

B∈Pl−d

(A)
(( ∑

s∈B

c(s)pτ(s)

)
·

·N
(
K(a; cp;B) + L(b; cp; B)

))))}
. (17)

Corollary 3.2. Assume (H4), (H5) and consider (A3) with f(x, y) =
xy ((x, y) ∈ IK × IL) and with positive n-tuple p. Suppose the functions
A(x) := K′(x)

K′(x)+xK′′(x) , B(x) := L′(x)
L′(x)+xL′′(x) and C(x) := N ′(x)

N ′(x)+xN ′′(x) are
defined on I◦K , I◦L and I◦N respectively. Assume further that K ′, L′, M ′, A,
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B and C are all positive. Then (15) holds for all possible a, b and p if and
only if

A(x) + B(y) ≤ C(xy), (x, y) ∈ I◦K × I◦L.

In this case

M1
k := M1

k

(
K, L;a,b; cp

)
:= N−1

(
k∑

l=1

( ∑

A∈Al

(( ∑

s∈A

c(s)pτ(s)

)
·

·N(
K(a; cp;A)L(b; cp; A)

))
))

, (18)

and for 1 ≤ d ≤ k − 1,

M1
k−d : = M1

k−d

(
K, L;a,b; cp

)
:=

= N−1

{
d∑

l=1

( ∑

A∈Al

( ∑

s∈A

c(s)pτ(s)N(aτ(s)bτ(s))
))

+

+
k∑

l=d+1

(
d!

(l − 1) . . . (l − d)

∑

A∈Al

( ∑

B∈Pl−d(A)

(( ∑

s∈B

c(s)pτ(s)

)
·

·N(
K(a; cp; B)L(b; cp;B)

))))}
. (19)

Under the considerations of examples in Section 2, we show some special
cases of the Corollaries 3.1 and 3.2.

Remark 3.3. Under the settings of Example 2.2, if f(x1, x2) = x1 + x2,
then (16) becomes

M1
k : = M1

k

(
K,L;a,b; cp

)
:=

= N−1

( ∑

(i1,...,ik)∈Ik

(( k∑

l=1

c
(
(i1, . . . , ik), l

)
pil

)
·

· N
(
K(a; cp; ik) + L(b; cp; ik)

))
)

,

and for 1 ≤ d ≤ k − 1 (17) becomes

M1
k−d : = M1

k

(
K, L;a,b; cp

)
:=

= N−1

((
d!

(k − 1) . . . (k − d)
·

·
∑

(i1,...,ik)∈Ik

( ∑

1≤l1<...<lk−d≤k

(( k−m∑

j=1

c
(
(i1, . . . , ik), lj)pilj

)
·
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·N(
K(a; cp; ik; lk−d) + L(b; cp; ik; lk−d

))
))

.

Under the conditions of Corollary 3.1, we have

Kn(a;p) + Ln(a;p) ≥ M1
k ≥ M1

k−1 ≥ · · · ≥ M1
1 =

= N−1

( n∑

i=1

piN(ai + bi)
)

. (20)

Similarly, if f(x1, x2) = x1x2, then from (18) we have

M1
k : = M1

k (K, L;a,b; cp) :=

= N−1

( ∑

(i1,...,ik)∈Ik

(( k∑

l=1

c((i1, . . . , ik), l)pil

)
·

·N(
K(a; cp; ik)L(b; cp; ik)

)))
,

and for 1 ≤ d ≤ k − 1, we have from (19)

M1
k−d : = M1

k (K,L;a,b; cp) :=

= N−1

(
d!

(k − 1) . . . (k − d)
·

·
∑

(i1,...,ik)∈Ik

( ∑

1≤l1<...<lk−d≤k

(( k−m∑

j=1

c((i1, . . . , ik), lj)pilj

)
·

·N(
K(a; cp; ik; lk−d)L(b; cp; ik; lk−d

)))
.

Under the conditions of Corollary 3.2, we have

Kn(a;p)Ln(a;p)≥M1
k ≥M1

k−1≥· · ·≥M1
1 =N−1

(
n∑

i=1

piN(aibi)

)
. (21)

Taking

c((i1, . . . , ik), l) =
1
|Sj | =

1
αIk,j

, ((i1, . . . , ik), l) ∈ Sj ,

in (20) and (21), we get Corollary 3.1 and Corollary 3.2 of [5], respectively.

Remark 3.4. We consider Example 2.3. If f(x1, x2) = x1+x2, then under
the conditions of Corollary 3.1 we have

Kn(a;p) + Ln(b;p) ≥

≥ N−1

{
n∑

i=1

( r∑

l=0

c(i, l)pi+l

)
N

(
Kr(a, cp; i) + Lr(b, cp; i)

)
+
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+
( n∑

j=1

c(j)pj

)
N

(
Kn(a; cp) + Ln(b; cp)

)
}
≥ N−1

( n∑

i=1

piN(aibi)
)

.

Similarly, if f(x1, x2) = x1x2, then under the conditions of Corollary 3.2
we have

Kn(a;p)Ln(b;p) ≥

≥ N−1

{
n∑

i=1

( r∑

l=0

c(i, l)pi+l

)
N

(
Kr(a; cp; i)Lr(b; cp; i)

)
+

+
( n∑

j=1

c(j)pj

)
N

(
Kn(a; cp)Ln(b; cp)

)
}
≥ N−1

( n∑

i=1

piN(aibi)
)

.

Remark 3.5. We now consider Example 2.4. If f(x1, x2) = x1 + x2, then
under the conditions of Corollary 3.1 we have

Kn(a;p) + Ln(b;p) ≥

≥ N−1

( ∑

(i1,...,in)∈D

(( n∑

l=1

c((i1, . . . , in), l)pl

)
·

·N(
Kn(a; cp, in + Ln(b; cp, in)

)
)
≥ N−1

( n∑

i=1

piN(ai + bi)
)

.

Similarly, if f(x1, x2) = x1x2, then under the conditions of Corollary 3.2 we
have

Kn(a;p)Ln(b;p) ≥

≥ N−1

( ∑

(i1,...,in)∈D

(( n∑

l=1

c
(
(i1, . . . , in), l)pl

)
·

·N(
Kn(a, cp, in)Ln(b, cp, in)

)) ≥ N−1

( n∑

i=1

piN(aibi

)
.

Next, assume (A2), let λ ≥ 1, and let Tk be the set defined in (9). Then
for m = 2, the reverse of (14) becomes

f
(
Kn(a;p), Ln(b;p)

)
= M2

0 (λ) ≥ M2
1 (λ) ≥ · · · ≥ M2

k (λ) ≥ · · · ≥

≥ N−1

( n∑

i=1

piN
(
f(ai, bi)

))
, k ∈ N, (22)

where

M2
k (λ) : = M2

k (K,L;a,b;p; λ) :=
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= N−1

(
1

(n + λ− 1)k

∑

(i1,...,in)∈Sk

(
k!

i1! . . . in!

( n∑

j=1

λij pj

)
·

·N(
f(Kn(a;p; in,k; λ), Ln(x(m);p; in,k; λ)

))
)

.

By using Theorem 2.5 (for m = 2) and Corollaries 1.2, 1.3, we get parameter
dependent generalizations of Beck’s results.

Corollary 3.6. Assume (A3) with f(x, y) = x+y ((x, y) ∈ IK × IL), let
λ ≥ 1, and let Tk be the set defined in (9). Assume further that K ′, L′, N ′,
K ′′, L′′ and N ′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N ′

N ′′ ,
(22) holds for all possible a, b and p if and only if

E(x) + F (y) ≤ G(x + y), (x, y) ∈ I◦K × I◦L.

In this case for k ∈ N, we have

M2
k (λ) : = M2

k (K,L;a,b;p; λ) :=

= N−1

(
1

(n + λ− 1)k

∑

(i1,...,in)∈Sk

(
k!

i1! . . . in!

( n∑

j=1

λij pj

)
·

·N(
Kn(a;p; in,k; λ) + Ln(x(m);p; in,k;λ)

))
)

.

Corollary 3.7. Assume (A3) with f(x, y) = xy ((x, y) ∈ IK × IL), let
λ ≥ 1, and let Tk be the set defined in (9). Suppose the functions A(x) :=

K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N ′(x)
N ′(x)+xN ′′(x) are defined

on I◦K , I◦L and I◦N respectively. Assume further that K ′, L′, M ′, A, B and
C are all positive. Then (22) holds for all possible a, b and p if and only if

A(x) + B(y) ≤ C(xy), (x, y) ∈ I◦K × I◦L.

In this case for k ∈ N, we have

M2
k (λ) : = M2

k (K,L;a,b;p; λ) :=

= N−1

(
1

(n + λ− 1)k

∑

(i1,...,in)∈Sk

(
k!

i1! . . . in!

( n∑

j=1

λij pj

)
·

·N(
Kn(a;p; in,k; λ)Ln(x(m);p; in,k;λ)

))
)

.

4. Generalization of Minkowski’s Inequality

We need the following hypothesis:
(A4) Let I be an interval in R, and let M : I → R be a continuous and

strictly monotone function. Let xi ∈ Im (i = 1, . . . , n), let p = (p1, . . . , pn)
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be a positive n-tuple such that
∑n

i=1 pi = 1, and let w = (w1, . . . , wm) be
a nonnegative m-tuple such that

∑m
i=1 wi = 1.

We give a generalization of the Minkowski’s inequality by using Theo-
rem B.

Theorem 4.1. Assume (A4), (H4) and (H5). Further, assume that the
quasi-arithmetic mean function

x → Mm(x;w), x ∈ Im (23)

is convex. Then

Mm

( n∑
r=1

prxr;w
)
≤ Ak ≤ Ak−1 ≤ · · · ≤ A2 ≤ A1 =

n∑
r=1

prMm(xr;w),

where

Ak :=
k∑

l=1


 ∑

A∈Al




(∑

s∈A

c(s)pτ(s)

)
Mm




∑
s∈A

c(s)pτ(s)xτ(s)

∑
s∈A

c(s)pτ(s)
;w








, (24)

and for 1 ≤ d ≤ k − 1

Ak−d : =
d∑

l=1

( ∑

A∈Al

( ∑

s∈A

c(s)pτ(s)Mm(xτ(s);w)
))

+

+
k∑

l=d+1


 d!

(l − 1) . . . (l − d)
·

∑

A∈Al


 ∑

B∈Pl−d(A)

(( ∑

s∈B

c(s)pτ(s)

)
·

·Mm




∑
s∈B

c(s)pτ(s)xτ(s)

∑
s∈B

c(s)pτ(s);w











 . (25)

Proof. We apply Theorem B to the convex function Mm(·;w) and the vec-
tors xi (i = 1, . . . , n). We get Ad (k ≥ d ≥ 1) in (24) and (25) from (7) and
(8) respectively. ¤

Similarly, by using Theorem C we get

Theorem 4.2. Let λ ≥ 1 be a real number, assume (A4) and suppose
Tk (k ∈ N) is the set given in (9). If the quasi-arithmetic mean function 23
is convex, then

Mm

( n∑
r=1

prxr;w
)

= C0(λ) ≤ C1(λ) ≤ · · · ≤ Ck(λ) ≤ · · · ≤

≤
n∑

r=1

prMm(xr;w), k ∈ N,
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where

Ck(λ) = Ck(x1, . . . ,xn; p1, . . . , pn; λ) :=

=
1

(n + λ− 1)k

∑

(i1,...,in)∈Sk

k!
i1! . . . in!

( n∑

j=1

λij pj

)
·

·Mm




n∑
j=1

λij pjxj

n∑
j=1

λij pj

;w


 , k ∈ N.

The following result gives a necessary and sufficient condition for the
quasi-arithmetic mean function to be convex (see [8], p. 197):

Theorem D. If M : [m1,m2] → R has continuous derivatives of sec-
ond order and it is strictly increasing and strictly convex, then the quasi-
arithmetic mean function Mm(·; w) is convex if and only if M ′/M ′′ is a
concave function.

(A5) Let M :]0,∞[→]0,∞[ be a continuous and strictly monotone func-
tion such that lim

x→0
M(x) = ∞ or lim

x→∞
M(x) = ∞. Let x = (x1, . . . , xm) and

w = (w1, . . . , wm) be positive m-tuples such that wi ≥ 1 (i = 1, . . . , m). Let

p = (p1, . . . , pn) be a positive n-tuple such that
n∑

i=1

pi = 1.

Then we define

M̃m(x;w) = M−1

( m∑

i=1

wiM(xi)
)

. (26)

The following result is also given in ([8], page 197):

Theorem E. If M :]0,∞[→]0,∞[ has continuous derivatives of second
order and it is strictly increasing and strictly convex, then M̃m(·;w) is a
convex function if M/M ′ is a convex function.

By using (26) we have

Theorem 4.3. Assume (A5) and let

x → M̃m(x;w), x ∈]0,∞[m

be a convex function.
(a) Consider (H4) and (H5). Then Theorem 4.1 remains valid for

M̃m(x;w) instead of Mm(x;w).
(b) Consider λ ∈ R such that λ ≥ 1 and suppose Tk (k ∈ N) is the set

defined in (9). Then Theorem 4.2 also remains valid for M̃m(x;w) instead
of Mm(x;w).
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Remark 4.4. All special cases (as given in Section 2) can also be consid-
ered for Theorem 4.1, Theorem 4.2 and Theorem 4.3.
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equalities with weights. Proc. A. Razmadze Math. Inst. 158 (2012), 33–56.
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