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STEIN-WEISS INEQUALITIES FOR THE RIESZ
POTENTIAL ON THE LAGUERRE HYPERGROUP

A. EROGLU, SH. A. NAZIROVA AND M. OMAROVA

ABSTRACT. Let K = [0,00) X R be the Laguerre hypergroup which is
the fundamental manifold of the radial function space for the Heisen-
berg group, | - | its homogeneous norm and @ its homogeneous di-
mension. In this paper we study the Riesz potential operator Zg, the
fractional integral operator Ig and its modified version I g in weighted
Lebesgue spaces on K, with weights of the form |(z,t)|*. Necessary
and sufficient conditions on the parameters for the boundedness of 7
and Ig from the spaces Ly, .1 (K) to Ly |- (K) for 1 <p < ¢ < oo,
and from the spaces Ly |.;u (K) to the weak spaces WL, | -x(K) for

1 < g < oo are proved. Moreover, in the limiting case p = con-

B—p—A
ditions for the boundedness of the operator I acting from L, |.;x (K)

into BM O, (K) are given.
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1. INTRODUCTION AND MAIN RESULTS

Let o > 0 be a fixed number, K = [0, 00) X R and m,, be the weighted
Lebesgue measure on K, given by
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The dilations on K are defined by
5. (z,t) = (ra,r*t), r>0.

It is clear that the dilations are consistent with the structure of hypergroup.
Note that Q = 2a + 4 called the homogeneous dimension of Laguerre hy-
pergroup and dmq (6, (z,t)) = r¢ dmq(z,t). We also have a homogeneous
norm defined by |(z,t)| = (* + 4t2)'/4, (z,t) € K. Then we can defined
the ball centered at (x,t) of radius r, i.e., the set B.(z,t) = {(y,s) € K:
|(z—y,t—s)| <r}, B, = B,(0,0), and by BB,,(:lc7 t) denote its complement,
i.e., the set GBr(x,t) ={(y,s) e K:|[(x—y,t—s)| > r}. For any measurable
set E C K, let mo(E) = [ dma(z,t).

For every 1 < p < oo, we denote by L,(K) = L,(K;dm,) the spaces of
complex-valued functions f, measurable on K such that,

1/p
1,0 = ([ 1 0P amaten)) " <oc it pel1.o0)
K

and

”fHLOC(K) = ess sup|f(z,?)| if p=ooc.
(z,t)eK

The weak L,(K) spaces WL,(K), 1 < p < oo is defined as the set of
locally integrable functions f(x,t), (z,t) € K with the finite norm

1/p
1w, = 0 7 (ma {@ ) €K < [f(m,0)] >7}) .
r>0

Let w be a weight function on K, i.e., w is a non-negative and measur-
able function on K, then for all measurable functions f on K the weighted
Lebesgue space Ly, ,(K) and the weak weighted Lebesgue space WL, ,,(K)
are defined by

Lpw(K) =A{f : 1fllz,w) = llwfllL,m) < oo}

and

WLpw(K) ={f I flwe, . = lwfllwe, @ < oo},

respectively.

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. We consider
on the Laguerre hypergroup the following partial differential operator

0? 2a0+1 0 0?
L= —(— gt +x2—>.
0x? x Oz ot2
L is positive and symmetric in Ls(K), and is homogeneous of degree 2 with
respect to the dilations defined above. When av = n — 1, n € N\{0}, the
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operator L is the radial part of the sub-Laplacian on the Heisenberg group
H,,. We call L the generalized sublaplacian.

The potential and related topics in Laguerre hypergroup have been the
research interests of many mathematicians such as Miloud Assal and Hacen
Ben Abdallah [1], Miloud Assal and V.S.Guliyev [10], V. S. Guliyev and
M. N. Omarova [11, 12], M.M. Nessibi and K. Trimeche [17] and others.

For (z,t), (y,s) € K and 0 € [0, 2x[, r € [0,1] let
)"

((z,t), (y,8))o.r = ((mQ + 9% + 2zyrcos ? , b+ s+ xyrsin 9) .

The generalized translation operators ((51)

are given for a suitable function f by, acting according to the law
T((zi)f(y? s) =
1 T .
oo S (1), (3, 9))o0) 6, i 0 =0,

S o (7 £ (@), (g 9))0.) d0) (1 = r2)2Ldr, if o > 0.

on the Laguerre hypergroup

We remark that the generalized shift operator T((sz) is closely connected

with the Laguerre differential operator £ (see [10, 11] for details). Fur-
thermore, T((fi) generates the corresponding convolution product defined
by

(s )nt) = [ T 900 =) dinalyss), Torall (1) €K
K

The Riesz potential on the Laguerre hypergroup is defined in terms of
the generalized sublaplacian L.

Definition 1. For 0 < 8 < @, the Riesz potential Z3 is defined, initially
on the Schwartz space S(K), by

Tof(x,t) = L% f(1).
From Lemmas 2 and 3 (see, section 2) we get
|Zsf(x,t)| < Clzf(x,t), (2)
where

Ipf(x,t) = / T (@, )12 f (v, s)dma(y, 5), 0<B<Q,
K

is the fractional integral on the Laguerre hypergroup. Inequality (2) gives a
suitable estimate for the Riesz potential on the Laguerre hypergroup. In this
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paper we study the Riesz potential, the fractional integral and the modified
fractional integral

Iof(a,t) = / (76 1,172 = 1y, )17 X, (4:5) ) f (s $)dma(y, s)
K

on the Laguerre hypergroup in weighted Lebesgues spaces Ly, ||« (K).

V. Kokilashvili and A. Meskhi [16] proved the Stein-Weiss inequality for
the fractional integral operator defined on nonhomogeneous spaces. The
strong and weak type Stein-Weiss inequalities for the fractional integral
operators in Carnot groups proved by V. S. Guliyev, R. Ch. Mustafayev,
A. Serbetci in [14].

In this article we study the Riesz potential operator Zg and the fractional
integral operator I3 on the Laguerre hypergroup K in the weighted Lebesgue
spaces Ly, |.|» (K), where || is the homogeneous norm in K. We establish the
strong and weak version of Stein-Weiss inequalities for Z3 and I3, and obtain
necessary and sufficient conditions on the parameters for the boundedness of
I and Ig from the spaces Ly, |.1u (K) to Ly |- (K) for 1 < p < ¢ < oo, and
from the spaces Ly |.;u (K) to the weak spaces WL, |.-»(K) for 1 < ¢ < oo.

In the limiting case p = ﬁ%gf)\ we prove that the modified fractional

integral operator fg is bounded from the spaces L, .|« (K) to the weighted
BMO space BMO)|.|-»(K), where @Q is the homogeneous dimension of K.

As an application, in Theorem 5 we obtain boundedness of the operator
I from the weighted Besov spaces By, | .. (K) to By |.|-» (K).

P
p+A>0 (u+A>0,if p=gq), %— % =5 A and f e Ly . (K). Then
Isf € Ly 1-~(K) and the following inequality holds:

Theoreml.LetO<ﬂ<Q,1<p§q<oo,u<Q,,/\<%,
B=—p—

M z,t)[9dme (z, Ve
(K/(z,t) A |Iﬁf( 0| 9dmeg( t)) <
1/p
SO(K/W)' fa.1) dma@,t)) ,

where C' is independent of f.

Theorem 2. LetO<B<Q,1<q<oo,u§0,/\<%,u+/\20,

1 —% _ 5—57—’\ and f € Ly u(K). Then Igf € WL(LH,A(K) and the
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following inequality holds

1/q
dme,(x, t)) <

{(z,t)eK:|(z,t) |~ Ig f(z,t)|>T}

sg?/uxJMHfuJan4x¢x
K

where C is independent of f.

In the following, by using Stein-Weiss type Theorems 1 and 2, we obtain
main result about necessary and sufficient conditions on the parameters for
the boundedness of the Zg and I from the spaces Ly, |.;u (K) to L, |.x (K),
and from the spaces Ly |.;» (K) to the weak spaces WL, |.x (K).

Theorem 3. Let 0 < 8 < Q, 1§p§q<oo,,u<§ (b<0,ifp=1),
A<LB>pu+A>0(B=p+Ar>0,ifp=q).

HIfl<p< ﬁ%ﬂ’ then the condition %—% = B=u=X e necessary and
sufficient for the boundedness of Ig and Ig from Ly, 1.1« (K) to Ly |.|-»(K).

2) If p = 1, then the condition 1—% = % are necessary and sufficient
for the boundedness of Ig and Iy from Ly |.u(K) to WLy | -x(K).

If we take p = ¢ and p = 0 in Theorem 3, then we get the following new
result.

Corollary 1. Let 0 < 3 < Q, 1§p<oo,)\<%,52)\>0.

1) If 1 < p < 00, then the condition 8 = X is necessary and sufficient for
the boundedness of 15 from L,(K) to L, |.|-»(K).

2) If p = 1, then the condition S = X is necessary and sufficient for the

boundedness of Iz from L1(K) to WLy . -»(K).

If we take p = ¢ and A = 0 in Theorem 3, then we get the following new
result.

Corollary 2. Let 0 < 5 < Q, 1§p<oo,u<1%,ﬂ2u>0.

1) If 1 < p < oo, then the condition B = p is necessary and sufficient for
the boundedness of Ig from L, . |-« (K) to L,(K).

2) If p = 1, then the condition f = u is necessary and sufficient for the
boundedness of Iz from Ly |.|-u(K) to WLy (K).

The weighted BM O space on the Laguerre hypergroup BMO,, is defined
as the set of locally integrable functions f with finite norm

£l Baro., @) =

= s w(B) [T F(wt) ~ fo, (o)l dma () < oc,
(z,t)eK,r>0 3
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and BMO space on the Laguerre hypergroup BMO(K) = BMO;(K),

where

B, (z,t) = mg (B,,)_1 /T((:i)f(x,t)dma(y, s).
B,

Note that in the limiting case 1 < p = % statement 1) in Theorem 3
does not hold. Moreover, there exists f € Ly, .|« (K) such that I f(x,t) = oo
for all (x,t) € K. For example,

\(m,t)\’ﬂJr“Jr)‘
fa) =4 " miear  [@OI=220 o p g
0, [(z,t)] <2

where (2,t) e K,0< f—p—A<Qand p= 5_62?, but Igf(x,t) = oo for
all (z,t) € K. However, as will be proved, statement 1) in Theorem 3 holds
for the modified fractional integral operator f@ if the space L |.|-»(K) is
replaced by a wider space BMO|.|-»(K).

In the following theorem we obtain conditions ensuring that the operator

fg is bounded from the space Ly, |.|»(K) to BMO|.,-x(K), when p = 5_5_)\.

Theorem 4. Let 3 > u+ A > 02> X and p = ﬁfgﬁ > 1, then the
operator fg is bounded from Ly, |.1x(K) to BMO|.|-»(K).

Moreover, if the integral I f exists almost everywhere for f € Ly, |.1»(K),
then Igf € BMO,.|-»(K) and the following inequality holds

s fllBro, s < ClflL,, n ),
where C' > 0 is independent of f.

Corollary 3. 1) Let 0< u < <@, p= % > 1, then the operator fg
is bounded from Ly, |.1x(K) to BMO(K).

2) Let p>0,0< <@, p= %, then the operator I~,6 is bounded from
Ly . (K) to BMO,.u(K).

3) Let0<B<Q,p= %, then the operator fg is bounded from L,(K)
to BMO(K).

Schwartz’s theory of Fourier transform and the Lebesgue spaces has been
investigated by many authors in the study of Besov spaces on R™ ([3], [5],
[19]). This theory has been generalized to different spaces, and was applied
further to investigate spaces analogous to the classical Besov spaces ([2], [4],
[18]). Besov spaces in the setting of the Laguerre hypergroups studied by
M. Assal, Ben Abdallah [1] and V. S. Guliyev, M. Omarova [13].
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In Theorem 5 we prove the boundedness of Zz in the weighted Besov
spaces on K

(K) = Hf||Lp,w(K)+

po,w

() ]
K

for a power weight w, 1 < p,0 < oo and 0 < s < 1.

s () = { e

Theorem 5. Let0<ﬂ<Q,1<p§q<oo,,u<%,)\<%,
BZp+A=0(u+A>0,ifp=q).
If1 <p < 5= /\,577:65’\ 1<0<o0and0 < s <1, then
the operator I is bounded from By, . \“( ) to By, - »(K). More precisely,

there is a constant C' > 0, such that,

® < Cllflss, @

HA

holds for all f € By . (K).

2. PRELIMINARIES

Let ¥ = 35 be the unit sphere in K. We denote by ws the surface area of
¥ and by Q5 its volume, m(B1) = Qs (see [8, 10]). Then my(B,) = Qor®.

Lemma 1 ([8, 10]). The following equalities are valid

r(eft) . — r(e4t)
2/l (a + ><%+n’ *Tayr(a+ 2T (a+ D5 +1)

Wy =
Let f € L1(K). Set = r(cos ¢)/2, t = r?sin p. We get

/f(x, t) dmeg(z,t) =
K

/2 oo

1 ' )
= sy [ [ Fes et sing) 19 cong) v
—mw/2 0
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If f radial, i.e., there is a function ¢ on [0,00) such that f(z,t) =
U(|(z,t)]), then

/f(:c,t) dme(z,t) =
K

/2 0o
1
(@t 1) / (cos ) dgo-/w(r)r dr
—7/2 0

_ e [ oo
~ o /ml(a+ i)r(g 1) 0/¢(T)TQ r.

Specifically,
F(a 1)

o(Br) = 2 Q~

ma(Br) = T e T 9T + DTS +1)

Let
- Fm+a+1) (—x)’
(@) —

m (7) Zr(m—j+1)r(j+a+1) [T

Jj=0

be the Laguerre polynomial of degree m and order « (see [1]) defined in
terms of the generating function by

gsmLﬁ)(x) = ﬁ exp ( - ) (4)

1—s

For (A\,m) € R x N, we put
m!T(a+ 1)
F'm+a+1)

The following proposition summarizes some basic properties of functions
P\,m)-

Orm(T,t) = MmN L) ()]22),

Proposition 1. The function oy m) satisfies that
(@) leonm) laoe = €2m)(0,0) = 1,

(b) P(A,m) (.’IJ, t)@()x,m) (y7 S) = T((zi)sp(k,m) (y7 S);
(c) L(p(A,m) = 2\/\|(2m + o+ 1)(,0(/\,7”).

Let f € L1(K), the generalized Fourier transform of f is defined by

F(F)(Am) = / £ )0 m) ( )dma(, ).
K

‘We have
IFN @ < Nl ),
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where

[F () Loy = esssup [F(f)(A,m)].
(A,m)eK

It is easy to see that
FTE PO m) = F(HOm)pm) (v, 5)
and
F(f *g)(A,m) = F(f)(A,m)F(g)(A,m).

Let {H*: 5> 0} = {e~*L : 5 > 0} be the heat semigroup generated by L.
There is an unique smooth function A((x,t),s) = hs(z,t) on K x (0,+00)
such that

H?f(x,t) = f * hg(x,t).

Further h; is the heat kernel associated to the generalized Sublaplacian £
and satisfies

Fhs(A,m)) = 72 Cmraths,

hsl * h82 = h51+52’

xt
Vs's
Although the heat kernel hg(z,t) is not explicitly known, we do have a
suitable estimate for hy(x,t) (see, for example [15]).

he(z,t) = s~ ny ( )-

Lemma 2. There exists A > 0 such that
0 < hg(x,t) < Cs*~2e~ @D
Remark 1. It is easy to see that
FZs )0 m) = 2N|(@2m +a + 1)~ FF(F)(\m).
This means

Iﬁ1(Iﬁ2f) = Iﬁ1+52(f)7 B, 82 >0, 1+ 2 < Q,
L(Zsf) =Zs(Lf) =Tp—2(f), 2<B<Q.

Lemma 3. Let h.(z,t) be the heat kernel associated with L and
0<pB<Q. Then

Zsf(y,s) =F(§)f1 / (/Tg_1hr(x,t)dr)T((;l)f(x,t) dm(z,t).
K 0
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3. SOME PROPERTIES ON THE LAGUERRE HYPERGROUP

Lemma 4. Let 0 < 3 < Q. Then for 2|(z,t)| < |(y,s)|, (z,t),(y,s) € K,
the following inequality holds:

T, 5)172 — (9,919 < 29797 (g, )P0 (@ 1)), (5)
Proof. We will show that
TN, )79 = (g, 9)"~@ =

fl[ (o 09), | 1912 . it a=o,
ioflq[ ((w t), (v, ))G’T‘ﬁQ—l(y,s)|5_Q}d9>r(1—r2)°‘_1dr, if o> 0.

From the mean value theorem we have

(@0, 09) [ w19 <

s

= H ((x,t), (v, 5))9’1‘ — |(y,5)|’§ﬁ762717

where,

min {|((.1),(09)), |-l o)1} <€ <min{] (@0 0.9),

From the mean value theorem (see Lemma 3 of [12]) we have

[0l =1 9)I| < (@0, w.9), | <0+

Note that

17‘

.1

(@0:0:9), | <10+ 191 < 319l
(@0w.9), |2 [l@0] = 09)] 2191 - @ 0] 2 5.5

and
(@0 .9), | = 18] < @]+ 1w s)] = @.9)] < @0l
(ws) = [ (@0 0.9), | < w.9)] = @0l =@ 9)] < @]

Hence

%I(y,s)l < ’((x,t),(y,s))eyr‘ < %I(y,S)\

(@0 @),

)

and

=@y, ) < | (=, 1)]- .
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We will need the following Hardy-type transforms defined on K:

Hi(a,1) = / £y, 5)dma(y, 5)

Bi(x.1)|

and

H' f(a,t) = / F(y, $)dma(y, ).
GBWm)\

The following two theorems related to the boundedness of these transforms
were proved in [6] (see also [7], Section 1.1).

Theorem A. Let 1 < g < co. Suppose that v and w are a.e. positive
functions on K. Then

(a) The operator H is bounded from L1 .,(K) to WLy, (K) if and only if

1/q
A1 = sup ( / Vq(x7t)dma(x,t)> supw ™! (x,t) < o0;
r>0 B,
B,

(b) The operator H' is bounded from L1 ,,(K) to WL, . (K) if and only if

1/q
Ay = sup (/I/q(x,t)dma(x,t)> supw ! (z,t) < oco.
>0 BBT

Moreover, there exist positive constants aj, j =1,...,4, depending only
on q such that a1 Ay < ||H|| < asA; and azAs < ||H'|| < agAs.

Theorem B. Letl1l < p < q < oo. Suppose that v and w are a.e.
positive functions on K. Then
(a) The operator H is bounded from Ly, .,(K) to Ly, (K) if and only if

As = sup ( / Z/q(x,t)dma(x,t)>l/q( / w_p,(x,t)dma(x,t))l/p/ < 0,

r>0
B, B,
P =p/lp=1);
(b) The operator H' is bounded from Ly, .,(K) to WLg ,(K) if and only
if
1/q / 1/
Ay = sup (/Vq(x,t)dma(x,t)) ( / w? (x,t)dma(x,t)> < o0.
r>0 B UBT
Moreover, there exist positive constants bj, j = 1,...,4, depending only

on p and q such that by As < ||H|| < beAs and b3 Ay < ||H'|| < byAy.
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We will need the case that we substitute L, ,,(X) with the homogeneous
space (X, d,dm,) in Theorems A and B in which X =K, d((z,t), (y,s)) =
|(x—y,t—s)| and m,, be the weighted Lebesgue measure on K, given by (1).

Definition 2. The weight function w belongs to the class A,(K) for
1 <p<oo,if

sup GmABAxJDIl/ UK%SW"m@hﬁ)X
(z,t)EK, r>0 B, {zt)

1

p—1
X (mo((Br(as,t))1 w_w(y,s)dma(y,s)> < 00
B, (z,t)

and w belongs to A (K), if there exists a positive constant C' such that for
any (x,t) € Kand r >0

Me (B (2,t)) 7 / w(y, s)dmqs(y,s) < C essinf w(y,s).
- (y,s)EBr(,t)
B, (x,t

The properties of the class A,(K) are analogous to those of the Mucken-
houpt classes. In particular, if w € A,(K), then w € A,_.(K) for a certain
sufficiently small ¢ > 0 and w € A, (K) for any p; > p.

Note that |(z,t)|? € A,(K), 1 < p < oo, if and only if —% <pB< 1%; and
|(x,1)|% € A1(K), if and only if —Q < 3 < 0.

For the maximal function on the Laguerre hypergroup

—1 «
MGt = swpma(B,) " [ 101w, )ldma(y. s
B

the following analogue of Muckenhoupt theorem is valid.

Theorem C. 1. If f € L ,,(K) and w € A1(K), then M f € W L4 ,,(K)
and

IMfllwe, . < Crollfllz,.) (6)

where C 4, depends only on k and n.
2. If f e L w(K) and w € A,(K), 1 <p < o0, then M f € L, ,(K) and
IMfllz, . < Couwlfll,..x) (7)

where Cp ., depends only on w,p, k and n.

Proof. Following [9], we define a maximal function on a space of homo-
geneous type. By this we mean a topological space X equipped with a
continuous pseudometric d and a positive measure p satisfying the doubling
condition

(B (2,1)) < cp(Er (2, 1)), (®)
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where ¢ does not depend on (z,t) € X and r > 0. Here E,.(z,t) = {(y,s) €
X :|(x —y,t—s)| <r}. Denote

Mf (@) = sup (B (2, £) ™ /f (. 9)\duly, s).
E,(z,t)

Let (X, d, 1) be a homogeneous type spaces. It is known that the maximal
operator M,, is weighted weak (1, 1) type, w € A;(X), that is
w(z,t) du(z,t) <

{(z,t)eX:M, f(z,t)>7}

< (2= [ 1@ 0ot duts.). )
X

T

and is weighted (p, p) type, 1 <p < oo and w € A,(X), that is

/M@mmwwmwwwﬂs@w/mawwwwwww.um
X X

In [11] it is proved that the following inequality
Mf(xz,t) < CM,f(z,t)

holds, where constant C' > 0 does not depend on f and (z,t) € K.
If we take X =K, d((z,t), (y,s)) = |(z—y,t—s)| and du(x, t) = dm,(z,t)
then we have

M fllpw < ClIM,.f

lpow < Cpwll fllpps 1 <p< oo,
and for p =1
w(z, t)dmy(z,t) <
{(z,t)eK:M f(z,t)>7}

< w(z,t)du(z,t) <

{(zt)eX: M, f(z,t)>F}

< 2 [ Olulent) duteyt) =
X

_ %/u(x,mw(x,t) dm (. 1). 0
K

Remark 2. Note that in the nonweighted case Theorem C was proved in
[10] and [15].
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We will need the following Hardy-Littlewood-Sobolev theorem for Ig,
which was proved in [11].

Theorem D. Let 0 < < Q and 1 <p < % Then

DIfl<p< cﬁg then the condition % = g is necessary and sufficient
for the boundedness of Ig from L,(K) to L,(K).

2) If p =1, then the condition 1 — + = % s necessary and sufficient for
the boundedness of Ig from L1 (K) to W ¢(K).

1
p
t

4. PROOF OF THE THEOREMS

Proof of Theorem 1. We write

1/q
(/mmnwmﬂaw%muw) < htDtly=

1/q

(ﬂxtM [ 10N w0ty ) da(e )+
B0
# ([l o
/
1/q
[ e el Cama )| dmaen)
Bai(a,t) \B1 (21|
1/q
(/xuM [ 1Tl 0ot dmate0))

®Baj(a.1))

It is easy to check that if |(y,s)| < 3[(z,?)], then |(z,t)] < |(y,8)| +
(@ = y.t—s)| < 3l(z,t)| + |(z =y, t — 5)|. Hence 3|(z,t)| < |(z —y,t— s)|
and TQS)|($7?5)|5 Q < (1+29°9)|(x,1)|°~9. Indeed, from Lemma 4 we
have
(2,0))772 < |(x, )72 + 29701 (2, )P~ (y, 8)| <

< (14 2979)|(2, )P~ €. (11)

()|

Then we get

1/q
L < (1+zQ—5)</|(x,t)|<ﬂ—Q—W(Hf(x,t))qczma(x,t)> .
K
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Further, taking into account the inequality —Ag < (Q — )¢ —Q (i.e., 8 <
% + A) we have

1

(/|x t)|(FAB=Dagm,, (x, t))q
(//TQ L A (=2+6- Q>qd7’d£> —

T

™

w2

:(Q—@—B+Mq

1
,an(QfBH)q) T _

Q
IS}
Q\

(/|xt “pdma(xt> :(/O/TQl _“pdrd£> =

where Cy = ( S22 )7.

7
kP
1 Q

Summarizing these estimates we find that

1/q , 1/p’
sup(/(x,t)(_A+B_Q)qdma(x,t)> (/|(33,t)|_"p dma(aj,t)) _
r>0

C

B, B,

=(C1Cs suprﬁﬂhkﬂwq*@/p < 00 <=
r>0

= pB-p-A=Q/p—Q/q

Now the first part of Theorem B gives us the inequality

1/p
hsma@ﬁﬁ(/mwwmmmeaﬂ .
K

If |(y, s)| > 2|(x,t)], then [(y, 5)| < 5

5@ )+ |(z—y, t=s)| <[(y,s)|+](z—
y,t—s)|. Hence £|(y,

s)| < |(z—y,t—s)| and the inequality T(( @) |(x,)[P~9 <
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(3|(y, s))’~9 can be shown immediately by similar method that of the in-
equality (11). Consequently, we get

Iy < 2@*( JAC R (H’(f(y,s>|(y,s>|ﬂ—Q><|<x,t>|>)qdma<x,t))l/q.
K

Further, taking into account the inequality —Ag > —@Q (i.e., A < Q/q)
we have

(Jreorsimien) ~(f o o) -

~ (S22 remn)t o (L )i%—uor%—x
=\ = =03 )
Q- - ¥

Q=

where Cy = (%) By the condition up > 8p — Q (i.e., 8 < Q/p+ p)
]
it follows that

</| (z,t |—(u+Q—ﬁ)p/dm (x, t)>p =

1
7/

(//TQ L (ut Q=B d7d5> _

>0

w2 FQ—(n+Q=B)p"\ " _
Q- (n+Q-p)p
Q o9, Q_
(( / 1)—2wfa‘/) P TS = Car T,
p = o P

where Cy = ( . 1)+u7p )f/

Thus we find
1/q
sup ( / |(x,t)|Aqdma(x,t)) y
r>0 3

, 1/p’
X</|(x7t)|—(u+Q—B)p dma(xnt)) -
H

B,

= C3C4 sup PP AMRIG=R/P « g s
>0

= pP-—pu-A=Q/p—-Q/q
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Now the second part of Theorem B gives us the inequality
1/p
< 0o ([l s 0P amate))
K

To estimate I we consider the cases 8 < Q/p and 3 > Q/p, separately.
If 8 < @/p, then the condition

B=p+A+Q/p—Q/q=>Q/p—Q/q

implies ¢ < p*, where p* = Qp/(Q — 8p). Assume that ¢ < p*. In the sequel
we use the notation

Dy = {(x,t) € K: 2% <|(x,t)] < 21,
and
Dy, = {(z,t) e K: 2872 < |(z,1)| < 2542},

By Holder’s inequality with respect to the exponent p*/q and Theorem

D we get
L= (/|(x,t)|_’\q< / 1 (y, 5| x

B2, \BL(z,0)|

q 1/q
xT((;)S)(x,t)ﬁQdma(y,s)> dma(x,t)) =

_ (Z/m,t)wq( / DI

kEZ
Dx Bai(a.t) \B1 (1))

1/q

q
X T((;‘)S)(m,t)ﬁ—Qdma(y,S)) dma(;c,t)) <

<(Z(/( ] e

kez
D Baj@)\B 1)

* *

q/p

P
<TI0 a0 (s) ) da(e0)) 5
p_—qg

aap* o* 1/q

qp

X </ [(x,t)| 7" —a dma(:z,t)) ) <
Dy,

< C5<Z Qk[quJrf’:):“Q] (/ ’Ig (be”k) (%t)‘p* dma(x’t))q/p )1/q

kEZ D

s

IN
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ot g a/p\ 1/4q
G (25 [ opanaen) ) <
Dy

IN

keZ
< 07( / |<m,t>|“|f<x,t>pdm(x,t))w.
K

If ¢ = p*, then u+ A = 0. By using directly Theorem D we get

I, < Cy (ZQ’W* / ‘I@ (fX,jk) (%t)‘p

kEZ

*

1/p*
dme(z, t)) <

k

p*/p\ 1/p"
<o (X ([ ueoranaen) ) <
Dy,

kEZ

< cw( / |<x7t>|“p|f<x,t>|17dma<x,t>)W.
K

For § > Q/p by Holder’s inequality with respect to the exponent p we get
the following inequality

pe(fleor( [ |f<y,s>|Pdma<y,s>>Q/px

BQ‘(T«t”\B%KmJ)\

X ( / (T((;l)|(x, t)|57Q)p/ dme (y, s)>q/p/dma(x, t)>

Bai(z. 0\ B
21 )\B 10,0

1/q

On the other hand by using (2) and the inequality 8 > Q/p, we obtain

«@ —_ p,
[ (@l or2)" dna.s) <

B2\(1»t>‘\B%|(m,t)\

< / (& =yt = )|~ D dma(y,s) <
B2|(w~t)\\B%\(z,n>\
< /ma (32\($,t)| NB i (%U)dT <

0
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|(m,t)|(B—Q)p' 0
< / Ma (Bz|<m,t>|)d7 + / M (BTi(ﬁgQ)p, (2, t))dT <
0 |(z,t)|(B=@)p
’ Q
< Cp(a, t)|P=@PHC 4 Oy / T dr =
|(x,t)|(P= Q7!

= COy3)(x, t)|<ﬁ—@)p’+Q7

where the positive constant C;3 does not depend on (z,t) € K. The latter
estimate yields

I < 014(2/|(x,t)|—/\q+[(/3—Q)p/+Q]q/p’X

kezp,

; ( / £ (y: )" dmaly, S))q/pdma(a:, t)> " <

B2‘(I’t)‘\B%\(m,t)\

<au( X [( / |f<y,s>|pdma<y,s>)mx

kEZ .
, , 1/q
> |(1‘7t)|7)\Q+[('67Q)p +Qlq/p dma(z,t)) <

a/p\ /4
< 014(22k(—>\+5—Q+Q/P +Q/a)q (/ |f (y, s)[Pdme(y, S)) ) <

keEZ s
Dy,

<o (X2 [ |f<z,t>pdma<z,t>)q/p)l/q <
Dy,

keZ
a/p
< ([ w0l 0P dmaen)) 0
K
Proof of Theorem 2. Let
E= {(:c,t) eK:

(@, )] / £y )] T ()P~ Cdma (y, 5) > r/s}.

B2‘(m‘t)|\B%\(:c,t)\
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We write

1/q
dma(x,t)) <Ji+J+J3=

{(@, )€K [(@,t)|=* g f (z,8) [>T}

_ ( / dma(x,t))l/:—

{(z,)€K: |(z,t)[ 7> [, - L ()] T ()P~ Qedmea (y,5)>7/3}
PSS

1/q
+ (dea(m,t)) +

+( / dma(z, t)> v

{(=,t)eK: |(z7t)|—x_[032‘( ol |f(y,8)] T((y"il)|($7t)|ff—Qdma(y,s)>‘r/3}

Then it is clear that
1/q
J1 < ( / dma(m,t)> .
{(z,t)€K: 2@ =B |(z,t)|P~Q~ H f(x,t)>7/3}

Further, taking into account the inequality —Ag < (Q — 8)¢ — Q (i.e., B <
Q — Q/q+ \) we have

/ (2,)| A= Ddm, (2, t) = O rATA=QarQ,
GBT
By the condition p < 0 it follows that sup |(z,¢)|7* = r~H.
B

Summarizing these estimates we find that

1/q
sup ( / |(x,t)|(_’\+B_Q)qdma(x7t)> sup |(z,t)| 7" =

r>0 .
tp.

= (' sup pQRIEAB=Q—1 5 s
r>0

= P-p-A=0Q-0Q/q
Now in the case p = 1 the first part of Theorem A gives us the inequality

gy < G / [ )1 f s ) P (2, 1),
K

T

where the positive constant C16 does not depend on f.
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Further, we have

1/a
Js < dmy,(z, t)) .
{(z,t)€K: 29 P (2,t) |~ H' (| f (,9)||(y,5)|P=9) (2,t) >7/3}

Taking into account the inequality —Ag > —Q (i.e., A < Q/q) we get

/| 2, 0)| M (2, 1) = O =1+,

where the positive constant C'y7 depends only on 8 and A. Analogously, by

virtue of the condition p > 8 — @ it follows that
sup |(z, t)|—u+B—Q — ph Q.
¢

B

Then we obtain

sup (B/ |(z, t)|_Aqdma (z,t)
r>0

= (47 sup pRIAAB=Q—b g ey
r>0

= P-p-2A=Q-Q/q
Now in the case p = 1, from the second part of Theorem A we get the
inequality

1

/a
sup = (&) 72 =
B

J3<—/| OELf (@, 6) | dma (2, ),

where the positive constant Cig does not depend on f.
We now estimate Jo. Let

El,k = {(Qi,t) € Dy :

(2, 5) 7 / £ ()| TG, |, 0|7~ Cdma (y, 5) > 7/3}

Bai(e,)\B1(z,1))

and
EQJC = {(.T,t) € Dy :

[ Sl T ) > e .

Boi(w 1) \B
2((2.0)]\ (=,
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From g+ A > 0 and Theorem D, we get

< (kz / dma(m,t))l/q <

“letyeDis oo (£114 xp, ) )] 5er)
q

Cig /e
S( /|f Oz, t)* dma(x,t) ) <
keZ

(= |<x,t>|“|f<x,t>|dma<x,t>)Uq. 0
K

Proof of Theorem 3. Sufficiency part of Theorem 3 follows from Theorems
1 and 2.

Necessity. 1) Suppose that the operators Zg and Ig are bounded from
Lyje to Ly -2(K) and 1 <p < Q/(B—p— ).
Define fr( ,t) =: f(6r(x,t)) for » > 0. Then it can be easily shown that

- _e_
17, i =75 1, i

(Iﬁfr)(x’t) = T_Blﬁf(ér(xvt))a
(Iﬂfr)(xvt) = T_Bzﬁf((sr(x7t))a
and

T _ 624
(REYARIFS s ® =T sl oA ()

H-’ZﬁfTHL ol A]K):"ﬂ + ”Iﬁf”L a2 (&)
From the boundedness of Zg, we have
HIBfHL(Mw—A(K) < C”f”LN,W(K)a
where C' does not depend on f. Then we get
—A r
IZsfllz, | oo = P T f Iz, | o0 =

< CTﬁ+Q/q_>\”fTHLp)‘.W(K) =

= CTBJFQ/‘]*)‘*Q/F?H||f||Lp,\-w(K)'
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If L
P
r— 0.
—p=A
If % — % > %, then for all f € L, |.;» we have HIﬁf”Lq“.l,)\(]K) =0 as
T — 00.
Therefore we obtain the equality % —
the last equality for Is.
2) The proof of necessity for the case 2) is similar to that of the case 1);
therefore we omit it.

% < B—g—/\, then for all f € L, |.|» we have HIB'fHLq",'—)\(]K) =0 as

% =L _g_A. Analogously we get

3) Let f € Lyjn, 1 <p=Q/(B—p—A). For given r > 0 we denote
fl(x7t) = (fXBzr)('r7t)a fg(l‘,t) :f(m,t)—fl(ﬂf,t), (12)

where xp,, is the characteristic function of the set Bs,. Then

Igf(x,t) = Igfi(ax,t) + I fala, t) = Fi(x,t) + Fa(x,t),

where
Fl (ZL', t) = / (T((yojl) ‘(xvt)‘ﬂ_Q - |(ya S)|6_QX '331 (yu S)) f(ya s)dma(ya S),
Ba,
and
Fy(a,t) = / (7510172 = |(y, )7 xep, (4,9)) (. 8)dmaly,s).
DBZT

Note that the function f; has compact (bounded) support and thus

a = — / (4. 9)1P 2 (g, $)dma(y, )
Bar\Buin{1,2r}
is finite.

Note also that

Fi(x,t) —a; = / T((:)S)|(x,t)|'3_Qf(y7s)dma(y,s)—

B,

- / (4,91 f (g, 8)dma(y, )+

B2+ \Bmin{1,2r}

+ / (4, 9)1% 2 (3, 8)dmal(y, s) =

B2+ \Bmin{1,2r}

= / T3 (@, )17~ 1y, )dma(y, s) = Ts fi(x,1).
K



78 A. EROGLU, SH. A. NAZIROVA AND M. OMAROVA

Therefore

Filant) = arl < [ 1.9, (o )] dmay.s) =

= [ 1w T e ldma ..
Bar(z,t)
Further, for (x,t) € B,, (y,s) € Ba.(x,t) we have
[y, 8) < (2, )| + [(z —y, T — )| <3r.
Consequently, for all(x,t) € B, we have
Filest) = al < [ )" TS, |, )ldma (v o).
B3T‘
By Theorem C and inequality (13), for (8 — u — A)p = Q we have

- A/’ T Fia, t)—al’dma(z,l) <
BT

< CT_Q—A/T((ZQD(/ I(y, 5) |ﬂ QT 0t))|f(9,j t)|dme (y, ))dma(z )<

T B3,

1/p
<o g2 ([ 10) (s ) dmale)) <

r

< Cr“( / ) <M<f<:c,t>>>"dma<z,n)1/p <

| /\

(/' 2 Ol T(zag) (M(f(x,t)))pdma(z’l)) v _

B’V‘

1/p
= o [ 1) (a1 1) w0) UGG dmalz)) <
K

<o( [1eor ey dma<z,z>)1/p <
K

<Clflle,, . nm)-

Denote

a5 = / (4, )12 £ (y, 8)dma(y, )

Bmax{1,2r}\ By,

(14)
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and estimate |Fy(z,t) — ag| for (z,t) € B,:

|Fo(x,t) — az| < / £ )] TS, 1, 1)]7=9 = |y, )17 dima (y, 5)-
[H
B27

Applying Lemma 4 and Holder’s inequality we get

|Fy(z, 1) — aa] < 29791 |(z, 1) / £ 9]0 5)|P~ 2 dma(y, 5) <

®B,,
1/p
s2w+1|<x,t>|( / I(y,S)I“”If(%S)Ipdma(y,5)> x
BBT
, 1/p’
x ( [ s dma<y,s>) <

GBT
< Cl(a, DP9 g, o <
< C(z, t)\rk’lllflle,l.l;L(K) <
<Cr(Iflle

P, I“
Note that if |(2,t)| < r and |(z,0)|x < 2r, then T |(x, )] < |(2,1)] +
|(2,1)|x < 3r. Thus for (8 — u — A\)p = Q we obtain
T Fa(w,t) = as| < T(2) [ Fa(w, t) — az <
<SCrMflln,, ) <
< Ol )M Fllzyy o - (15)
Denote

gEata= [ 105w s)dma ().

Bmax{1,2r}

Finally, from (14) and (15) we have

sup r*Q*A/’T((;)S)fﬂf(m,t)—af‘dma(y,s) < Cfllz,, e -

(z,t)eK,r>0 B
Thus
ffH <2C  sup —Q- A/‘T(agl flz,t) —ar|dma(y,s) <
H A BMO, - (K) (a:,t)GK,r>(] (v,)°7 ! :
<C|fllc -

Pl (K
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Proof of Theorem 5. By the definition of the weighted B-Besov spaces it
suffices to show that

||T((yoj)s)lﬁf - IﬁfHLq’H—k(K) < C||T((il)f — fHLp,\-W(]K)'

It is easy to see that T((;l) commutes with Ig, i.e., T((;S)Igf = Ig(T((;l)f).

Hence we obtain
T\ Iaf = Iaf| = [To(T) ) = Iaf| < (1T f = £1)-

Taking L, |.|-»(K)-norm on both sides of the last inequality, we obtain the
desired result by using the boundedness of I from L, .« (K) to L, |.|-» (K).
From Theorem 5 we get the following result on the boundedness of I3 on
the B-Besov spaces B;H(K) = B;G,l(K) on the Laguerre hypergroups K. [J
Corollary 4. Let0<ﬂ<Q,1<p<%, %—%z%,lﬁGﬁooand
0 < s < 1. Then the operator I is bounded from B,,(K)to Bgy(K). More
precisely, there is a constant C' > 0, such that,

111 55,) < Cllf |l Bs, )
holds for all f € B,y(K).
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