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A METHOD OF CONFORMAL MAPPING FOR SOLVING
THE GENERALIZED DIRICHLET PROBLEM OF

LAPLACE’S EQUATION

M. KUBLASHVILI, Z. SANIKIDZE AND M. ZAKRADZE

Abstract. In this paper we investigate the question how the method
of conformal mapping (MCM) can be applied for approximate solving
of the generalized Dirichlet boundary problem for harmonic function.
Under the generalized problem is meant the case when a boundary
function has a finite number of first kind break points. The problem
is considered for finite and infinite simply connected domains. It is
shown that the method of fundamental solutions (MFS) is ineffective
for solving of the considered problem from the point of view of the
accuracy. We propose an efficient algorithm for approximate solving
of the generalized problem, which is based on the MCM. Examples
of application of the proposed algorithm and the results of numerical
experiments are given.

îâäæñéâ. öâïûŽãèæèæŽ ïŽçæåýæ, åñ îëàëî öâæúèâĲŽ çëêòëîéñè
àŽáŽïŽýãŽåŽ éâåëáæ àŽéëõâêâĲñèæ æóêŽï ßŽîéëêæñèæ òñêóùææïŽå-
ãæï áæîæýèâï àŽêäëàŽáâĲñèæ ïŽïŽäôãîë ŽéëùŽêæï éæŽýèëâĲæå
ŽéëýïêæïŽåãæï. àŽêäëàŽáâĲñèæ ŽéëùŽêæï óãâö æàñèæïýéâĲŽ öâéåý-
ãâãŽ, îëùŽ ïŽïŽäôãîë òñêóùæŽï Žóãï ìæîãâèæ àãŽîæï ûõãâðæï ûâ-
îðæèâĲæï ïŽïîñèæ îŽëáâêëĲŽ. ŽéëùŽêŽ àŽêýæèñèæŽ ïŽïîñèæ áŽ
ñïŽïîñèë ùŽèŽáĲéñèæ ŽîââĲæïŽåãæï. êŽøãâêâĲæŽ, îëé ïæäñïðæï
åãŽèïŽäîæïæå òñêáŽéâêðñî ŽéëýïêŽåŽ éâåëáæ Žî Žîæï âòâóðñîæ
àŽêýæèñèæ ŽéëùŽêæï éæŽýèëâĲæå Žéëýïêæïåãæï. öâéëåŽãŽäâĲñèæŽ
âòâóðñîæ Žèàëîæåéæ àŽêäëàŽáâĲñèæ ŽéëùŽêæï éæŽýèëâĲæå Žéë-
ýïêæïŽåãæï, îëéâèæù áŽòñúêâĲñèæŽ çëêòëîéñè àŽáŽïŽýãŽåŽ éâ-
åëáäâ. éëùâéñèæŽ Žôêæöêñèæ éâåëáæï àŽéëõâêâĲæï éŽàŽèæåâĲæ
áŽ îæùýãæåæ âóïìâîæéâêðâĲæï öâáâàâĲæ.

1. Introduction

Let a domain D in the plane z = x + iy ≡ (x, y) be bounded by a closed
piecewise smooth contour S without multiple points (i.e., S is a simple
contour). Moreover, we assume that its parametric equation is given.
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It is known that in the Dirichlet ordinary boundary value problem for the
Laplace equation requires the continuity of the boundary function. However,
in practical problems (e.g., at determining the temperature of the thermal
field or of the potential of the electric field and so on) there are cases when
the boundary function is piecewise continuous and therefore it is necessary
to consider the generalized Dirichlet problem (see [1,2]).

A. On the boundary S of the domain D a function g(τ) is given which
is continuous everywhere, except a finite number of points τ1, τ2, . . . , τn at
which it has discontinuities of the first kind. It is required to find a function
u(z) ≡ u(x, y) ∈ C2(D)

⋂
C(D \ {τ1, τ2, . . . , τn}) satisfying the conditions

∆u(z) = 0, z ∈ D, (1.1)

u(τ) = g(τ), τ ∈ S, τ 6= τk (k = 1, 2, . . . , n), (1.2)

|u(z)| < M, z ∈ D, (1.3)

where ∆ is the Laplace operator and M is a real constant.

In what follows, we assume that the points τk are situated on the contour
S preserving the order of succession under the positive circuit of S (The
movement along the boundary in the counter- clockwise direction is meant
by the positive direction).

Note that the additional requirement of boundedness, when the domain
D is finite, concerns actually only the neighborhoods of break points of the
function g(τ). If the domain D is infinite, then condition (1.3) (except the
above-mentioned) means that (see [3])

lim u(z) = c, for z →∞,

where c is a real constant and |c| < ∞.
It is known [1,2] that Problem (1.1)–(1.3) is correct, i. e., the solution

exists, is unique, depends continuously on the data, and for the generalized
solution u(z) the generalized extremum principle is valid:

min
z∈S

u(z) < u(z)
z∈D

< max
z∈S

u(z),

where for z ∈ S it is assumed that z 6= τk (k = 1, n).
If g−(τk) and g+(τk) are the limit values of the boundary function g(τ),

when τ tends to the point τk along S, respectively, in the positive and
negative directions, then the following theorem explains the behavior of the
generalized solution in the neighborhood of the point τk (see [1]).

Theorem 1. The limit values of the solution u(z) of the generalized
Dirichlet problem, when the point z ∈ D approaches the point τk lie between
g−(τk) and g+(τk).

Evidently, if the function g(τ) is continuous on S, then the generalized
Dirichlet problem coincides with the ordinary problem.
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Such practical problems (physical processes) the investigation of which
are reduced to solving the generalized Dirichlet problem for Laplace’s (or
Poisson’s) equation are considered in [4].

If the domain D is the interior (or the exterior) of the circle S : x =
a cos ϕ, y = a sinϕ (0 ≤ ϕ ≤ 2π), then the solution of the Problem A is
represented by Piosson’s integral [1,2]. In particular, the solution of the
interior problem has the form

u(z) =
1
2π

2π∫

0

g(aeiϕ)
a2 − r2

r2 − 2ar cos(ϕ− θ) + a2
dϕ for r < a, (1.4)

and the solution of exterior problem has the form

u(z) =
1
2π

2π∫

0

g(aeiϕ)
r2 − a2

r2 − 2ar cos(ϕ− θ) + a2
dϕ for r > a, (1.5)

where z = reiθ (0 ≤ θ ≤ 2π). When r = a representations (1.4) and (1.5)
lose the sense. However, it is proved [1,2] that

lim
z→τ

u(z) = g(τ), τ = aeiϕ, τ 6= τk, z ∈ D.

2. A Note on Solving of the Generalized Dirichlet Problem by
the MFS

2.1. MFS formulation for harmonic problems. The basic ideas for the
formulation of the MFS were first proposed by Kupradze and Aleksidze [5].
Consider the Dirichlet problem for Laplace’s equation

∆v(z) = 0, z ∈ D, (2.1)

v(z) = b(z), z ∈ S, (2.2)

where D is a bounded domain with its boundary S, and b(z) = b(x, y) is a
continuous function defined on S.

The MFS approximates the solution v(z) by

vN (z) =
N∑

k=1

ak ln |z − z̃k|, z ∈ D, (2.3)

namely, a linear combination of fundamental solutions of Laplace’s equation,
where the points (singularities) z̃k (k = 1, 2, . . . , N) are situated uniformly
(in a sense) outside the domain D so-called on the closed auxiliary contour
S̃. The contour S̃ contains the domain D = D + S and min ρ(S, S̃) > 0,
where ρ is the distance between the curves S and S̃. In approximation (2.3),
the number N and the locations of the points z̃k and the coefficients ak(k =
1, 2, . . . , N) are determined so that vN (z) satisfies the boundary condition as
well as possible. In particular, the coefficients ak are determined to satisfy
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the boundary condition (2.2) at the collocation points zj(j = 1, 2, . . . , N),
which are situated uniformly (by the same law as the points z̃k) on the
boundary S. That is to say, they are solution of a system of N linear
equations

N∑

k=1

ak ln |zj − z̃k| = b(zj), (j = 1, 2, . . . , N),

which is called the collocation condition. Once ak (k = 1, 2, . . . , N) are
determined, v(z) can be approximated by vN (z) at any point z ∈ D.

The approximation vN (z) exactly satisfies the Laplace equation (2.1).
Consequently, if the domain D is bounded, by the maximum principle for
harmonic functions, computational error of a solution of the problem (2.1),
(2.2) can be estimated as

ε = max
z∈S

∣∣vN (z)− b(z)
∣∣ ≈ max

∣∣vN (zj)− b(zj)
∣∣,

where the points zj (j = 1, 2, . . . ,M) are situated uniformly on the contour
S and M >> N .

It should be noted that the application and investigation of the MFS
have been carried out in the course of 50 years. In various scientific cen-
ters have extensively used the MFS to solve complicated problems such
as conformal mapping problems, linear and nonlinear problems of the po-
tential theory, boundary value problems with a free boundary, biharmonic
problems, problems of elastostatics and elastodynamics, direct and inverse
problems of geophysics and so on.

A special mention should be made of a wide application of the MFS
for investigation of a number of boundary value problems. For instance,
the MFS plays the main role in proving the existance theorems in mixed
dynamic problems as well as in dynamic of the moment theory of elasticity
and thermoelasticity (see [6]).

From the mathematical standpoint the MFS is studied in a number of
works, of which we should mention Christiansen [7], Mathon and Johnston
[8], Fairweather and Jonston [9], Katsurada and Okamoto [10], Katsurada
[11, 12], Kitagawa [13], Fairweather and Karageorghis [14], Smyrlis and
Karageorghis [15].

2.2. On application of the MFS for generalized problem. In general,
it is known [4, 16] that the methods used for approximate solving the ordi-
nary boundary problems are less suitable (or not suitable at all) for solving
problems with singularities. In particular, the convergence is very slow and,
consequently, the accuracy is very low in the neighborhood of singularity
of the boundary function. Similar case takes place in solving the general-
ized Dirichlet boundary problem by the MFS. Therefore researchers try to
conduct preliminary improvement of the posed boundary problem. More
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precisely, they try to reduce, if possible, the posed problem by smoothing
a boundary function to solving the ordinary problem (see e.g., [4, 16, 17,
18]. For example, the question about application of the MFS to harmonic
and biharmonic problems with certain singularities is considered in [19, 20,
21]. In these papers is noted the MFS for solving harmonic and biharmonic
problems with boundary singularities is ineffective from the point of view
of the accuracy in the neighborhood of boundary singularities. Therefore,
authors for solving the considered problems have used so-called modified
versions of the MFS, which are based on the direct subtraction of the lead-
ing terms of the singular local solution (which must be determined) from the
original mathematical problem. Because of difficulty numerical realization
they have considered cases only with the one boundary singularity.

In general, the MFS may be used for solving both ordinary problem and
generalized problem (see [5, 17]). Concerning the rate of the convergence
and accuracy in the neighborhood of singularity of the boundary function,
the noted fact was expected. Indeed, the fundamental solutions (functions)
which participate in (2.3) have a high degree of smoothness on the contour
S, therefore, such smooth functions are less suitable for approximation of
discontinuous functions. Taking into account the fact that for very big N
computation becomes complicated, then the above noted facts make the
MFS less suitable (or not suitable at all) for approximate solving the Prob-
lem A. An analogous circumstance takes place when D is infinite domain.
Thus, in the case of generalized problem the MFS is ineffective from the
point of view of the accuracy.

3. On Application the MCM for Solving the Generalized
Dirichlet Problem

Let in the plane z be given a finite (or infinite) simply connected domain

D with a piecewise smooth boundary S, i.e.,
(
S =

l⋃
j=1

Sj

)
. We assume that

parametric equations of the lines Sj : z = zj(ϕ) ≡ xj(ϕ) + iyj(ϕ), αj ≤
ϕ ≤ βj is given.

As it often happens, the problem can be solved in a relatively simple way
under more complicated boundary conditions for canonical domains such as
a disk, a circular ring, a square and so on (see, e.g., (1.4), (1.5)). Hence,
there are attempts to transfer the boundary problem posed for the initial
(basic) domain D to the canonical domain G with boundary γ. Obviously in
this case generally the following is being changed: 1) The given differential
equation; 2) The domain in which the unknown function is sought; 3) The
boundary conditions.

As early as the middle of the 19-th century conformal mappings are
widely used for transference of a number of plane problems of mathematical
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physics to canonical domains. To implement the transference a analytic
function z = ω(ζ) conformally mapping the domain G in the plane ζ = ξ+iη
onto the domain D is applied (see e.g., [1, 16, 22, 23]).

The range of problems solvable by the MCM is very wide. In partic-
ular, the method has been applied successfully in problems of hydro and
aerodynamics, elasticity, filtration etc.

Thus many boundary problems can be reduced to a problem of finding
the function z = ω(ζ). Note that the solution of boundary problems can
easily be constructed when the function z = ω(ζ) is either a rational or poly-
nomial. The mentioned circumstance was organically connected with the
development of methods for constructing conformally mapping functions.

Since conformally mapping functions z = ω(ζ) can be written in explicit
form only for a rather narrow family of domains, one has usually to resort
to approximate methods of constructing mapping functions appeared (see
e.g., [16, 23, 24, 25, 26, 27]).

It should be noted that in solving boundary problems by the MCM the
following circumstance takes place [28]. The function z = ω̃(ζ) which is
constructed approximately, maps conformally the canonical domain G onto
the domain D̃ which is close to D, and thus, practically, the problem stated
for the domain D with boundary S is being solved for the domain D̃ with
the simple boundary S̃. Here we mean that the conditions which ensure
the existence and uniqueness of a solution to a mathematical problem are
fulfilled for the domain D̃.

The possibility of such approuch is due to the following facts. When
passing from a practical problem to a mathematical model, the idealization
of both the physical properties of the medium and the contour S takes
place. Since the real boundary does not coincide with the ideal boundary
S, the contour S has a tolerance field in which it can vary almost arbitrarily
(without change of type). Physically this means that a small change of data
induces a small change of corollary, and mathematically this means that a
solution depends continuously on the data. Therefore, during solving correct
problems by the MCM, we have to find a function z = ω̃(ζ) such that
the deviation of a simple contour S̃ from the given boundary S be within
admissible limits. It is evident, that if S̃ → S, then ũ(x, y) → u(x, y), where
u(x, y) is a solution of the initial problem, and ũ(x, y) is a solution of the
problem for the domain D̃ with boundary S̃.

It is known [16, 23] that if the transfer on the domain G is done by
the analytic function z = ω(ζ) which conformally maps the domain G onto
D, then in the case of the Problem A changes only the domain and the
boundary conditions. In particular, under the conformal mapping z = ω(ζ)
the piecewise continuous boundary function g(τ) (τ ∈ S, τ 6= τk) goes into
the piecewise continuous function g∗(t) = g(ω(t)) t ∈ γ, which has the
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same jumps at the point tk ∈ γ (τk = ω(tk)), as g(τ) has. The function
u∗(ζ) = u(ω(ζ)) is harmonic in the domain G, bounded in G, continuous
in G everywhere, except the points t = tk and u∗(ζ) → g∗(t) for ζ → t, t 6=
tk, ζ ∈ G, t ∈ γ.

Thus, in particular, if the domain G is the unit disk G(|ζ| < 1),then
after transference to G we obtain again the Dirichlet generalized boundary
Problem B for the Laplace’s equation with changed right hand sides, but
for the disk G.

B.

∆u∗(ζ) = 0, ζ ∈ G, (3.1)

u∗(t) = g∗(t), t ∈ γ, t 6= tk, (3.2)

|u∗(ζ)| < M, ζ ∈ G, (3.3)

where u∗(ζ) = u(ω(ζ)), ζ ∈ G; g∗(t) = g(ω(t)), t ∈ γ; g∗(t) ∈ C(γ) for
t 6= tk.

On the basis of formula (1.4) we have

u∗(ζ) = u∗(r, θ) =

=





1
2π

2π∫
0

g∗(eiϕ)
1− r2

1− 2r cos(ϕ− θ) + r2
dϕ for r < 1,

g∗(t), t 6= tk for r = 1,

(3.4)

where ζ = reiθ (0 ≤ θ ≤ 2π).
Thus, the MCM permits to obtain the representation of the solution of

the Problem A for an arbitrary simply connected domain D by Poisson’s
integral (3.4). However, for this, in general, it is necessary to know the
function ζ = f(z) which is inverse of the function z = ω(ζ), i.e., ζ = ω−1(z).
Indeed, in the first place, in order to calculate integral (3.4) we must know
the pre-images tk of the points τk (k = 1, 2, . . . , n) under conformal mapping
z = ω(ζ) (i.e., τk = ω(tk), τk ∈ S, tk ∈ γ). Exact or approximate definition
of the points tk is a difficult problem, and if the function ζ = f(z) is known,
then tk = f(τk).

Moreover, in general, for calculation of the solution of the Problem A
at the arbitrary point of the initial domain D, it is necessary to know the
function ζ = f(z). Indeed, since the functions ζ = f(z) and z = ω(ζ) are
mutually inverse, therefore at any point z of the domain D, u(z) = u∗(ζ),
where ζ = f(z), and the value of the function u∗(ζ) at the point ζ will be
defined by (3.4).
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4. The Algorithm of Solving the Generalized Dirichlet
Problem

In this section we propose one algorithm for an approximate solving of
Problem A. The proposed algorithm is sufficiently simple for numerical
realization and it is characterized by accuracy, which is practically sufficient
for many problems. Respectively to the general principle which is described
in Section 3, the algorithm consists of three stages.

4.1. An approximate construction of the function ζ = f(z) for a
finite domain. Let ζ = f(z) be a function conformally mapping the simply
connected finite domain D (bounded by a simple closed contour S) to the
unit disk G under normalization conditions

f(z0) = ζ0, f(z1) = ζ1, (4.1)

where z0, z1, ζ0, ζ1 are fixed points and z0 ∈ D, z1 ∈ S, ζ0 ∈ G, ζ1 ∈ γ.
Without loss of generality we may mean that ζ0 = 0 and ζ1 = 1. According
to Riemann theorem the function f(z) exists under conditions (4.1) and is
determined uniquely. The approximate construction of the function ζ =
f(z) can be realized by using one simple scheme given in [29, 30]. The
mentioned scheme is based on the well-known representation of the unknown
function [1, 16]

f(z) = (z − z0)eu(x,y)+iv(x,y), z ∈ D,

where u(x, y) is a solution of the Dirichlet boundary value problem

∆u(x, y) = 0, (x, y) ∈ D, (4.2)

u(x, y) = − ln |z − z0|, z ∈ S, (4.20)

and v(x, y) is the function harmonically conjugate to u(x, y) and defined to
within the constant summand c.

For an approximate solution of problem (4.2), (4.20) we use the MFS.
In that case the differential equation (4.2) is satisfied exactly, while the
boundary condition (4.20) approximately. Thus the error source is only the
error of approximation of the boundary function b(z) = − ln |z − z0|.

Note that practical choice of an auxiliary contour S̃ depends on a number
of factors stipulated by the meaning of the problem and requires certain
electoral approach. Numerous experiments have shown that high accuracy
of approximation of the boundary function b(z) is in our case reached in
such a combination of the contour S̃ and the point z0 when S̃ is similar
to S; the contour S̃ is the boundary of the figure D̃ similar to figure D
and oriented likewise, and the point z0 is the centroid (in a sense) of plane
figures D and D̃ (see [30, 31]).
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Using the MFS and having found uN (x, y), we can immediately find the
corresponding harmonically conjugate to uN (x, y) function vN (x, y):

vN (x, y) ≡
∑

N

(z) + c =
N∑

k=1

ak arg(z − z̃k) + c, (4.3)

where c is an arbitrary constant. This circumstance essentially simplifies
the finding of a conformally mapping function.

It can be easily shown that if the boundary value problem (4.2), (4.20)
is solved to within ε, i.e., |uN (x, y) − u(x, y)| < ε, (x, y) ∈ S then for the
absolute value of the function

fN (z) = (z − z0)euN (x,y)+ivN (x,y)

the estimate
e−ε < |fN (z)| < eε, z ∈ S

is valid, and lim
N→∞

fN (z) = f(z) (uniformly) for all z ∈ D.

If in (4.3) we take

c = −
∑

N

(z1)− arg(z1 − z0),

then fN (z0) = 0, fN (z1) = ζ1 = 1 i.e., the normalization conditions (4.1)
will be fulfilled.

Remark. When constructing approximately conformally mapping func-
tions, we rely on the following rather useful theorem (Osgood W.F) [1, 22].

Theorem 2. Let D be a finite or infinite simply connected domain in the
plane z, bounded by a simple closed contour S and let ϕ(z) be a function,
analytic in D (including the point at infinity, if the domain D is infinite)
and continuous in D. Further, let the point, define by equality ζ = ϕ(z)
describes in the plane ζ (moving always in one and the same direction)
some simple closed contour γ∗, when z describes the contour S. Then the
relation ζ = ϕ(z) gives the conformal mapping of the domain D on the
domain G∗, enclosed inside γ∗ and conversly.

It should be noted that this theorem is generalized also for the case of
multiply-connected domains [22].

Thus, on the basis of the Theorem 2, if arg fN (z) increases monotonically
in a rigorous sense from 0 to 2π for a single circuit of the curve S (counter-
clockwise, starting from the point z1), then the function fN (z) provides
conformal mapping of the domain D onto the circle G with accuracy ε1 =
eε − 1. If the above-mentioned condition is not fulfilled, then we must
increase the accuracy of solving the boundary value problem (4.2), (4.20).

On the basis of the above-cited algorithm, if we construct the function ζ =
fN (z) mapping conformally the domain D onto the circle G with accuracy
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ε1, then it becomes clear that the points t
(N)
k = fN (τk) (k = 1, 2, . . . , n) will

be located on the contour ζ = fN (z), z ∈ S lying in the ring e−ε < ζ < eε,
and these points are in fact the values of the points tk to within ε1. However,
we can increase the accuracy of determining the points tk. Indeed, if we
carry the points t

(N)
k over the circumference γ in the normal γ, then as a

result we obtain the points t∗k which on the basis of the inequality |t∗k−tk| ≤
|t(N)

k − tk| (for sufficiently small ε) will be closer to the exact values of the
points tk than the points t

(N)
k . Hence, since the points t∗k (k = 1, 2, . . . , n)

are the coordinates of the points of intersection of the normal and the curve
γ, for an approximate determination of the points tk we will finally have
the expression

t∗k =
fN (τk)
|fN (τk)| (k = 1, 2, . . . , n). (4.4)

It should be noted that if the domain D is infinite then for application of
our algorithm it is necessary to transfer the Problem A to the finite simply
connected domain D∗. For this we can apply inversion

z∗ = z0 +
1

z − z0
,

where z0 is the point of finite domain E bounded by contour S.

4.2. An approximate construction of the function z = ω(ζ) in a
polynomial form. Below we offer one scheme for approximate construc-
tion of the function conformally mapping a unit disk G to the given simply
connected domain D (in more detail see [27]). The offered method, realizing
the definition of the unknown function in the polynomial form is quite sim-
ple for numerical realization and has accuracy which is practically sufficient
for many problems.

Note that one of the essential moments in the offered here approach is
the fact that by the corresponding scheme on the initial step the function
ζ = fN (z) is found (see p. 4.1), which realizes approximate conformal
mapping of the domain D to the disk G, and then with its help the unknown
polynomial z = ωm(ζ) is constructed. This circumstance also appears to
be convenient enough at solving practical problems by method of conformal
mapping.

The function z = ω(ζ), conformally mapping the unit disk G to the
domain D, is analytic in the disk G and continuous in G, hence, it can be
represented in this disk by its Taylor series:

ω(ζ) =
∞∑

k=0

Ckζk, Ck = C ′k + iC ′′k . (4.5)

Since the function z = ω(ζ) is analytic in the disk G and continuous in
G, due to the Cauchy integral formula the coefficients of the series (4.5) are
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defined by formula [1]

Ck =
ω(k)(0)

k!
=

1
2πi

∫

γ

ω(t) dt

tk+1
(k = 0, 1, . . . ). (4.6)

By virtue of the principal of correspondence of boundaries at conformal
mapping the series (4.5) is convergent on γ, and in G the series (4.5) con-
verges uniformly. Evidently, via the convergence of the series (4.5), Ck → 0
when k →∞. If now instead of the series (4.5) we take its piece consisting
of m + 1 terms

ωm(ζ) =
m∑

k=0

Ckζk,

the relation z = ωm(eiϕ) (0 ≤ ϕ ≤ 2π) will map the circle |ζ| = 1 generally
not to the contour S, but to the some contour Sm. Since for the points
ζ ∈ G, ωm(ζ) → ω(ζ) for m →∞, hence Sm → S for m →∞.

Thus, if we take m sufficiently large, the deflection of the contour Sm

from the given contour S can be made arbitrarily small. After finding the
coefficients Ck (k = 0, 1, . . . , m) the contours Sm must be drawn. If the
contour Sm has multiple points or the deflection of the contour Sm from
the given boundary S is not in admissible limits, then the number m, i.e.
the polynomial order, must be increased.

Let ζ = f(z) be a function conformally mapping the domain D to the unit
disk G under normalization conditions (4.1). On the basic of conformality
of the mapping the function f(z) has inverse function z = ω(ζ), which is
determined uniquely, maps conformally the disk G to the domain D under
conditions ω(ζ0) = z0, ω(ζ1) = z1. Otherwise, the functions f and ω are
inverse.

In formula (4.6) under the integral sign there are boundary values of the
functions z = ω(ζ) and ζ = f(z), hence at numerical integrating relating the
corresponding integral some circumstances, important from the numerical
point of view should be taken into account. Depending on the geometry of
the contour S and normalization conditions (4.1), it is not excluded that
the images tj (j = 1, 2, . . . ,M) of the points zj (j = 1, 2, . . . , M) which
are equidistant with respect to the parameter ϕ on boundaries S, will be
situated not even non-uniformly, but may be strongly overcrowded at certain
points [28]. Therefore, in order to prevent the stopping of the computer due
to possible division by the machine zeros and to achieve high accuracy using
the proper quadrature formulas it is reasonable in the integral (4.6) to pass
from the contour γ to the contour S. Consequently, after construction of
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the function ζ = fN (z) we will have a scheme

CN
k =

1
2πi

∫

S

zf ′N (z) dz

[fN (z)]k+1
=

1
2πi

l∑

j=1

βj∫

αj

zj(ϕ) f ′N (zj(ϕ)) (zj(ϕ))′ dϕ

[fN (zj(ϕ))]k+1
(4.7)

for approximate values of coefficients Ck, where z = zj(ϕ) (αj ≤ ϕ ≤ βj)
are corresponding parameter equations of smooth curves Sj . The possibility
of such passage is evident by virtue of analyticity of the function fN (z) in D.

It is easy to show that if the function fN (z) is constructed within given
ε(ε > 0), i.e. |fN (z) − f(z)| < ε for z ∈ S, then |CN

k − Ck| = O(ε)
and CN

k → Ck when N → ∞, since the sequence of the functions fN (z)
converges uniformly on D to the function f(z). Thus using the formula
(4.7) coefficients of the series (4.5) are determined within ε.

5. Numerical Examples

In the examples considered below the calculations were carried out by
the MATLAB system.

Example 1. Let the domain D be the interior of the ellipse S : x =
5 cos ϕ, y = 3 sin ϕ (0 ≤ ϕ ≤ 2π), i.e., S = S1, l = 1, α1 = 0, β1 = 2π. In
the role of a boundary function g(τ) we took the function which has one
break point τ1 = (0, 3). In particular, the function g(τ) = arg(τ − τ1), τ ∈
S, τ 6= τ1 was taken. It is evident that g+(τ1) = π, g−(τ1) = 2π and
π ≤ arg(τ − τ1) ≤ 2π for τ ∈ S, τ 6= τ1. In the considered case the exact
solution to the problem A has the form u(z) = arg(z − τ1), z ∈ D, z 6= τ1.

The approximate expression z = ωm(ζ) of function z = ω(ζ) in the
polynomial form under normalization conditions: ω(0) = 0 and ω(1) = 5
was constructed by the method described in the Section 4.

In the considered case in the formula (4.7): l = 1, α1 = 0, β1 =
2π, z1(ϕ) ≡ z(ϕ) = 5 cos ϕ + i3 sin ϕ. The function ζ = fN (z) is the ap-
proximate expression of the function ζ = f(z), which conformally maps the
domain D onto the unit disk G under normalization conditions: f(0) =
0, f(5) = 1, i.e., the functions fN (z) and ωn(ζ) are mutually inverse. We
constructed the expression of the function ζ = fN (z) by the scheme, which
is given in the Point 4.1. For construction of the function fN (z) in the role
of the auxiliary contour is taken ellipse S̃ : x = 8 cos ϕ, y = 6 sinϕ, 0 ≤
ϕ ≤ 2π, and the collocation and auxiliary points lie uniformly with respect
to the parameter ϕ on the contours S and S̃, respectively. The number of
these points is N = 100.

If we take into account that an ellipse has two symmetry axes, then on the
basis of the normalization conditions it is easy to show that all coefficients
Ck of the Taylor series of the function z = ω(ζ) are real numbers and all Ck
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with even indices are equal to zero, i.e., C ′′k = 0, C2k = 0 (k = 0, 1, 2, . . . ).
The indicated circumstance holds also in calculations of the coefficients CN

k .

Table 1(a)

m = 200, M = 100000, ε = 0.1E − 14, δ = 0.6E − 12

k CN
k k CN

k

1 0.35416244259515E + 01 51 0.62089961643730E − 04
3 0.74857202098445E + 00 53 0.46727137562580E − 04
5 0.30777021024151E + 00 55 0.35237714377524E − 04
7 0.15632045480507E + 00 57 0.26624070955671E − 04
9 0.88375528404711E − 01 59 0.20151768391927E − 04
11 0.53334217153624E − 01 61 0.15278234402572E − 04
13 0.33638961448325E − 01 63 0.11601353218422E − 04
15 0.21903947998325E − 01 65 0.88222226634093E − 05
17 0.14611110326638E − 01 67 0.67180526649451E − 05
19 0.99325641336952E − 02 69 0.51223618612366E − 05
21 0.68558062781214E − 02 71 0.39104517355128E − 05
23 0.47918518921518E − 02 73 0.29887142553037E − 05
25 0.33846323594660E − 02 75 0.22867355403439E − 05
27 0.24121175552648E − 02 77 0.17514467786400E − 05
29 0.17323021268172E − 02 79 0.13427793408844E − 05
31 0.12524269250369E − 02 81 0.10304288161657E − 05
33 0.91081478031834E − 03 83 0.79143897874848E − 06
35 0.66583008576670E − 03 85 0.60839384158356E − 06
37 0.48899810068219E − 03 87 0.46806180958930E − 06
39 0.36062357822837E − 03 89 0.36037682962621E − 06
41 0.26694855419727E − 03 91 0.27767132565861E − 06
43 0.19827851959047E − 03 93 0.21409767374594E − 06
45 0.14772938795337E − 03 95 0.16519111775885E − 06
47 0.11037904594961E − 03 97 0.12753904441326E − 06
49 0.82686450879585E − 04 99 0.98530334380181E − 07

In the Tables 1(a) and 1(b): k is the number of coefficient CN
k ; m is an order of

polynomial z = ωm(ζ); M is a number of quadrature nodes of Simpson’s formula
for calculation the integrals of type (4.7); ε and δ are a posteriori error estimates
of construction of functions ζ = fN (z) and z = ωn(ζ) respectively:

ε = max
z∈S

∣∣ |fN (z)| − |f(z)|
∣∣ ≈ max

∣∣|fN (zk)| − 1
∣∣,

δ = max
τ∈γ

∣∣ω(τ)− ωn(τ)
∣∣ ≈ max

∣∣zk − ωn(ζk)
∣∣,

where ζk = fN (zk)
|fN (zk)| ∈ γ (see (4.4)), and the points zk (k = 1, 2, . . . , M) are

situated uniformly with respect to the parameter ϕ on the contours S. Evidently,
when the number M is large enough, the values ε and δ practically represent the
deflections of contours ζ = fN (z) (z ∈ S) from γ and Sn (z = ωn(τ)) from S
respectively. In numerical experiments we took M = 105. In tables, in order to
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be short, corresponding values are written with exponent E, i.e., E plays the role
of base 10.

Table 1(b)

k CN
k k CN

k

101 0.76165166813413E − 07 151 0.14085239638787E − 09
103 0.58910457759183E − 07 153 0.10997871519702E − 09
105 0.45589884556607E − 07 155 0.85889270414382E − 10
107 0.35300075996333E − 07 157 0.67093365235434E − 10
109 0.27346735901415E − 07 159 0.52423270595625E − 10
111 0.21195803489319E − 07 161 0.40970761909046E − 10
113 0.16436205965822E − 07 163 0.32023819384423E − 10
115 0.12751259834320E − 07 165 0.25042514373297E − 10
117 0.98968627950787E − 08 167 0.19580950983607E − 10
119 0.76847311737123E − 08 169 0.15321228687230E − 10
121 0.59695336374258E − 08 171 0.11989044761407E − 10
123 0.46390287495779E − 08 173 0.93747809485715E − 11
125 0.36064691979387E − 08 175 0.73475284019982E − 11
127 0.28047978251925E − 08 177 0.57469080279778E − 11
129 0.21821174363268E − 08 179 0.45065382403564E − 11
131 0.16982817134966E − 08 181 0.35290207511807E − 11
133 0.13221805854435E − 08 183 0.27687632853102E − 11
135 0.10297034424411E − 08 185 0.21659547681333E − 11
137 0.80219172143181E − 09 187 0.17058351279668E − 11
139 0.62513859558244E − 09 189 0.13392141899142E − 11
141 0.48731157476241E − 09 191 0.10510085024507E − 11
143 0.37998096409364E − 09 193 0.82263085380655E − 12
145 0.29637368184362E − 09 195 0.64766790153215E − 12
147 0.23122300273274E − 09 197 0.51363294358472E − 12
149 0.18044667458472E − 09 199 0.40420744825317E − 12

If we take pieces of the series with 100 and 150 first terms, we will have
δ = 0.1E − 05 and δ = 0.1E − 08, respectively.

After construction of the function z = ωm(ζ) the solution of the Problem
B for the boundary function g∗(t) ≡ g(ωm(eiϕ)) = arg(ωm(eiϕ) − τ1) we
can calculate Poisson’s integral (3.4) in the following form (in order an
indeterminacy of type arg(0))

2π∫

0

=

π/2−ε∫

0

+

2π∫

π/2+ε

.

The values of approximate solution of the Problem B for the various
points ζk ∈ G and ε = 10−7 and the values of the exact solution to the
problem A at the points zk = ωm(ζk) are given in the Tables 2(a), 2(b).
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Theoretically, must be u∗(ζk) = u(zk), that takes place with high preci-
sion.

Table 2(a)

k ζk u∗(ζk)

1 (0, 0) 3π/2
2 (0.5, 0.5) 5.67362865562897
3 (−0.5, 0.5) 3.75114930515210
4 (−0.5,−0.5) 4.40553613355578
5 (0.5,−0.5) 5.01924182726673
6 (0.9999, 0) 5.74266312095585
7 (0, 0.9999) 4.71238896838075
8 (−0.9999, 0) 3.68211481648013
9 (0,−0.9999) 4.71238896889993

Table 2(b)

k zk u(zk)

1 (0, 0) 3π/2
2 (1.55673600185879, 1.91299484566255) 5.67362865561925
3 (−1.55673600185879, 1.91299484566255) 3.75114930515013
4 (−1.55673600185879,−1.91299484566255) 4.40553613350178
5 (1.55673600185879,−1.91299484566255) 5.01924182726760
6 (4.99883658720709, 0) 5.74266313527330
7 (0, 2.99978002624038) 4.71238898038469
8 (−4.99883658720709, 0) 3.68211482549608
9 (0,−2.99978002624038) 4.71238898038469

Example 2. The domain D is the interior of the ellipse S : x = 5 cos ϕ,
y = 3 sin ϕ, 0 ≤ ϕ ≤ 2π, and in the role of g(τ) we took a function with
four break points: τ1 = 1√

2
(5, 3), τ2 = 1√

2
(−5, 3), τ3 = 1√

2
(−5,−3), τ4 =

1√
2
(5,−3). In particular, we took the function

g(τ) =





x + y for τ ∈ τ1τ2,
x + 2 for τ ∈ τ2τ3,
x− y for τ ∈ τ3τ4,
x− 2 for τ ∈ τ4τ1,

where τ1τ2, τ2τ3, τ3τ4, τ4τ1 are open arcs of the contour S. For the points
τk(k = 1, 2, 3, 4) and the function g(τ) we have: arg τ1 = π/4, arg τ2 =
3π/4, arg τ3 = 5π/4, arg τ4 = 7π/4; g+(τ1) = 4

√
2, g−(τ1) = (5

√
2 −

4)/2, g+(τ2) = (4 − 5
√

2)/2, g−(τ2) = −√2, g+(τ3) = −√2, g−(τ3) =
(4− 5

√
2)/2, g+(τ4) = (5

√
2− 4)/2, g−(τ4) = 4

√
2.

Under the conformal mapping ζ = fN (z) the points τk (k = 1, 2, 3, 4),
respectively pass to the points tk ∈ γ (i.e., tk ↔ τk): t1 = (cos α, sin α),
t2 = (− cosα, sin α), t3 = (− cosα,− sinα), t4 = (cos α,− sin α), where
α = 0.324850059711.
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The values of approximate solution u∗(ζ) of the Problem B at the various
points ζk ∈ G (or the values of approximate solution u(z) to the Problem
A at the points zk = ωn(ζk)) are given in the Table 3.

Table 3

k ζk u∗(ζk) zk

1 (0, 0) 2.20596975469616 (0, 0)
2 (0.5, 0.5) 3.75637943502893 (1.55673600185879, 1.91299484566255)
3 (−0.5, 0.5) 1.01989634356777 (−1.5567360185879, 1.91299484566255)
4 (−0.5,−0.5) 1.01989634356777 (−1.5567360185879,−1.91299484566255)
5 (0.5,−0.5) 3.75637943502893 (1.5567360185879,−1.91299484566255)
6 0.9999t1 3.59687209498660 (3.53525689114854, 2.12085852856418)
7 0.9999t2 −1.47385215594198 (−3.53525689114854, 2.12085852856418)
8 0.9999t3 −1.47385215594199 (−3.53525689114854,−2.12085852856418)
9 0.9999t4 3.59687209499495 (3.53525689114854,−2.12085852856418)

Example 3. Let D be the exterior of the ellipse S : x = 3 cos ϕ, y =
sin ϕ (0 ≤ ϕ ≤ 2π). In the role of g(τ) we took the function with one break
point τ1 = (0, 1). In particular, we took the function (see [18])

g(τ) = arg
(

i− τ

|τ |2
)

, τ 6= τ1.

We have 0 ≤ g(τ) ≤ π for τ ∈ S, τ 6= τ1 and g+(τ1) = 0, g−(τ1) = π. For
the considered boundary function g(τ) the exact solution to Problem A has
the form

u(z) = arg(i− z

|z|2 ), z ∈ D, z 6= τ1,

and it is evident that for the function u(z) the condition 0 ≤ u(z) ≤ π, z ∈
D, z 6= τ1 is fulfilled.

In the considered case the conformally mapping function has the form
[22]

z = ω(ζ) =
2
ζ

+ ζ, ζ ∈ G.

In the Table 4 the values of the approximate solution to the Problem
B at various points ζk ∈ G, and the exact solution to the problem A at
the points zk = ω(ζk) are given. It is obvious from the Table 4 that the
theoretical equality u∗(ζk) = u(zk) is fulfilled with high precision.
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Table 4

k ζk u∗(ζk) zk u(zk)

1 (0, 0) π/2 ∞ π/2
2 (0.5, 0.5) 1.815774989993823 (; 2.5,−1.5) 1.81577498992176
3 (−0.5, 0.5) 1.32581766366275 (−2.5,−1.5) 1.32581766366803
4 (−0.5,−0.5) 1.22777238637277 (−2.5, 1.5) 1.22777238637419
5 (0.5,−0.5) 1.91382026721442 (2.5, 1.5) 1.91382026721560
6 (0.9999, 0) 1.89253687462790 (3.00010002000200, 0) 1.89253687949145
7 (0, 0.9999) 1.57079632289806 (0,−1.00030002000200) 1.57079632679490
8 (−0.9999, 0) 1.24905577086689 (−3.00010002000200, 0) 1.24905577409834
9 (0,−0.9999) 1.57079632345903 (0, 1.00030002000200) 1.57079632679490

From the Tables 2,3,4 it is seen that for the approximate solution to the
Problem A in the neighborhood of the break points τk the condition of the
Theorem 1 is fulfilled.

6. Concluding Remarks

The examples in the preceding section indicate the effectiveness of the
proposed algorithm for approximate solving of Problem A. In particular,
the algorithm is sufficiently simple for numerical realization and it is char-
acterized by accuracy, which is practically sufficient for many problems.

From the Tables 2, 3, 4 it is seen that for the approximate solution the
Problem A in the neighborhood of the break points τk the condition of the
Theorem 1 is fulfilled.

Finally, it must be noted that the proposed algorithm we can apply for
approximate solving such generalized Dirichlet three dimensional problems,
which could be reduced to the problems of type A.
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