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ON COMPLEX UNIVERSAL SERIES

G. GIORGOBIANI AND V. TARIELADZE

Abstract. It is shown, in particular, that for a fixed complex number
ζ, |ζ| = 1, ζ2 6= 1 the series

∞∑

n=1

1

n
ζn

is universal in the following sense: for each complex number z there
exists a rearrangement of the series which converges to z.

îâäæñéâ. êŽöîëéöæ, çâîúëá, êŽøãâêâĲæŽ, îëé òæóïæîâĲñèæ çëéì-
èâóïñîæ îæùýãæïåãæï ζ, |ζ| = 1, ζ2 6= 1, éûçîæãæ

∞∑
n=1

1

n
ζn

ñêæãâîïŽèñîæŽ öâéáâàæ Žäîæå: õëãâèæ çëéìèâóïñîæ z îæùýãæïå-
ãæï ŽîïâĲëĲï éûçîæãæï z-çâê çîâĲŽáæ àŽáŽêŽùãèâĲŽ.

1. Introduction

The famous memoir by Dirichlet (1805 - 1859) entitled ”Sur la conver-
gence des séries trigonométriques qui servent à représenter une fonction
arbitraire entre des limites données” (1829) contains in particular the fol-
lowing statement:

Theorem 1.1 (Dirichlet’s theorem). Let
∞∑

n=1

zn (1.1)

be an absolutely convergent series of real or complex numbers and s :=
∞∑

n=1
zn. Then every rearrangement of (1.1) converges to s.

The Habilitationsschrift of Riemann (1826–1866) “Ueber die Darstell-
barkeit durch eine trigonometrische Reihe” (written in 1853 and published
in 1867), among other important results contains also the following state-
ment:
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Theorem 1.2 (Riemann’s theorem). Let
∞∑

n=1

xn (1.2)

be a series of real numbers, which converges but the series
∞∑

n=1
|xn| is not

convergent. Then for each real number x there exists a rearrangement of
(1.2) which converges to x.

Paul Pierre Lévy (1886–1971) in 1905 published a note [3] in which the
question of validity of an analogue of Theorem 1.2 for complex series was
considered. To formulate his observations it is convenient to introduce the
following terminology.

To a sequence (yn) extracted from a topological vector space Y let us

associate a subset SR
( ∞∑

k=1

yk

)
of Y as follows: an element y ∈ Y belongs

to SR
( ∞∑

k=1

yk

)
if there exists a permutation π : N → N such that the

sequence
( n∑

k=1

yπ(k)

)
n∈N

converges to y. The set SR
( ∞∑

k=1

yk

)
is called the

sum range of (yn) (cf. [4, Definition 2.1.1]).
By using this notation P. Lévy’s result can be formulated as follows:

Theorem 1.3. Let
∞∑

n=1
zn be a series of complex numbers, which con-

verges but the series
∞∑

n=1
|zn| is not convergent. Then either

SR
( ∞∑

k=1

zk

)
= c1 + c2R

for some c1 ∈ C and c2 ∈ C \ {0}, or

SR
( ∞∑

k=1

zk

)
= C .

This theorem is not a complete analogue of Theorem 1.2, it leaves open a

question: for which complex series
∞∑

n=1
zn one has the equality

SR
( ∞∑

k=1

zk

)
= C?

A series
∞∑

k=1

yk in a topological vector space Y is called universal if

SR
( ∞∑

k=1

yk

)
= Y .
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Using this terminology, the Riemann’s theorem can be formulated as fol-
lows: every convergent but not absolutely convergent series of real numbers
is universal. A similar statement is not true for series of complex numbers.
The following theorem gives a characterization of universal complex series.

Theorem 1.4. For a convergent but not absolutely convergent series of

complex numbers
∞∑

n=1
zn the following statements are equivalent:

(i) The series
∞∑

n=1
zn is universal.

(ii)
∞∑

n=1
|Re(wzn)| = ∞ for every w ∈ C \ {0}.

From this theorem we derive the following statement, which covers the
assertion from the abstract and which gives many examples of complex
universal series.

Theorem 1.5. Let ζ /∈ {−1, 1} be a complex number with |ζ| = 1 and
(an)n∈N a sequence of non-negative real numbers such that

an → 0,

∞∑
n=1

|an − an+1| < ∞ and
∞∑

n=1

an = ∞ .

Then the power series
∞∑

n=1

anζn (1.3)

is universal.

Theorem 1.4 together with some other statements, which may have an
independent interest (cf. Proposition 2.1) is proved in Section 2. Section 3
contains the proof of Theorem 1.5.

2. Steinitz’s Range and Proof of Theorem 1.4.

We fix a topological vector space Y over R with the topological dual
space Y ∗.

For a non-empty Γ ⊂ Y ∗ we write:
⊥Γ =

{
y ∈ Y : y∗(y) = 0, ∀ y∗ ∈ Γ

}
.

Moreover, for a sequence y = (yn) in Y we write:

Γy =
{

y∗ ∈ Y ∗ :
∞∑

k=1

|y∗(yk)| < ∞
}

.

To a sequence (yn) in Y let us associate two subsets

WSR
( ∞∑

k=1

yk

)
and StR

( ∞∑

k=1

yk

)
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of Y as follows:

• an element y ∈ Y belongs to WSR
( ∞∑

k=1

yk

)
if there exists a permu-

tation π : N→ N such that the sequence
( n∑

k=1

yπ(k)

)
n∈N

converges

weakly to y. The set WSR
( ∞∑

k=1

yk

)
is called the weak sum range of

(yn).

• an element y ∈ Y belongs to StR
( ∞∑

k=1

yk

)
if

y∗(y) ∈ SR
( ∞∑

k=1

y∗(yk)
)
, ∀ y∗ ∈ Y ∗.

Let us call the set StR
( ∞∑

k=1

yk

)
the Steinitz range of (yn).

Proposition 2.1. For a sequence y = (yn) in a topological vector space
Y over R we have:

(a) SR
( ∞∑

k=1

yk

)
⊂ WSR

( ∞∑
k=1

yk

)
⊂ StR

( ∞∑
k=1

yk

)
.

(b) If StR
( ∞∑

k=1

yk

)
6= ∅ and s ∈ StR

( ∞∑
k=1

yk

)
, then

StR
( ∞∑

k=1

yk

)
= s + ⊥Γy .

(c) If StR
( ∞∑

k=1

yk

)
6= ∅, then StR

( ∞∑
k=1

yk

)
is a weakly closed affine

subset of Y .

Proof. (a) is evident.
(b) Let us see first that

StR
( ∞∑

k=1

yk

)
⊂ ⊥Γy + s .

Fix y ∈ StR
( ∞∑

k=1

yk

)
and y∗ ∈ Γy. Then for some permutation π : N→ N

we have:

y∗(y) =
∞∑

k=1

y∗(yπ(k)) .
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As s ∈ StR
( ∞∑

k=1

yk

)
as well, for some permutation σ : N→ N we have also:

y∗(s) =
∞∑

k=1

y∗(yσ(k)) .

Since
∞∑

k=1

|y∗(yk)| < ∞, by Theorem 1.1 we have:

∞∑

k=1

y∗(yπ(k)) =
∞∑

k=1

y∗(yσ(k)) .

Hence, y∗(y) = y∗(s). Therefore y∗(y − s) = 0. As y∗ ∈ Γy is arbitrary, we
conclude that y − s ∈ ⊥Γy and so, y ∈ ⊥F + s .

Let us see now that

StR
( ∞∑

k=1

yk

)
⊃ ⊥Γy + s .

Fix y ∈ ⊥Γy + s and y∗ ∈ Y ∗. We need to verify that

y∗(y) ∈ SR
( ∞∑

k=1

y∗(yk)
)

.

Let first y∗ ∈ Γy; then (as y ∈ ⊥Γy + s) we have y∗(y) = y∗(s). As

s ∈ StR
( ∞∑

k=1

yk

)
, for some permutation σ : N→ N we have:

y∗(s) =
∞∑

k=1

y∗(yσ(k)) .

From this (as y∗(y) = y∗(s)), we get

y∗(y) =
∞∑

k=1

y∗(yσ(k))

and so

y∗(y) ∈ SR
( ∞∑

k=1

y∗(yk)
)

.

Let now y∗ ∈ Y ∗\Γy; then as StR
( ∞∑

k=1

yk

)
6=∅, we have SR

( ∞∑
k=1

y∗(yk)
)
6=∅

and
∞∑

k=1

|y∗(yk)| = ∞. So, by Riemann’s theorem (only in this place we use

the assumption that Y is a vector space over R) there is a permutation
π : N→ N such that

y∗(y) =
∞∑

k=1

y∗(yπ(k)) .



58 G. GIORGOBIANI AND V. TARIELADZE

Therefore

y∗(y) ∈ SR
( ∞∑

k=1

y∗(yk)
)

in this case too.
(c) follows from (b). ¤

Remark 2.2. For a convergent series
∞∑

k=1

yk in Y = l2 the inclusions in

Proposition 2.1(a) may be strict. Namely

(1) The set SR
( ∞∑

k=1

yk

)
may not be convex (Marcinkiewicz-Nikishin-

Kornilov), but WSR
( ∞∑

k=1

yk

)
= Y [4, Example 3.1.2 and Exercise 3.1.6],

(2) The set WSR
( ∞∑

k=1

yk

)
may not be convex [4, Theorem 8.1.1], while

StR
( ∞∑

k=1

yk

)
always is convex by Proposition 2.1(c).

Corollary 2.3. For a sequence (yn) in a topological vector space Y over
R the implication

SR
( ∞∑

k=1

yk

)
= Y =⇒

∞∑

k=1

|y∗(yk)| = ∞ ∀y∗ ∈ Y ∗ \ {0} (2.1)

is true.

Proof. Let SR
( ∞∑

k=1

yk

)
= Y . Then by Proposition 2.1 (a) we have

StR
( ∞∑

k=1

yk

)
= Y . The last equality by Proposition 2.1 (b) implies ⊥Γy =

Y . Take an arbitrary y∗ ∈ Γy; we have y∗(y) = 0 for every y ∈ Y , i.e.,
y∗ = 0. Consequently, Γy = {0}. ¤

Corollary 2.4. For a sequence (yn) in a topological vector space Y over
C the implication

SR
( ∞∑

k=1

yk

)
= Y =⇒

∞∑

k=1

∣∣Re(y∗(yk))
∣∣ = ∞ ∀y∗ ∈ Y ∗ \ {0} (2.2)

is true.

Proof. Denote by YR the space Y considered as a topological vector space
over R. Clearly if y∗ ∈ Y ∗, then Rey∗ ∈ (YR)∗. Note that if y∗ ∈ Y ∗ \ {0},
then Rey∗ ∈ (YR)∗ \ {0}. (In fact, suppose that for some y∗ ∈ Y ∗ we have
Rey∗ = 0, i.e., Rey∗(y) = 0 ∀y ∈ Y ; then Imy∗(y) = −Rey∗(iy) = 0 ∀y ∈ Y .
Hence, Imy∗ = 0. Now from Rey∗ = 0 and Imy∗ = 0 we get y∗ = 0.)
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Let SR
( ∞∑

k=1

yk

)
= Y . Fix y∗ ∈ Y ∗ \ {0}. Then Rey∗ ∈ (YR)∗ \ {0}.

Hence, by Corollary 2.3,
∞∑

k=1

|Re(y∗(yk))| = ∞. ¤

We will use the following remarkable result.

Theorem 2.5 (Steinitz’s theorem, see [4, Theorem 2.1.1]). Let y = (yn)
be a sequence in a finite-dimensional Hausdorff topological vector space Y

over R for which the series
∞∑

n=1
yn converges and s :=

∞∑
n=1

yn. Then

SR
( ∞∑

k=1

yk

)
= s + ⊥Γy .

Remark 2.6. Theorem 2.5 appeared in E. Steinitz’ cycle of articles [6],
where the bases of the finite-dimensional linear algebra is developed as well.
Later in [1] W. Banaszczyk succeeded to show that the theorem remains
true for all nuclear Frechet spaces over R (the result of [1] is exposed also
in [4, pp. 110–117]).

Using Theorem 2.5 we obtain the following criterion of universality of
series in finite-dimensional case.

Proposition 2.7. For a sequence y = (yn) in a finite-dimensional Haus-

dorff topological vector space Y over R for which the series
∞∑

n=1
yn converges

the following are equivalent:

(i) SR
( ∞∑

k=1

yk

)
= Y .

(ii) Γy = {0}.
(iii)

∞∑
k=1

|y∗(yk)| = ∞ ∀ y∗ ∈ Y ∗ \ {0} .

Proof. The equivalence (ii)⇐⇒(iii) is evident.
The implication (i)=⇒(iii) is proved in Corollary 2.3.

(ii)=⇒(i). Let s :=
∞∑

n=1
yn. As ⊥{0} = Y , By Theorem 2.5

SR
( ∞∑

k=1

yk

)
= s + ⊥Γy = s + ⊥{0} = s + Y = Y

and (i) is proved. ¤
Remark 2.8. In [5] it was posed a question of validity of implication

(iii)=⇒(i) of Proposition 2.7 when Y is an infinite-dimensional real separable
Banach space. In [2] it was provided a negative answer to this question when
Y = l2.



60 G. GIORGOBIANI AND V. TARIELADZE

It seems to be unknown whether for a convergent series
∞∑

k=1

yk in Y = l2

the condition (iii) of Proposition 2.7 implies the equality WSR
( ∞∑

k=1

yk

)
=Y .

Proof of Theorem 1.4. For a fixed w ∈ C define lw : C → C by the
equality:

lw(z) = zw ∀ z ∈ C .

Then
C∗ = {lw : w ∈ C} . (2.3)

The implication (i) =⇒ (ii) of Theorem 1.4 follows from Corollary 2.4
applied for Y = C and the equality (2.3).

Denote by CR the space C considered as a topological vector space over
R. It is easy to see that

(CR)∗ = {Relw : w ∈ C} . (2.4)

The implication (ii)=⇒(i) of Theorem 1.4 follows from the implication
(iii)=⇒(i) of Proposition 2.7 applied for Y = CR and the equality (2.4). ¤

3. Dirichlet’s Test for Series and Proof of Theorem 1.5

We need the following known statement. For the sake of completeness
we include its proof.

Proposition 3.1 (Dirichlet). Let (an) and (bn) be the sequences of

complex numbers such that limn an = 0,
∞∑

n=1
|an − an+1| < ∞ and β =

supn∈N
∣∣∣

n∑
k=1

bk

∣∣∣ < ∞. Then the series
∞∑

n=1
anbn converges.

Proof. Write B0 = 0, Bn =
n∑

k=1

bk, n = 1, 2, . . . . Fix natural numbers n > 2

and m ≤ n− 2. We have:
n∑

k=m+1

akbk =
n∑

k=m+1

ak(Bk −Bk−1) =
n∑

k=m+1

akBk −
n∑

k=m+1

akBk−1 =

=
n∑

k=m+1

akBk −
n−1∑

k=m

ak+1Bk =
n−1∑

k=m+1

(ak − ak+1)Bk + anBn − am+1Bm .

Consequently we have the Abel’s formula:
n∑

k=m+1

akbk =
n−1∑

k=m+1

(ak − ak+1)Bk + anBn − am+1Bm . (3.1)
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From (3.1) we get:
∣∣∣

n∑

k=m+1

akbk

∣∣∣ ≤ β
( n−1∑

k=m+1

|ak − ak+1|+ |an|+ |am+1|
)

. (3.2)

From (3.2) as
∞∑

n=1
|an − an+1| < ∞ and lim

n
an = 0, we obtain that

lim
m,n

∣∣∣
n∑

k=m+1

akbk

∣∣∣ = 0. Hence the series
∞∑

n=1
anbn converges. ¤

We need also the following lemma.

Lemma 3.2. Let ζ be a complex number with |ζ| = 1. Then
(a) 2|Re(ζ)| ≥ 1 + Re(ζ2).
(b) For a complex number w with |w| = 1 we have:

2
∣∣Re(ζnw)

∣∣ ≥ 1 + Re(ζ2nw2), n = 1, 2, . . . .

Proof. (a) We have: 2Re(ζ) = ζ + ζ̄. This implies:

4(Re(ζ))2 = (ζ + ζ̄)2 = ζ2 + 2ζζ̄ + (ζ̄)2 = 2 + ζ2 + (ζ̄)2 = 2 + 2Re(ζ2).

Hence,
2(Re(ζ))2 = 1 + Re(ζ2).

From this equality, as |Re(ζ)| ≤ 1, we get

2|Re(ζ)| ≥ 2(Re(ζ))2 = 1 + Re(ζ2).

(b) An application of (a) for ζw instead of ζ gives:

2|Re(ζw)| ≥ 1 + Re(ζ2w2) . (3.3)

Fix a natural number n; an application of (3.3) for ζn instead of ζ proves
(b). ¤

Lemma 3.3. Let ζ 6= 1 be a complex number with |ζ| = 1 and (an) be a
sequence of real numbers such that

an → 0,

∞∑
n=1

|an − an+1| < ∞ .

Then
(a) The series

∞∑
n=1

anζn is convergent.

(b) If ζ2 6= 1 as well, then the series
∞∑

n=1
anζ2n is convergent too.

Proof. (a) For a fixed natural number n we have:
n∑

k=1

ζk =
ζ − ζn+1

1− ζ
.
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Hence,

β := sup
n∈N

∣∣∣
n∑

k=1

ζk
∣∣∣ ≤ 2

|1− ζ| < ∞ .

So, an application of Proposition 3.1 for bn := ζn, n = 1, 2, . . . proves (a).
(b) follows from (a) applied to ζ2 6= 1 instead of ζ. ¤
Proof of Theorem 1.5. The series (1.3) converges by Lemma 3.3(a). To

show that this series is universal, by Theorem 1.4 it is sufficient to verify
that for each w ∈ C \ {0}

∞∑
n=1

∣∣Re(wanζn)
∣∣ = ∞ .

So, fix w ∈ C \ {0}. We can suppose without loss of generality that |w| = 1.
Assume on the contrary, that

∞∑
n=1

∣∣Re(wanζn)
∣∣ < ∞ . (3.4)

Since an, n = 1, 2, . . . are non-negative real numbers, from (3.4) we get:
∞∑

n=1

an

∣∣Re(wζn)
∣∣ < ∞ . (3.5)

From (3.5) by Lemma 3.2(b) we obtain
∞∑

n=1

an

(
1 + Re(ζ2nw2)

)
< ∞ . (3.6)

As ζ2 6= 1, from Lemma 3.3(b) we have that the series
∞∑

n=1

anRe(ζ2nw2)) (3.7)

converges. Clearly, (3.6) and the convergence of (3.7) imply
∞∑

n=1
an < ∞.

This leads to the contradiction.
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