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SKITOVICH-DARMOIS THEOREM FOR COMPLEX AND
QUATERNION CASES

N. VAKHANIA AND G. CHELIDZE

Abstract. We give an elementary proof of Skitovich-Darmois theo-
rem for the cases of two random variables in each of the two linear
forms, when the random variables take values in complex or quater-
nion fields. The proof is based on the reduction of Skitovich-Darmois
theorem to Polya’s theorem in complex and quaternion cases respec-
tively.

îâäæñéâ. êŽöîëéöæ éëùâéñèæŽ áŽîéñŽ-ïçæðëãæøæï åâëîâéæï âèâ-
éâêðŽîñèæ áŽéðçæùâĲŽ æé öâéåýãâãŽöæ, îëùŽ ûîòæãæ òëîéâĲæ öâ-
áàâêæèæŽ éýëèëá ëîæ, çëéìèâóïñîæ Žê çãŽðâîêæëêñèæ öâéåýãâ-
ãæåæ ïæáæáæïŽàŽê. åâëîâéŽï ãŽéðçæùâĲå ìëæŽï åâëîâéæï àŽéë-
õâêâĲæå çëéìèâóïñîæ áŽ çãŽðâîêæëêñèæ öâéåýãâãæåæ ïæáæáââĲæ-
ïŽåãæï.

In the present paper we give an elementary proof of Darmois-Skitovich
theorem in the particular case of two linear forms with two random variables
in each. The main idea is to reduce the problem to the Polya’s character-
ization theorem. We mean the following well-known theorem of Polya, see
e.g. [4], [5].

Theorem 1. ξ1, ξ2, . . . , ξn, n ≥ 2 be i.i.d. random variables and

(a1, a2, . . . , an) be nonzero reals that satisfy the condition
n∑

h=1

a2
h = 1. If

the sum
n∑

h=1

ahξh has the same distribution as ξ1, then ξ1 is a Gaussian

random variable.

If the random variable takes values in the quaternion algebra then three
types of Gaussian random variables are considered: real, complex and
quaternion Gaussian random variables. Let us recall the definition of com-
plex and quaternion Gaussian random variables. The usual motivation for
these definitions comes from the form of characteristic function of a centered
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Gaussian random variable, see e.g. [2]. For the real case this is given as

exp
{
− 1

2
t2Eξ2

}
, ∀ t ∈ R.

For the complex (quaternion) case we would analogously expect the char-
acteristic function to be

exp
{− c|q|2E|ξ|2|}, ∀ q ∈ C, (∀q ∈ Q), c > 0. (∗)

The characteristic function of a complex (quaternion) random variable ξ is
defined as

χξ(q) = E exp(i Re(ξq))
and if we want the characteristic function of centered complex (quater-
nion) Gaussian random variable to have the form (*), then the covari-
ance matrix of real two dimensional vector (ξ

′
, ξ
′′
) (four dimensional vector

(ξ
′
, ξ
′′
, ξ
′′′

, ξIV )) should be proportional to the identity matrix. Thus the co-
variance matrices of complex (quaternion) Gaussian random variables have
a quite specific form: they are proportional to unit matrices in R2, (in R4).
Therefore the coordinates of corresponding two dimension (four dimension)
random vector (ξ

′
, ξ
′′
) ((ξ

′
, ξ
′′
, ξ
′′′

, ξIV )) are mutually independent and
have the same variances.

In [3] there is formulated Polya’s theorem for the case of complex random
variables.

Theorem 2. Let ξ be a complex random variable, ξ1, ξ2, . . . , ξn, n ≥ 2
be independent copies of ξ and (a1, a2, . . . , an) be nonzero complex numbers

such that
n∑

h=1

|ah|2 = 1 and at least one of them is not a real number. If
n∑

h=1

ahξh has the same distribution as ξ, then ξ is the complex Gaussian

random variable.

As we see in the complex case there is an additional condition on the com-
plex coefficients (a1, a2, . . . , an), for the Theorem to be true, namely one of
these coefficients should be essentially complex number. In [1] there is shown
that in the quaternion case such additional condition on the quaternions
(a1, a2, . . . , an) plays condition which we call jointly quaternion system.

Definition. We say that a collection of n quaternions (a1, a2, . . . , an),
n ≥ 2, constitutes a jointly quaternion system (JQS) if there does not exist
imaginary number ĩ = αi+βj+γk, with real α, β, γ, such that the following
expressions hold: a1 = a

′
1+a

′′
1 ĩ, a2 = a

′
2+a

′′
2 ĩ,. . . , an = a

′
n+a

′′
nĩ, a

′
i, a

′′
i ∈ R,

1 ≤ i ≤ n.

Theorem 3. Let ξ be a quaternion random variable, ξ1, ξ2, . . . , ξn, n ≥ 2
be independent copies of ξ, and (a1, a2, . . . , an) be nonzero quaternions that
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form jointly quaternion system and satisfy the condition
n∑

h=1

|ah|2 = 1. Then,

if the sum η =
n∑

h=1

ahξh has the same distribution as ξ, ξ is the quaternion

Gaussian random variable.

Now using these results we will prove Skitovich-Darmois theorem for
complex and quaternion cases then the two linear forms consisting with
only two random variables.

Theorem (Skitovich-Darmois, complex case). Let ξ1 and ξ2 be indepen-
dent complex random variables (not necessarily identically distributed) and
a1, a2, b1, b2 be non-zero complex numbers, such that a1a2b1b2 or√
−a1b1

a2b2

(
b2
b1
− a2

a1

)
is not a real number. If the random variables η1 =

a1ξ1 + a2ξ2 and η2 = b1ξ1 + b2ξ2 are also independent then ξ1 and ξ2,
and hence η1 and η2, are complex Gaussian random variables.

Proof. Without loss of generality we can assume that a1b1 = −a2b2. Indeed,
if a1b1 6= −a2b2 we could consider the linear forms η1 = a1ξ1 + a2cξ

′
2 and

η2 = b1ξ1+b2cξ
′
2, where c is one of the complex root from−a1b1

a2b2
, i.e. c is such

complex number that c2 = −a1b1
a2b2

, and ξ′2 = ξ2
c . Nothing will be changed

this way: η1 and η2 will remain the same and ξ′2 will be independent of ξ1.
Therefore, in what follows in the linear forms η1 and η2 we assume that
a1b1 = −a2b2.

Denote the characteristic functions of ξ1, ξ2 and (η1, η2) by χ1, χ2 and
χ(η1,η2) respectively. Using independence of ξ1 and ξ2 we get the equality

χ(η1,η2)(t1, t2) = EeiRe[η1t1+η2t2] = EeiRe[(a1ξ1+a2ξ2)t1+(b1ξ1+b2ξ2)t2] =

= χ1(a1t1 + b1t2)χ2(a2t1 + b2t2).

If we use independence of η1 and η2 at first and then that of ξ1 and ξ2,
we get

χ(η1,η2)(t1, t2) = χ1(a1t1)χ2(a2t1)χ1(b1t2)χ2(b2t2)
and therefore the following equality holds:

χ1(a1t1 + b1t2)χ2(a2t1 + b2t2) = χ1(a1t1)χ2(a2t1)χ1(b1t2)χ2(b2t2).

Denoting a1t1 + b1t2 = x and a2t1 + b2t2 = y and solving this simple
algebraic system we come to the following equality in which ∆ denotes the
determinant of the system, i.e. ∆ = a1b2 − a2b1,

χ1(x)χ2(y) =χ1

(
a1b2x− a1b1y

∆

)
χ2

(
a2b2x− a2b1y

∆

)
×

× χ1

(−a2b1x + a1b1y

∆

)
χ2

(−a2b2x + a1b2y

∆

)
.
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Note that ∆ 6= 0. Indeed, if a1b2 = a2b1 then a1b2 = a2b1 and it follows
that a1b2ξ1 + a2b2ξ2 = a2b1ξ1 + a2b2ξ2 i.e. b2η1 = a2η2 in contradiction
with independence of η1 and η2. Putting in the equality above first y = 0
and then x = 0 we get, respectively, the following two equalities:

χ1(x) = χ1

(
a1b2

∆
x

)
χ2

(
a2b2

∆
x

)
χ1

(−a2b1

∆
x

)
χ2

(−a2b2

∆
x

)
, (1)

χ2(x) = χ1

(−a1b1

∆
x

)
χ2

(−a2b1

∆
x

)
χ1

(
a1b1

∆
x

)
χ2

(
a1b2

∆
x

)
. (2)

As we notices above, without loss of generality we can suppose that
a1b1 = −a2b2 and hence we have a1b1 = −a2b2. Taking into account inde-
pendence of ξ1 and ξ2, denoting χ = χ1χ2 and multiplying equalities (1)
and (2), we get the equality

χ(x) = χ

(
a1b2

∆
x

)
χ

(−a2b1

∆
x

)
χ

(
a1b1

∆
x

)
χ

(−a1b1

∆
x

)
. (3)

Observe that ∣∣∣∣
a1 b2

∆

∣∣∣∣
2

+
∣∣∣∣
−a2 b1

∆

∣∣∣∣
2

+
∣∣∣∣
a1 b1

∆

∣∣∣∣
2

+
∣∣∣∣
−a1 b1

∆

∣∣∣∣
2

= 1

and by virtue of the complex Polya’s theorem we get that ξ1 + ξ2 is a
complex Gaussian random variable, if at least one of the coefficient a1 b2

∆ ,
−a2 b1

∆ , a1 b1
∆ , −a1 b1

∆ is not a real number. Now using the restriction on the
coefficients a1, a2, b1, b2 we will show that one of the numbers a1 b2

∆ or a1 b1
∆

is not a real number. Let us note that, in these expressions, due to our
assumption, we should put instead of a2 and b2, a2c and b2c respectively,
where c2 = −a1b1

a2b2
. We have,

a1 b2c

a1 b2c− a2c b1

=
a1 b2(a1b2 − a2b1)
|a1b2 − a2b1|2 =

|a1|2|b2|2 − a1 b2a2b1

|a1b2 − a2b1|2
and since a1a2b1b2 is not a real number it is clear that this ratio is a complex
number with nonzero imaginary part. It is also easy to check that a1b1

∆

and
√
−a1b1

a2b2

(
b2
b1
− a2

a1

)
are proportional numbers and hence a1b1

∆ will be

complex number with nonzero imaginary part if
√
−a1b1

a2b2

(
b2
b1
− a2

a1

)
is not

a real number. Therefore, ξ1 + ξ2 is a complex Gaussian random variable.
Now using Cramer’s theorem we see that the proof is finished. ¤

Now passing to the quaternion case we obtain the following:

Theorem (Skitovich-Darmois, quaternion case). Let ξ1 and ξ2 be inde-
pendent quaternion random variables (not necessarily identically distributed)
and a1, a2, b1, b2 be non-zero quaternion numbers, such that a1a2b1b2 and
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√
−a1b1

a2b2

(
b2
b1
− a2

a1

)
constitute jointly quaternion system. If the random vari-

ables η1 = a1ξ1 + a2ξ2 and η2 = b1ξ1 + b2ξ2 are also independent then ξ1

and ξ2, and hence η1 and η2, are quaternion Gaussian random variables.

Proof. As in the complex case we analogously obtain equation (3) from
which it will be followed that if the collection of numbers a1b2

∆ , −a2 b1
∆ , a1 b1

∆ ,
−a1 b1

∆ constitute jointly quaternion system, then using Polya’s theorem for
quaternion case, we will obtain that ξ1 + ξ2 and hence ξ1, ξ2 are quater-
nion Gaussian random variables. It is easy to check that if a1a2b1b2 and√
−a1b1

a2b2

(
b2
b1
− a2

a1

)
constitute jointly quaternion system then the collection

a1 b2
∆ , −a2 b1

∆ , a1 b1
∆ , −a1 b1

∆ is also a jointly quaternion system. The proof is
finished. ¤
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