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GENERALIZED SPLINE ALGORITHMS AND
CONDITIONS OF THEIR LINEARITY AND CENTRALITY

D. UGULAVA AND D. ZARNADZE

Abstract. The worst case setting of linear problems, when the error
is measured with the help of a metric, is studied. The notions of gener-
alized spline and generalized central algorithms are introduced. Some
conditions for a generalized spline algorithm to be linear and gener-
alized central are given. The obtained results are applied to operator
equations with positive operators in some Hilbert spaces. Examples
of strong degenerated elliptic and their inverse operators satisfying
the conditions appearing in the obtained theorems, are given.

îâäæñéâ. öâïûŽãèæèæŽ ûîòæãæ ìîëĲèâéâĲæ ñŽîâïæ áŽïéæï öâ-
éåýãâãæïŽåãæï, îëáâïŽù ùáëéæèâĲŽ àŽäëéæèæŽ éâðîæçæï ïŽöñ-
ŽèâĲæå. öâéëôâĲñèæŽ àŽêäëàŽáâĲñèæ ïìèŽæêñîæ áŽ àŽêäëàŽáâ-
ĲñèŽá ùâêðîŽèñîæ ŽèàëîæåéâĲæï ùêâĲâĲæ. éæôâĲñèæŽ ìæîëĲâĲæ
æéæïŽ, îëé àŽêäëàŽáâĲñèæ ïìèŽæêñîæ Žèàëîæåéæ æõëï ûîòæãæ
áŽ àŽêäëàŽáâĲñèŽá ùâêðîŽèñîæ. éæôâĲñèæ öâáâàâĲæ àŽéëõâêâ-
ĲñèæŽ äëàæâîå ßæèĲâîðæï ïæãîùâöæ àŽêýæèñèæ ëìâîŽðëîñèæ
àŽêðëèâĲâĲæïŽåãæï. éëõãŽêæèæŽ éçŽùîŽá àŽáŽàãŽîâĲñèæ âèæò-
ïñîæ áŽ éæïæ öâĲîñêâĲñèæ ëìâîŽðëîâĲæï éŽàŽèæåâĲæ, îëéèâĲæù
ŽçéŽõëòæèâĲâê éæôâĲñèæ åâëîâéâĲæï ìæîëĲâĲï.

Introduction

In the present paper we use terminology and notations mainly from [1].
Let F be an absolutely convex set in a linear space F1 over the scalar field
of real or complex numbers. Let us consider a linear operator S : F1 → G
called a solution operator, where G is a local convex metric linear space over
the scalar field of real or complex numbers with metric d. Elements f from
F are called the problem elements for the solution operator and S(f) are
called the solution elements. For f we are required to compute S(f). Let
U(f) be a computed approximation. The distance d(S(f), U(f)) between
S(f) and U(f) is called an absolute error.

How can we compute approximation U(f)? First, we gather enough
information about the problem element f . Let y = I(f) be nonadaptive

2010 Mathematics Subject Classification. 49N45, 65R32, 97N50.
Key words and phrases. Generalized interpolating spline, problem elements set, spline
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computed information of cardinality m, i.e.,

I(f) =
[
L1(f), . . . , Lm(f)

]
, (1)

where L1, . . . , Lm are linear functionals on the space F1.
Knowing y = I(f), the approximation U(f) is computed by combining

the information to produce an element of G, which approximates S(f).
That is, U(f) = ϕ(I(f)), where ϕ is a mapping ϕ : I(F1) → G which is
called an algorithm.

The worst case error of U is defined by

e(ϕ, I) = sup{d(S(f), U(f)), f ∈ F}. (2)

We are interested in algorithm with a minimal error. We say that ϕ∗ is an
optimal error algorithm if it realizes inf in (2), i.e., e(ϕ∗, I) = inf{e(ϕ, I) :
ϕ ∈ Φ}, where Φ is the set of all algorithms.

In what follows, an operator S is said to be the solution operator of an
operator equation Au = f , if u = Sf . If there exists an inverse to A, then
S = A−1. In addition, the central (resp. linear, spline, optimal) algorithm
approximating the solution operator S = A−1 will be called the central
(resp. linear, spline, optimal) algorithm for the equation Au = f .

The present work is devoted to the construction of linear central algo-
rithms for various equations in Hilbert and Fréchet spaces. These results are
based on the generalization of the best approximation and on the theories
of selfadjoint operators for Fréchet spaces.

In [2], the authors consider the case, where in a linear space F1 there
is a decreasing sequence of problem elements sets. In fact, they consider
linear problems for a sequence of solution operators. In the present paper
we consider the case in which a solution operator acts from a metrizable
locally convex space in the same space and this extends essentially the case
considered in [2].

In §1, the notions of a generalized interpolating spline and of a generalized
spline algorithm are introduced. These notions generalize the corresponding
well-known ones [1] for the case where there is not one set of problem ele-
ment sets on the linear space, but a decreasing sequence of problem element
sets on that space. Using this sequence, we construct generalization of the
well-known Minkowski’s functional which generates a metrizable locally con-
vex topology. The generalized interpolating spline realizes a minimum not
only of metric, but also the corresponding Minkowski’s functional (Theorem
1). The conditions to realize these minimums with respect to the metric,
constructed by D.Zarnadze, are established (Proposition 1).

In §2, the notion of a generalized central algorithm is introduced for a
solution operator acting from a Fréchet space into the same space. It is
proved (Theorem 2) that if the null-space of the information operators has
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an orthogonal complement in the Fréchet space, then the corresponding
spline algorithm is generalized central.

The operator equation Au = f with a selfadjoint and positive defi-
nite operator in the Hilbert space H is considered in §3. We transfer
this equation into the well-known Fréchet space D(A∞). The operator
A∞ : D(A∞) → D(A∞) [3] is introduced which coincides with the re-
striction of AN from the Fréchet-Hilbert space HN to D(A∞). To solve
the operator equation A∞u = f in this space, we construct a linear and
generalized central algorithm (Theorem 3). We present examples of some
differential operators for which Theorem 3 can be applied.

In §4, we consider the equation Ku = f in the Hilbert space H with a
selfadjoint, positive, one-to-one compact operator, possessing dense image.
We introduce the Fréchet space D(K−∞) and transfer this equation in the
same space. We obtain the equation K∞u = f , where K∞ is the restriction
of the operator KN from the space HN in D(K−∞). For this equation
we construct a linear, generalized spline and central algorithm (Theorem
4). Examples of inverses of strong elliptic operators and of some integral
operators of the first kind for which Theorem 4 can be used, are given.

1. The Generalized Spline Algorithm

Let F1 be a linear space, G be a metrizable locally convex space (lcs),
S : F1 → G be a linear solution operator and {Vn} be a decreasing sequence
of absolutely convex subsets of the space F1, i.e., V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ · · · .
Consider the sets Kr = rVn of F1, where

r ∈ In =

{
[1,∞[ for n = 1,

[2−n+1, 2−n+2[ for n ≥ 2.
(3)

Consider the functional µ{Vn} defined on F1 as

µ{Vn}(f) = inf{r > 0; f ∈ Kr}. (4)

If V1 = V2 = · · · = Vn = · · · = F , then Kr = rF and µ{Vn} coincides with
Minkowski’s functional µF of F . We reduce the following properties of the
functional (4):

1. It is clear that µ{Vn}(f) ≥ 0, f ∈ F1.

2. If f1, f2 ∈ F1, then µ{Vn}(f1 + f2) ≤ µ{Vn}(f1) + µ{Vn}(f2). To
prove this fact, we note first that Kr + Ks ⊂ Kr+s. Consider the follow-
ing three special cases: a) r ∈ [2−n, 2−n+1[ and s ∈ [2−m, 2−m+1[, where
1 ≤ n ≤ m. Then r + s ∈ [2−n + 2−m, 2−n+1 + 2−m+1[⊂ [2−n, 2−n+1[∪
[2−n+1, 2−n+2[. If r + s ∈ [2−n, 2−n+1[, then Kr + Ks = rVn+1 + sVm+1 ⊂
rVn+1 + sVn+1 = (r + s)Vn+1 = Kr+s. If r + s ∈ [2−n+1, 2−n+2[, then
Kr + Ks = rVn+1 + sVm+1 ⊂ (r + s)Vn = Kr+s; b) Let r ∈ [1,∞[ and
s ∈ [2−m, 2−m+1[, m ∈ N , then r + s ∈ [1,∞[ and we have Kr + Ks =
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rV1 + sVm+1 ⊂ (r + s)V1 = Kr+s; c) If r, s ∈ [1,∞[, then it is clear that
Kr + Ks ⊂ Kr+s. Now, let µ{Vn}(f1) = r and µ{Vn}(f2) = s. Then for
a sufficiently small ε > 0 we will have f1 ∈ Kr+ε/2 and f2 ∈ Ks+ε/2, i.e.
µ{Vn}(f1 + f2) ≤ r + s + ε for sufficiently small ε > 0 and consequently
µ{Vn}(f1 + f2) ≤ r + s = µ{Vn}(f1) + µ{Vn}(f2).

3. If ∩r∈R+Kr 6= {0}, then Kerµ{Vn} = {f ∈ F1, µ{Vn}(f) = 0} 6= {0}
and µ{Vn}(f − g) = d(f, g) is a translation invariant submetric on F1. If
∩r∈R+Kr = {0}, then Kerµ{Vn}(·) = {0} and µ{Vn}(f − g) = d(f, g) is a
metric on F1. Really, it is easy to see that if x0 ∈ ∩r∈R+Kr and x0 6= 0,
then µ{Vn}(x0) = 0.

Denote Minkowski’s functional of Kr by qr(·). It is clear that if r ∈ In,
then qr(·) = r−1‖ · ‖n, where ‖ · ‖n is the Minkowski functional for Vn.

Let I : F1 → Rm and T : F1 → E be two linear operators, where F1 is
a linear space, {Vn} be a decreasing sequence of absolutely convex subsets
of the space F1 and E be a metrizable lcs defined by a sequence of {Vn} as
follows.

Let F1 = Kerµ{Vn} + Kerµ{Vn}
⊥, where the second summand is the

algebraic complement linear subspace of Kerµ{Vn} in F1. Then f = f1 + f2,
for any f ∈ F1, where f1 ∈ Kerµ{Vn} and f2 ∈ Kerµ{Vn}

⊥. Define E =
Kerµ{Vn}

⊥ and d(f2, g2) = µ{Vn}(f2−g2) for f2, g2 ∈ E. Since µ{Vn}(f2) = 0
implies that f2 ∈ Kerµ{Vn}, f2 = 0, the functional d(f2, g2) = µ{Vn}(f2−g2)
is a metric on E. Thus, E is a linear metrizable lcs. Define a linear operator
T as Tf = f2. In fact, T is an algebraic projection of the space F1 onto the
subspace Kerµ{Vn}

⊥. We find that

d(Tf, Tg) = d(f2, g2) = µ{Vn}(f2 − g2) = µ{Vn}(f − g). (5)

Let y ∈ I(F1), T : F1 → E be the above-mentioned linear operator and
I be a nonadaptive information of cardinality m. An element σ = σ(y) is
called a generalized spline interpolating y (briefly, a generalized spline), iff

(i) I(σ) = y,
(ii) d(Tσ, 0) = inf{d(Tz, 0); z ∈ F1 and I(z) = y} = r,
(iii) qr(Tσ) = inf{qr(Tz); z ∈ F1 and I(z) = y} if r > 0, where qr is

the Minkowski’s functional of the set {x ∈ E; d(x, 0) ≤ r}.
The above definition deals with the problem of existence of functionals

minimums on the set {z ∈ F1; I(z) = y}, whose closure is unknown because
the space F1 is, in general, only linear one. This is also the case in the
classical definition [1]. Let us now prove that

qr(Tx) = qr(x), x ∈ F1, r > 0. (6)

By the definition of the functional µ{Vn} we find that if µ{Vn}(x) ≤ r,
then x ∈ Kr+ε for all ε > 0 i.e. x ∈ (r + ε)Vn, when r ∈ In. This implies
that ‖x‖n ≤ r + ε for arbitrary ε > 0, i.e., ‖x‖n ≤ r. Analogously we
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conclude that if ‖x‖n ≤ r, then µ{Vn}(x) ≤ r. That is µ{Vn}(x) ≤ r ⇔
‖x‖n ≤ r. We have further that qr(Tx) = inf{α > 0, d(Tx/α, 0) ≤ r} =
inf{α > 0, µ{Vn}(Tx/α) ≤ r}. Let α0 be an arbitrary number with the
property α0 > qr(Tx). Then d(Tx/α0, 0) ≤ r i.e. µ{Vn}(Tx/α0) ≤ r} and
‖Tx/α0‖n ≤ r. This means that ‖x/α0‖n ≤ r, i.e. qr(x) ≤ α0. That is
qr(x) ≤ inf α0 = qr(Tx). On the other hand, if β is an arbitrary number
such that x/β ∈ Kr, then ‖x/β‖n ≤ r. That is ‖Tx/β‖n ≤ r. This means
that µ{Vn}(Tx/β) ≤ r}, i.e., d(Tx/β, 0) ≤ r. That is, qr(Tx) ≤ inf β =
qr(x). Thus, (6) is proved.

Let F1 be a linear space and µ be a nonnegative functional for which
the sets {x ∈ F1; µ(x) ≤ r}, r ∈ R+ are absolutely convex. Denote by
qr the Minkowski functional of this set. We say that a subspace M ⊂ F1

is strongly proximal in F1 with respect to µ, if for arbitrary x ∈ F1 there
exists a h∗ ∈ M such that inf{µ(x − h), h ∈ M} = µ(x − h∗) = r and if
r > 0, then inf{qr(x − h), h ∈ M} = qr(x − h∗). We call such h∗ ∈ M
the strong best approximate element for x ∈ F1 in M . The definition of a
strong proximality was introduced in [4].

Theorem 1. Let y ∈ I(F1), T : F1 → E be the above mentioned linear
operator and I be a nonadaptive information of a cardinality m ∈ N . Then
there exists a generalized spline interpolating y, iff the subspace KerI is
strongly proximal in F1 with respect to the functional µ{Vn}.

Proof. First, we assume that Ker I is strongly proximal in F1 with respect
to the functional µ{Vn}. Let f be an arbitrary element belonging to the set
I−1(y). Then we have

inf
{
µ{Vn}(f − h) : h ∈ Ker I

}
= µ{Vn}(f − h∗) =: r

and, if r > 0, then

inf
{
qr(f − h) : h ∈ Ker I

}
= qr(f − h∗)

for some h∗ ∈ Ker I. Denote σ = f − h∗. By the property (5) of the metric
d, we have

inf
{
µ{Vn}(f − h) : h ∈ Ker I

}
= µ{Vn}(f − h∗) = r = µ{Vn}(σ) =

= d(Tσ, 0) = inf
{
d(Tz, 0); z ∈ F1, I(z) = y

}
.

From the above and (6), we have

inf
{
qr(f − h) : h ∈ Ker I

}
= qr(f − h∗) = qr(Tσ) =

= inf qr(Tz); z ∈ F1, I(z) = y}.
Conversely, let f be an element in F1, I(f) = y and σ be a generalized

spline interpolating y. We represent an element z ∈ I−1(y) in the form
z = f − h, where h ∈ Ker I, and consider the element h∗ = f − σ ∈ Ker I.
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It is clear that σ = f −h∗ satisfies (i)–(iii). Therefore, using (5) and (6), we
can see that h∗ is a strongly best approximate element to f in Ker I. ¤

In the sequel we will assume that F1 is lcs with a decreasing sequence
of absolutely convex closed neighborhoods {Vn} such that ∩n∈NVn = 0. In
particular, such a sequence of absolutely convex neighborhoods exists, if F1

is a metrizable lcs. In this case, T is an identity operator and the space
(E, d) is the linear metric lsc in which linear operations are continuous.
The existence of such a metric on the strict (LF)-space is proved in [5]. The
generalization of this result for strict inductive limits of lcs, on which there
exists metrics, is proved by S. Dierolf and K. Floret [6]. In that case, T is
a continuous imbedding from F1 into E.

If, moreover, {Vn} is a local basis of neighborhoods of zero for some
topology, then µ{Vn}(f − g) = d(f, g) is the continuous metric generating
the topology defined by a sequence of {Vn}. This functional is quasiconvex,
i.e., the sets {x : µ{Vn}(x) ≤ r}, r ∈ R+ are absolutely convex and coincide
with Kr. Topological boundary {x ∈ F1; qr(x) = 1} of Kr coincides with
the metric boundary {x ∈ F1; µ{Vn}(x) = r} for r ∈ intIn and they, in
general, differ for r = 2−n+1(n ∈ N) [7].

Below, we will often replace an arbitrary translation invariant metric d
by quasinorm | · | (i.e., we will replace d(x, y) by |x− y|).

Let ‖ · ‖n be Minkowski’s functional of {Vn}. The definition of the func-
tional µ{Vn} takes the following form [8]:

µ{Vn}(x) =





‖x‖1 , when ‖x‖1 ≥ 1,

2−n+1, when ‖x‖n ≤ 2−n+1 and
‖x‖n+1 ≥ 2−n+1 (n ∈ N) ,

‖x‖n+1, when 2−n ≤ ‖x‖n+1 < 2−n+1 (n ∈ N),
0, when x = 0 .

(7)

Since qr(·) = r−1‖ · ‖n for r ∈ In, we find that for the metric (6) in terms
of the above notation, σ = f − h∗ is a generalized spline, iff I(σ) = y,

d(f, Ker I) = d(f, h∗) = r 6= 2−n+1 (n ∈ N)

and

E(f, Ker I, Vn) := inf
{‖f − h‖n ; h ∈ Ker I

}
= ‖f − h∗‖n ,

when r = 2−n+1 (n ∈ N) .

For V1 = V2 = · · · = F, we prove that Kr = rF, | · | = µF (·), and the
generalized interpolation spline coincides with the classical one.

Proposition 1. Let E be a lcs with a increasing sequence of seminorms
{‖ · ‖n} and with metric (7), let M be a convex subset of E, x ∈ E\M and
d(x, M) = r ∈ In (3). Then the following statements hold:
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(a) If r ∈ intIn (n ∈ N), then the equalities d(x,M) = r = |x − h∗|
and infh∈M ‖x − h‖n = ‖x − h∗‖n, where h∗ is some element of M , are
equivalent.

(b) If d(x, M) = r = 2−n+1 (n ∈ N) and infh∈M ‖x − h‖n = ‖x − h∗‖n

for some h∗ ∈ M , then d(x,M) = d(x, h∗).

Proof. a) Let d(x,M) = |x − h∗| = r ∈ intIn (n ∈ N) for some h∗ ∈ M.
From the definition of the metric (7) it follows that d(x,M) = |x − h∗| =
‖x − h∗‖n = r. Let us prove that ‖x − h∗‖n = infh∈M ‖x − h‖n. Assume
the opposite that s = ‖x− h1‖n < ‖x− h∗‖n = r for some h1 ∈ M . Then,
according to the properties of the metric (7), we have d(x, h1) = ‖x−h1‖n <
r if s ∈ In and d(x, h1) ≤ 2−n+1 < r if s < 2−n+1. Thus, d(x, h1) < r, which
is impossible. Analogously, we can show that the equality infh∈M ‖x−h‖n =
‖x − h∗‖n = r ∈ intIn, h∗ ∈ M, implies that d(x,M) = |x − h∗| = r.
Thus, part (a) is proved. To prove (b), let d(x,M) = r = 2−n+1 and
infh∈M{‖x − h‖n, h ∈ M} = ‖x − h∗‖n ≤ 2−n+1, where h∗ ∈ M . Let
us show that ‖x − h∗‖n+1 = s ≥ 2−n+1. If we assume that s < 2−n+1,
then according to (7), d(x, h∗) ≤ max(s, 2−n) < 2−n+1 = r. But this is
impossible. Thus, ‖x− h∗‖n ≤ 2−n+1 and ‖x− h∗‖n+1 ≥ 2−n+1. By virtue
of(7), this means that d(x, h∗) = 2−n+1 = r. ¤

In the above notation, the element σ = f − h∗ ∈ F1 is a generalized
interpolating y ∈ Rm spline, if I(σ) = y,

d(f, Ker I) = d(f, h∗) = r = d(σ, 0) = |σ|
and, if r > 0,

inf
{
qr(f − r); h ∈ Ker I

}
= qr(f − h∗) = qr(σ),

i.e., the generalized spline σ minimizes not only the metric, but also the
corresponding Minkowski’s functional. Here h∗ is a strongly best approx-
imation element of f in Ker I. Such definition of the generalized interpo-
lating splines is given in [2]. The number r mentioned in the definition
of a generalized spline interpolating y, does not depend on the choice of
f ∈ F1, If = y, d(f, Ker I = r). Indeed, since if

I(f1) = I(f2) = y, f2 − f1 = z ∈ Ker I, d(f1, Ker I) = d(f1, h
∗
1),

and
inf{qr(f1 − h); h ∈ Ker I} = qr(f1 − h∗),

therefore
d(f2,Ker I) = d(f2, h∗1 + z) = d(f1, h

∗
1)

and

inf
{
qr(f2 − h); h ∈ Ker I

}
= qr(f2 − h∗1 + z) = qr(f1 − h∗1).

Consider the definition of a generalized spline in the case of a normlike
metric given by G.Albinus [9]. Assume that information is generated by
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continuous on F1 linear functionals. Then Ker I is closed in F1 and the
distance d(f, Ker I) = r > 0. From the properties of this metric it follows
that inf{qr(f−h); h ∈ Ker I} = 1 [9]. As is known, qr is equivalent to some
seminorm from the given sequence {‖·‖n}. The functional corresponding to
this information is continuous with respect to this seminorm. Its kernel is
closed, since the distance from f to this kernel with respect to the seminorm
is positive, namely 1. If it were not closed, it would be everywhere dense
and the distance will be zero. Thus, in the definition of a generalized spline
we arrive always at such a seminorm with respect to which the functional,
corresponding to this information is continuous. Thus, in the cases under
consideration, the definition of a generalized spline needs the requirement
of the existence of the best approximation only with respect only to the
metric in Ker I.

Consider the case in which F1 = E is a metrizable locally convex space
whose topology is generated by a decreasing sequence of neighborhoods Vn

of zero. Denote the Minkowski’s functional of Vn by ‖ · ‖n, i.e. Vn = {f ∈
E : ‖f‖n ≤ 1}. Let Xn be the normed space Xn = (E/Ker ‖ · ‖n , ‖̂ · ‖n),
where ‖̂ · ‖n is the associated norm. If instead of F we consider the set Vn

for each n ∈ N , then the canonical maps Kn : F1 → Xn will be analogies
of the operator T : E → X and Vn = {f ∈ E : ̂‖Kn(f)‖n ≤ 1}.

It should be noted that the existence of a generalized spline for any non-
adaptive information of cardinality 1 in terms of the proximality of closed
hypersubspaces was considered by many mathematicians and the final re-
sults were obtained in [10] (see also [2]).

Consider the set F = {f ∈ F1 : µ{Vn}(f) = d(Tf, 0) ≤ 1}. If the
generalized spline exists and is unique, then the generalized spline algorithm
is defined analogously to [1] by means of the equality ϕs(y) = Sσ(y), y ∈ F .

2. Generalized central algorithm and the condition of
linearity and generalized centrality of generalized spline

algorithms

Let us now define the notion of a generalized central algorithm for a
solution operator S : F1 → G, where F1 is a linear space with a decreasing
sequence of absolutely convex subsets {Vn} of the space F1 and G is a lcs
with metric d∗. Let T : F1 → E be the operator introduced in §1 and
consider the set F = {f ∈ F1 : µ{Vn}(f) = d(Tf, 0) ≤ 1}. Let I be a
nonadaptive information of cardinality m ≥ 1 and y = I(f), f ∈ F . Then
µ{Vn}(f) = r ∈ In, i.e. f ∈ Vn for some n ∈ N . We call the value

en(ϕ, I, y) = sup
{
d(S(f), ϕ(y)); f ∈ I−1(y) ∩ Vn

}
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the local error of the algorithm ϕ at a point y. Denote by rn(I, y) the local
radius of the nonadaptive information I at a point y defined by the equality

rn(I, y) = rad
(
S(I−1(y) ∩ Vn)

)
.

Here, the radius of the set M ⊂ G is defined analogously to the case of a
normed space by the equality rad(M) = inf{sup{d(a, g); a ∈ M}; g ∈ G}.
The Chebyshev center c ∈ G of a set M ⊂ G is defined by the equal-
ity rad(M) = sup{d(a, c), a ∈ M}. It is a simple matter to verify that
rn(I, y) = inf{en(ϕ, I, y) : ϕ ∈ Φ}, where Φ is the set of all algorithms. The
global radius rn(I) of nonadaptive information I is defined by the equality

rn(I) = sup{rn(I, y); y ∈ I(Vn)}.
Let y = I(F ) ⊂ Rm, i.e., y ∈ I(Vn) for some n ∈ N. Assume that the

sets S(I−1(y) ∩ Vk) have a Chebychev center c = c(y) for all y ∈ I(F ) and
k ≤ n if y ∈ I(Vn). This inplies that for all k ≤ n,

rad
(
S(I−1(y) ∩ Vk) = inf

{
sup{|S(f)− g|; f ∈ I−1(y) ∩ Vk}; g ∈ G

})
=

= sup
{|S(f)− c(y)|; f ∈ I−1(y) ∩ Vk

}
.

In such cases we call the algorithm ϕc(y) = c(y) a generalized central. If G
is a normed space and V1 = V2 = · · · = F , then | · | = qF (·), and the notion
of generalized centrality coincides with the classical definition.

Consider a metrizable locally convex space whose topology is defined by
an increasing sequence ‖ · ‖n of seminorms. Below, by d∗ will be denoted
one of the following metrics: 1) the metric, defined by (7); 2) the normlike
metric given by Albinus [9]; 3) the supremum metric defined by the formula

d(x, y) = sup
n∈N

‖x−y‖n

2n(1+‖x−y‖n) ; 4) the metric d(x, y) =
∞∑

n=1

‖x−y‖n

2n(1+‖x−y‖n) given

by Mazur.

Proposition 2. Let G be a metric space with the metric d∗ and let the
closure Ā of the set A ⊂ G be symmetric with respect to some element
p ∈ G. Then p is the Chebyshev center of A.

Proof. Let us consider the case, where d∗ is the metric given by (7) and
assume that p is not a Chebychev center of the set A. Then there exists an
element u from G, such that sup{|a − u| : a ∈ A{< sup{|a − p| : a ∈ A},
where | · | is the quasinorm of the metric (7). Take x ∈ A such that

|a− u| < |x− p| for all a ∈ Ā . (8)

Let |x− p| = r ∈ In for some n ∈ N. If r ∈ intIn, then |x− p| = ‖x− p‖n.
Denote |a0 − u| = r1 for some a0 ∈ A. Let r1 ∈ In1 , n1 ≥ n. If r1 ∈ intIn1 ,
then r1 = ‖a0 − u‖n1 . According to (8), in this case we have ‖a0 − u‖n1 <
‖x− p‖n and ‖a0 − u‖n ≤ ‖a0 − u‖n1 < ‖x− p‖n. Thus,

‖a0 − u‖n < ‖x− p‖n . (9)
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Let now |a0 − u| = r1 = 2−n1+1 ∈ In1 , n1 ≥ n. From the properties of
the metric (7) it follows that ‖a0 − u‖n1 ≤ 2−n1+1. Therefore, ‖a0 − u‖n ≤
‖a0 − u‖n1 ≤ r1 = 2−n1+1 < r = ‖x− p‖n and (9) is valid.

Consider now the case in which |x − p| = r = 2−n+1 ∈ In and r1 ∈
intIn1 , n1 > n. Then |a0−u| = r1 = ‖a0−u‖n1 ≥ ‖a0−u‖n+1 and therefore
‖a0 − u‖n+1 < 2−n+1. From the properties of the metric (7) it follows that
‖x− p‖n ≤ 2−n+1 ≤ ‖x− p‖n+1. Thus, we obtain ‖a0 − u‖n+1 < 2−n+1 ≤
‖x− p‖n+1, and hence (9) is valid for n + 1.

It remains to consider the case, where r = 2−n+1 ∈ In and r1 =
2−n1 , n1 ≥ n. We have ‖a0 − u‖n+1 ≤ ‖a0 − u‖n1+1 ≤ r1 = 2−n1 <
r = 2−n+1 ≤ ‖x− p‖n+1, and hence (9) is valid for n + 1.

Let now d∗ be a normlike, supremal or Mazur’s metric. Then (7) is
likewise valid for some n ∈ N . Indeed, if we assume that (9) is not true ,
then ‖a − u‖n ≥ ‖x − p‖n for all n and a ∈ A. From the properties of the
above-considered metrics it follows that |a− u| ≥ |x− p| for all a ∈ A, but
this contradicts (8).

Let x = p + h. While x ∈ A and Ā is symmetric with respect to p, in Ā
there is also p− h. If k = n or k = n + 1, we have

2‖h‖k = ‖2h‖k =
∥∥(p + h− u)− (p− h− u)

∥∥
k
≤ ∥∥(p + h)− u

∥∥
k
+

+
∥∥(p− h)− u

∥∥
k

< 2
∥∥x− p

∥∥
k

= 2‖h‖k ,

which is a contradiction. ¤

Assume that the topology of the Fréchet space E is given by a sequence of
Hilbertian seminorms {‖ · ‖n}, i.e., each seminorm ‖ · ‖n is generated by the
semiinner product (x, y)n and Vn = {x ∈ E; ‖x‖n ≤ 1}. For such spaces,
the notion of orthogonality is defined naturally as follows: the elements
x, y ∈ E are called orthogonal, if (x, y)n = 0 for each n ∈ N. A subspace
M possesses an orthogonal complement M⊥ in E, if each element x ∈ E is
represented as the sum x = y + z, where y ∈ M, z ∈ M⊥ and (y, z)n = 0
for each n ∈ N. In other words, this implies that each element x ∈ E in
the subspaces M and M⊥ possesses a unique best approximation y and z,
respectively, with respect to all seminorms ‖ · ‖n generated by (·, ·)n.

Theorem 2. Let E be a Fréchet space with an increasing sequence of
Hilbertian seminorms {‖·‖n}, Vn = {x ∈ E : ‖x‖n ≤ 1} and with the metric
(7). Let Kn : E → E/ Ker ‖ · ‖n be the canonical mapping, Xn = (E/ Ker ‖ ·
‖n , ‖̂ · ‖n) and G be a metrizable locally convex space, S : E → G be a
linear solution operator and I be a nonadaptive information of cardinality
m ≥ 1. Then the following assertions are valid:

a) If Kn(Ker I) is closed in the Hilbert space Xn, n ∈ N , then Ker I is
strongly proximal in E with respect to the metric (7), and for any y ∈ I(E)
there exists a generalized spline σ interpolating y.
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b) If, moreover, the subspace Ker I possesses an orthogonal complement
in E, then for any y ∈ I(E) there exists the unique generalized spline σ
interpolating y such that (σ, h)n = 0 for any n ∈ N and h ∈ Ker I. If y ∈
I(V1), then σ is a center of all sets I−1(y)∩Vk, for which this intersections
are non-empty. The corresponding spline algorithm ϕs(y) = S(σ) is linear
and generalized central.

Proof. a) For y ∈ I(E), there exists f ∈ E such that I(f) = y. The subspace
Ker I is strongly proximal in E and for this f there exists a strongly best
approximation element h∗ in Ker I ([2], Theorem 4). Then σ = f − h∗ is a
generalized spline interpolating y.

b) If y = 0, then likewise σ = 0 and item b) is trivial. For any nontrivial
y ∈ I(E) and information I we take f such that I(f) = y. Since the
subspace Ker I possesses an orthogonal complement in E, there exists the
unique representation f = h∗ + σ and (h∗, σ)n = 0 for any n ∈ N , where
h∗ ∈ Ker I and σ ∈ Ker I⊥. This implies that < Knh∗, Knσ >n= 0 for any
n ∈ N , where < ·, · >n is the inner product in the space Xn, generating
the associated norm ‖̂ · ‖n. Kn(σ) is orthogonal to Kn(Ker I) in Xn for any
n ∈ N and σ is a best approximation element for f in Ker I⊥ with respect
to the ‖ · ‖n for any n ∈ N . It is clear that I(σ) = y. Let us prove that
σ is a generalized spline interpolating y. Let d(f, Ker I) = r ∈ In for some
n ∈ N , then

inf
{∥∥Knf −Knh

∥∥
n

, h ∈ Ker I
}

=
∥∥Knf −Knh∗

∥∥
n

= ‖σ‖n := λ.

If r ∈ int In, then according to Proposition 1, λ = r = d(f, h∗) and σ is
a generalized spline interpolating y. If r = 2−n+1 (n ∈ N), then again by
Proposition 1, d(f, h∗) = r and σ is a generalized spline interpolating y. If
r = 2−n+1 and λ = 0, then f − h0 ∈ Vn for some h0 ∈ Ker I. Indeed, in
this case there exists a minimized sequence {hk} such that limk→∞ ‖Knf −
Knhk‖n = λ = 0. Since Kn(Ker I) is closed in Xn, therefore Knf ∈
Kn(Ker I) i.e., f ∈ Ker I. But this is out of the question and hence λ = 0
is impossible.

We obtain f − h0 ∈ Vn. Assuming now that f − h0 ∈ 2intVn+1, we will
have d(f, h0) ≤ 2 · 2−n‖f − h0‖n+1 < 2−n+1 = r, but this is impossible.
Therefore, ‖f −h0‖n ≤ 2−n+1 and ‖f −h0‖n+1 ≥ 2−n+1. This implies that
|f − h0| = r = 2−n+1.

From the above-said it follows that if for some element σ belonging to
E the equalities I(σ) = y and(σ, h)n = 0 are valid for any n ∈ N and
h ∈ Ker I, then σ is a generalized spline interpolating y.

Build now a linear spline algorithm. Towards this end, we apply the
method considered in [1]. Let σi be the unique generalized spline interpo-
lating ei = {0, . . . , 1, . . . , 0} for the information I(f) = [L1(f), . . . , Lm(f)]
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with linearly independent linear functionals Li(f), such that Kn(σi) is or-
thogonal to the Kn(Ker I) in Xn for any n ∈ N , i.e., (h, σi)n = 0 for all

n ∈ N . Consider the expression σ =
m∑

i=1

Li(f)σi. Then Kn(σ) will be or-

thogonal to the Kn(Ker I) in Xn for all n ∈ N and σ will be a generalized

spline interpolating y. It is clear that ϕs(I(f)) =
m∑

i=1

Li(f)Sσi will be a lin-

ear algorithm. It should also be noted that the operator y → σ, acting from
the finite dimensional space I(E) to the finite dimensional space (Ker I)⊥,
is linear. It remains to prove that ϕs is generalized central, i.e., that the
center of the set S(I−1(y)∩Vn0) for each y ∈ I(Vn0) is S(σ), where σ is the
above-mentioned unique generalized spline interpolating y. The existence
of such spline σ has been proved above. We have now to prove that if g
is an arbitrary element of I−1(y) ∩ Vn0 , then 2σ − g ∈ I−1(y) ∩ Vn0 . This
fact may be proved just in the same way as in ([1], p. 97). Really, for
h = σ − g ∈ Ker I we have

∥∥ ̂Kn0(2σ − g)
∥∥

n0
=

∥∥ ̂Kn0(σ + g)
∥∥

n0
=

=
√∥∥K̂n0(σ)

∥∥2

n0
+

∥∥K̂n0(h)
∥∥2

n0
=

∥∥K̂n0(h)
∥∥

n0
=

∥∥g
∥∥

n0
≤ 1 ,

i.e., 2σ− g ∈ I−1(y)∩ Vn0 . Therefore, the set S(I−1(y)∩ Vn0) is symmetric
with respect to ϕs(y) = S(σ), i.e., rad(S(I−1(y) ∩ Vk)) = inf{sup{|S(f) −
y|; f ∈ I−1(y) ∩ Vk}; y ∈ G} = sup{|S(f) − S(σ)|; f ∈ I−1(y) ∩ Vk}, for
all k ≤ n. From the above and Proposition 1 it follows that the generalized
spline σ interpolating y is a center for the set I−1(y)∩Vn0 , i.e., rad(I−1(y)∩
Vk) = inf{sup{|f − q|; f ∈ I−1(y) ∩Vk}; q ∈ E} for all k ≤ n0. ¤

3. Construction of generalized central linear spline
algorithms for direct problems

Let H be a Hilbert space with a inner product (·, ·), A be a selfadjoint
positive definite operator from H into H. The topology of the well-known
countable-Hilbert space D(A∞) = ∩∞k=1D(Ak−1) can be given by the fol-
lowing sequence of Hilbertian norms:

‖x‖n =
(‖x‖2 + ‖Ax‖2 + · · ·+ ‖An−1x‖2)1/2

, x ∈ D(A∞), n ∈ N,

which are generated by the inner products

(x, y)n = (x, y) + (Ax,Ay) + · · ·+ (
An−1x,An−1y

)
, x, y ∈ D(A∞).

The space D(A∞) is isomorphic to a subspace M of the Fréchet-Hilbert
space HN considered with the product topology. This isomorphism is ob-
tained by the mapping

D(A∞) 3 x → Orb(A, x) : = {x,Ax, . . . , An−1x, . . . } ∈ M ⊂ HN .
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Using this representation, we can define the operator A∞ : D(A∞) →
D(A∞) by the equality

A∞ : A∞{x, Ax,A2x, . . . } = {Ax,A2x, . . . }.
A∞ coincides with the restriction of AN from the Fréchet-Hilbert space HN

to D(A∞). (Due to this notation, the space D(A∞) acquires a new meaning,
different from the classical case, where D(A∞) is a whole symbol, and A∞

taken separately, means nothing ). To obtain an approximate solution of
the equation

A∞u = f (10)
in the Fréchet space D(A∞), we apply the extended Ritz’s method. For
that we consider D(A∞) with the following energetic norms:

[x]2n = (A∞x, x)n = (Ax, x) + (A2x,Ax) + · · ·+ (Anx,An−1x). (11)

As basis functions, we choose an orthogonal sequence of eigenfunctions {ϕj}
of the operators A and A∞ (We suppose that ϕj are embedded in D(A∞) ∈
H and identified with the (ϕj , Aϕj , . . . ) ∈ D(A∞)). For l ∈ N , a system of
equations for defining the coefficients of an approximate solution is written
in the form

m∑

k=1

(A∞ϕk, ϕj)l ak = (f, ϕj)l , j = 1, . . . , m .

Performing calculations, we prove that an approximate solution for the
equation (10), which is obtained by the Ritz’s extended method, takes the
form

um =
m∑

j=1

(f, ϕj)
λj‖ϕj‖2 ϕj , (12)

where λj are the corresponding to ϕj eigenvalues. um do not depend on
l [11]. Let I(f) = [L1(f), L2(f), . . . , Lm(f)] be nonadaptive information
of cardinality m, where Li(f) = (f, ϕi). Ker I is a finite-codimensional
subspace in the energetic space EA∞ . Therefore, (12) implies that Ker I
admits an orthogonal complement Ker I⊥ = span{ϕ1, ϕ2, . . . , ϕm} in EA∞ .
If ei = (0, . . . , 1, . . . , 0), where 1 lies on the i-th place, then ϕi ∈ I−1(ei)
and the best approximation element for f in Ker I⊥ coincides with ϕi. This
means that interpolating ei, the generalized spline is ϕi, and interpolating
y = I(f), the spline σ has the form σ =

∑m
i=1(f, ϕi)‖ϕi‖−2ϕi. The solution

operator for the equation (10) is S = (A∞)−1 and it is an isomorphism of
the space EA∞ onto itself. We have that Sσ =

∑m
i=1(f, ϕi)‖ϕi‖−2Sϕi =∑m

i=1(f, ϕi)‖ϕi‖−2(A∞)−1ϕi =
∑m

i=1 λ−1
i (f, ϕi)‖ϕi‖−2ϕi = um, where um

is approximate solution of equation (10), constructed by the Ritz’s ex-
tending method. Sσ = um is also the best approximation element for
Sf = (A∞)−1f in the subspace Ker I⊥ with respect to energetic norms
(11) of the energetic space EA∞ for the operator A∞. The subspace Ker I
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admits an orthogonal complement Ker I⊥ in a Frechet space EA∞ . Ac-
cording to Theorem 2, the generalized spline algorithm ϕs, defined by the
equality ϕs(I(f)) = um, is generalized central.

From the above-mentioned reasoning follows the following

Theorem 3. Let A be a selfadjoint positive definite operator in the
Hilbert space H with an orthogonal sequence of eigenfunctions {ϕj}. Let λj

be eigenvalue which corresponds to the eigenfunction ϕj and um is defined
by (12). The algorithm ϕs(I(f)) = um is the linear generalized spline and
generalized central for the solution operator S = (A∞)−1 and information
I(f) = [(f, ϕ1), (f, ϕ2), . . . , (f, ϕm)]. Moreover, the sequence of approximate
solutions {um} converges to a solution of equation (10) in the space D(A∞).

We will now give a few examples of selfadjoint and positive definite dif-
ferential operators in Hilbert spaces; these operators satisfy the conditions
of Theorem 3. These examples are taken mainly from [12].

1. Strongly degenerate elliptic differential operators. For an
arbitrary domain Ω ⊂ Rl we, as usual, denote by C∞(Ω) the space of all
infinitely differentiable functions defined in Ω. Further, let ρ(x) ∈ C∞(Ω)
be a positive function such that

a) For any multi-indices γ, there exists Cγ > 0 such that |Dγρ(x)| ≤
Cγρ1+|γ|(x), for all x ∈ Ω.

b) For any k > 0, there exist numbers εk > 0 and rk > 0 such that
ρ(x) > k if d(x) ≤ εk or |x| ≥ rk when x ∈ Ω (d(x) is a distance from x to
the boundary ∂(Ω)).

Denote by Sρ(x)(Ω) the metrizable, locally convex space

Sρ(x)(Ω) =
{
f ∈ C∞(Ω); ‖f‖n,α = sup ρn(x)|Dαf(x)| < ∞,

for all n = 0, 1, . . . and all multi-indices α
}
. (13)

Note that for each bounded domain Ω there exists a function ρ(x) for which
ρ−1 actually coincides with d(x). Sρ(x)(Ω) is a nuclear Fréchet space isomor-
phic to the space s of fast decreasing sequences. The well-known Schwartz
space S(R) is a particular case of such spaces.

The class Rr
µ,ν(Ω, ρ(x)) considered in [12] is a quite wide class of de-

generating elliptical differential operators. We will give an example of an
operator from that class. The operator A given by the relations

Au = −∆u + ρν(x)u, ν > 2, D(A) = C∞0 (Ω) (14)

is essentially selfadjoint in L2(Ω), i.e., its closure A is a selfadjoint operator
in L2(Ω), D(A) = W 2

2 (Ω, 1, ρ2ν) ([12], 6.4.3) and A has a purely pointwise
spectrum. Moreover, A is positive definite. A sequence of eigenfunctions
{ϕj} of the operator A belongs to the space Sρ(x)(Ω) ([12], 6.4.2). It is also

proved that D(A
j
) = W j

2 (Ω, 1, ρ2νj) ([12], 6.4.3) and the space Sρ(x)(Ω) is



GENERALIZED SPLINE ALGORITHMS 157

isomorphic to the space D(A
∞

) whose topology is given by the sequence of
Hilberian norms (11), where A is defined by (14). In connection with the
the above-said, we note that the topology of the space Sρ(x)(Ω) is given by
the sequence {‖ · ‖n,α}. Therefore, if we consider the equation

−∆u + ρν(x)u = f (15)

in the Fréchet space Sρ(x)(Ω) with the sequence of norms (9), then by virtue
of proposition b) of Theorem 2 (see also ([12], 6.4.3)), it has a unique solution
for each f ∈ Sρ(x)(Ω). If the sequence of eigenfunctions {ϕj} is orthogonal
in the space L2(Ω), then for the sequence of approximate solutions {um},
which is given by (12), Theorem 3 in the space Sρ(x)(Ω) is valid.

Let us now give a concrete definition of the result in the one-dimensional
case for the Hermitean operator, i.e., for the harmonic oscillator

Au = −u′′(t) + t2u (16)

with the boundary conditions u(±∞) = 0. This is a selfadjoint and positive
definite operator in the Hilbert space L2(R). According to ([12], 6.2.3.), the
Schwartz space S(R) serves as the space D(A∞) for the operator A. The
eigenfunctions of the operator A are the Hermitean functions (the wave
functions of the harmonic oscillator) [13]:

ϕj(t) =
(
2j−1(j − 1)!

)−1/2(−1)j−1π−1/4et2/2 dj−1e−t2

dtj−1
, j ∈ N. (17)

The eigenvalues of A are λj = 2j + 1, j = 1, 2, . . . . The sequence ϕj is an
orthonormal basis of the space L2(R) and, by virtue of the nuclearity of the
space S(R), it is also an absolute basis in the latter space. Let us consider
the space S(R) with the sequence of Hilbertian norms (11), where A is given
by (16) and ‖ · ‖ is the norm of the space L2(R).

Let the operator A∞ be the restriction of A on the space S(R) ⊂ D(A)
when the topology of the space S(R) = D(A∞) is taken into account. By
virtue of (17), an approximative solution um of equation (10) has the form
(12), where {ϕj} are defined by (17) and λj = 2j + 1. For such sequence
of approximate solutions {um} given by (12), Theorem 3 in the space S(R)
with the norms (7) is valid.

The obtained results can be applied to essentially selfadjoint and pos-
itive definite Legendre operators Am,k(2k ≤ m) ([12], 7.4.1) and Tricomi
operators Bn,k ([12], 7.6.3). These works also give the representations of
the spaces D(A

∞
m,k) ([12], 7.4.4) and D(B

∞
m,k) ([12], 7.6.3).

2. Let us consider the differential operator ([14], Ch.5, § 9)

Bu = −1
t

[
d

dt

(
t
du

dt

)
− ν2

t
u

]
, ν = const > 1/2, 0 < t < 1.
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in the space H = L2(t; 0, 1) of the quadratically summable on ]0, 1[ with
the weight functions t . The domain of definition D(B) consists of the
functions u for which: u(t) and u′(t) are absolutely integrable on any interval
[ε, 1] (0 < ε < 1);

√
tu′(t) is continuous on [0, 1] and vanish at t = 0;

Bu ∈ H and u(1) = 0. In ([14], Ch.5, § 9) it is proved that D(B) is dense in
H, B is symmetric and positive definite in H and has a discrete spectrum.
Eigen-values of the operator B are

λk = j2
ν,k, k = 1, 2, . . . , (18)

where jν,k is the k-th positive root of Bessel function Jν(t); the correspond-
ing orthonormal eigenfunctions are

ϕk(t) =
√

2
Jν+1(jν,k)

Jν(jν,kt), k = 1, 2, . . . . (19)

The approximate solutions um of the equation B∞u = f in the Fréchet
space D(B∞) have the following form:

um(t) =
m∑

k=1

λ−1
k

1∫

0

sf(s)ϕk(s)ds ϕk(t),

where λk and ϕk are defined by (18) and (19). The sequence um converges
in the space D(B∞) to the solution of the equation B∞u = f if f ∈ D(B∞).
For such sequence of approximative solutions {um}, Theorem 3 is valid in
the space D(B∞) with the norms (11), in which A is replaced by B.

3. The Laplace-Beltrami operator δ. Let S be the unit sphere
in the l-dimensional Euclidean space Rl, ϑ1, ϑ2, . . . , ϑl−1 be the spherical
coordinates of the point θ ∈ S and Σ = {x : ρ1 ≤ |t| ≤ ρ2, t ∈ Rl}, where
ρ1 and ρ2 are arbitrary fixed positive numbers such that ρ1 < 1 < ρ2, so
that S ⊂ Σ. Consider the function f defined on S and let f∗(t) = f(t/|t|)
be an extension of f on the Σ. We shall say that the function f belongs to
the class C(2)(Σ), if all second order derivatives of f∗ are continuous in Σ.
The operator δ is defined on the C(2)(S) as

δ = −
l−1∑

j=1

1
qj sinl−j−1 ϑj

∂

∂ϑj

(
sinl−j−1 ϑj

∂

∂ϑj

)
,

where q1 = 1, qj = (sin ϑ1 sin ϑ2 . . . Σϑj−1)2, j ≥ 2. This operator is sym-
metric in the space H = L2(S) and its eigen-values λn = n(n+l−2), n ∈ N,
have the multiplicity kn,l = (2n + l − 2)(l + n − 3)!((l − 2)!n!)−1. The
corresponding to the eigen-value λn eigen-functions are spherical functions
Y

(k)
n,l (θ), 1 ≤ k ≤ kn,l ([14], Ch.13, §2). They represent a whole orthonormal

system in L2(S). Since all eigenvalues are positive, δ is the positive definite
operator and its spectrum is discrete. We number the spherical functions
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Y
(k)
n,l in the following way. It is assumed that l ≥ 2. If 1 ≤ k ≤ k1,l = l,

then we take λk = l(l − 1); ϕk(θ) = Y
(k)
1,l (θ) and if k1,l + · · · + kj,l < k ≤

k1,l+· · ·+kj+1,l, then λk = (j+1)(j+l−1); ϕk(θ) = Y
(k−(k1,l+···+kj,l))
j+1,l (θ). If

we substitute these λk and ϕk in (12), then we will obtain a sequence {um}
for the approximative solution of the equation δ∞(u) = f(θ). For such se-
quence, Theorem 3 is valid in the space D(δ∞) with the norms (11), in
which A is replaced by δ.

4. On the Stability and Construction of Central Linear
Spline Algorithms for Ill-Posed Problems

Let K be a selfadjoint, positive, compact and one-to-one operator in the
Hilbert space H with a dense image. Let {ϕk} be an orthonormal sequence
of eigenfunctions of K corresponding to a sequence of eigenvalues λk. Then

K has the form K(u) =
∞∑

k=1

λk(u, ϕk)ϕk, λk → 0, λk > 0. In [11], we have

introduced the Fréchet space D(K−∞) = ∩∞n=1D(K−n+1), where K−1 is
the inverse to the operator K and K−n = K−1(K−n+1), n ∈ N . In the
same place is introduced the operator K−∞ : D(K−∞) → D(K−∞) as

K−∞(x) =
{
K−1x,K−2x, . . . , K−nx, . . .

}
.

The topology of the Fréchet space D(K−∞) = ∩∞n=1D(K−n) is given by the
following sequence of norms

‖x‖2n = ‖x‖2 + ‖K−1x‖2 + · · ·+ ‖K−n+1x‖2

which are generated by the inner product

(x, y)n =(x, y)+
(
K−1x,K−1y

)
+· · ·+(

K−n+1x,K−n+1y
)
, x, y∈D(K−∞).

The topology of the energetic space EK−∞ of the operator K−∞ is given
by the sequence of norms

[x]n =: (K−∞x, x) = (K−1x, x) + (K−2x, K−1x) + · · ·+ (K−nx,K−n+1x).

It is known [11] that the operator K−∞ is continuous, positive definite,
selfadjoint and admits the inverse one (K−∞)−1 which is selfadjoint and
continuous. Therefore, the operator K−∞ is an isomorphism of the Fréchet
space D(K−∞) onto itself. Let us denote the operator (K−∞)−1 by K∞.
We have also

K∞u = (K−∞)−1u =
{
Ku,KK−1u, . . . , KK−n+1u, . . .

}

and therefore

K−∞K∞u = K∞(K−∞u) = K∞
{
K−1u,K−2u, . . . , K−nu, . . .

}
=

=
{
u,K−1u, . . . , K−nu, . . .

}
= u.
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We transfer the equation Ku = f from the Hilbert space H to the Fréchet
space D(K−∞) in which the restriction K∞ of the operator K is a selfadjoint
operator. Moreover, K∞ is an onto isomorphism of D(K−∞) and therefore,
the operator equation

K∞u = f (20)
has in D(K−∞) a unique and stable solution in the Fréchet space D(K−∞).
Consider the energetic space EK∞ of K∞ whose norms are of the form

[x]′n = (K∞x, x)1/2
n =

(
(Kx, x) + (KK−1x,K−1x) + · · ·+

+(K−n+2x,K−n+1x)
)1/2

, n ∈ N. (21)

For an approximative solution of equation (16) we use the Ritz’s extended
method in the space EK∞ . The coefficients of an approximative solution
um =

∑m
k=1 akϕk are defined from the following system of equations

m∑

k=1

ai[ϕk, ϕi]′r = (f, ϕk)r, i = 1, 2, . . . , m, r ∈ N.

By calculations we find that um has the form

um =
m∑

k=1

(f, ϕk)
(
(ϕk, ϕk)λk

)−1
ϕk. (22)

This means that the subspace Ker I admits an orthogonal complement sub-
space in the Fréchet space D(K−∞).

Let I(f) = [L1(f), L2(f), . . . , Lm(f)] be a nonadaptive information of
the cardinality m on D(K−∞), where Li(f) = (f, ϕi), Ker I is a finite-
codimensional subspace in D(K−∞), Ker I⊥ = span{ϕ1, ϕ2, . . . , ϕm} and
y = I(f). The generalized spline σ interpolating y has the form σ =∑m

k=1(f, ϕk)ϕk. The solution operator for the equation K∞u = f is S =
(K∞)−1 = K−∞ and it realizes isomorphism of the space D(K−∞) onto
itself. In addition,

S(σ) =
m∑

k=1

(f, ϕk)Sϕk =
m∑

k=1

(f, ϕk)(K∞)−1ϕk =
m∑

k=1

(f, ϕk)(K−∞)ϕk =

=
m∑

k=1

λ−1
k (f, ϕk)ϕk = um,

since

K−∞(ϕk) =
{
K−1ϕk,K−2ϕk, . . . , K−nϕk, . . .

}
=

= λ−1
k

{
ϕk, K−1ϕk, . . . , K−1ϕk, . . .

}
= λ−1

k ϕk.

S(σ) = um is also the best approximation of Sf = (K∞)−1f in the subspace
Ker I⊥ with respect to the energetic norms [·]′n of the energetic space EK∞ of
the operator K∞, i.e., the subspace Ker I admits an orthogonal complement
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subspace in the Fréchet space EK∞ . According to part b) of Theorem 2,
this generalized spline algorithm is linear and generalized central. From the
above reasoning follows

Theorem 4. Let K be a selfadjoint positive operator in the Hilbert
space H with an orthogonal sequence of eigenfunctions ϕj. Let λj be the
eigenvalues corresponding to the eigenfunctions ϕj and um be defined by
(22). Then the algorithm ϕs(I(f)) = um is a linear generalized spline
and generalized central for the solution operator S = K−1

∞ and information
I(f) = [(f, ϕ1), (f, ϕ2), . . . , (f, ϕm)]. Moreover, the sequence of approximate
solutions {um} converges to the solution of equation (20) in the energetic
space EK∞ of the operator K∞.

We will now give a few examples of selfadjoint and positive definite opera-
tors in the Hilbert space for which the operator K−∞ satisfies the conditions
of Theorem 2.

1. The inverse of the harmonic oscillator operator. For the
Hermitian operator (12), the selfadjoint and positive inverse operator K =
A−1 in L2]−∞,∞[ has the form

K(u) =
∞∑

k=1

(2k + 1)−1(f, ϕk)ϕk.

For this operator K, we consider the equation K∞(u) = f in the space
D(K−∞) = D(A∞) = S(R). In this case, the energetic space EK∞ of K∞
is S(R). For the generalized spline σ interpolating y the generalized spline
algorithm

∑m
k=1(2k+1)(f, ϕk)ϕk = um. According to part b) of Theorem 2,

this algorithm is linear and generalized central in the space EK∞ with the
sequence of energetic norms (17).

2. Integral equations of the first kind.
2.1. Consider the following integral equation of the first kind:

K(u) =

b∫

a

K(s, t)u(s)ds = f(t), (23)

where

K(s, t) =

{
(s− a)(t− b)(a− b)−1, a ≤ s ≤ t ≤ b,

(t− a)(s− b)(a− b)−1, a ≤ t ≤ s ≤ b.

It is well-known,what K(s, t) is the Green’s function for the symmetric
and positive definite operator A = −d2/dt2 in the Hilbert space L2[a, b]
with the boundary conditions u(a) = u(b) = 0. D(A) is the set of func-
tions having absolutely continuous first order derivatives and second order
quadratically summable derivatives on [a,b]. D(A∞) consists of the func-
tions having infinite order quadratically summable derivatives on [a, b]. This
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space contains a countable normed infinite order Sobolev space W∞[a, b]
[15]. The operator K∞, i.e., the restriction of the integral operator K on
the space D(A∞) = D(K−∞), is a topological isomorphism onto and the
equation (20) has a unique and stable solution. The eigenvalues and the
corresponding orthonormal eigenfunctions of A are λk = k2π2/(b− a)2 and

ϕk(t) =
√

2
b−a sin πk(t−a)

b−a , k ∈ N. An approximate solution of the equation
(20) has the following form:

um(t) =
m∑

k=1

2k2π2

(b− a)3
sin

πk(t− a)
b− a

b∫

a

f(s) sin
πk(s− a)

b− a
ds.

The sequence {um} converges in the space EK∞ = D(K−∞) to the solu-
tion of the equation (20). For that sequence the above reasoning is valid,
and according to Theorem 4, this generalized spline algorithm is linear and
generalized central one.

2.2. Consider the integral equation of the first kind (23), where

K(s, t) =

{
(es + e2a−s)(et + e2b−t)2−1(e2b − e2a)−1, a ≤ s ≤ t ≤ b,

(et + e2a−t)(es + e2b−s)2−1(e2b − e2a)−1, a ≤ t ≤ s ≤ b.

It is well-known what K(s, t) is the Green’s function for the symmetric and
positive operator Au = −d2u/dt2 + u in the Hilbert space L2[a, b] with the
boundary conditions u′(a) = u′(b) = 0. D(A) is the set of functions hav-
ing absolutely continuous first order derivatives and second order quadrat-
ically summable derivatives on [a,b]. D(A∞) consists of functions having
infinite order quadratically summable derivatives on [a, b]. This space con-
tains countable normed infinite order Sobolev space W∞[a, b] [15]. The
operator K∞, i.e., the restriction of the integral operator K on the space
D(A∞) = D(K−∞), is a topological isomorphism onto and the equation
(20) has a unique and stable solution. The eigenvalues and the corre-
sponding orthonormal eigenfunctions of A are λk = 1 + k2π2/(b − a)2 and

ϕk(t) =
√

2
b−a cos πk(t−a)

b−a , k ∈ N. An approximate solution of the equation
(23) has the following form

um(t) =
m∑

k=1

(
1 +

k2π2

(b− a)2

)
2

b− a
cos

πk(t− a)
b− a

b∫

a

f(s) cos
πk(s− a)

b− a
ds.

The sequence {um} converges in the space EK∞ to the solution of the equa-
tion (20). For this sequence the above reasoning is valid, and according
to Theorem 4, this generalized spline algorithm is linear and generalized
central one.
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2.3. Consider the integral equation (23), where a = −∞, b = +∞ and

K(s, t) =




−π−1/2I(−∞, s)I(t,∞) exp

s2 + t2

2
, s ≤ t,

−π−1/2I(s,∞)I(−∞, t) exp
s2 + t2

2
, s ≥ t,

where I(u, v) =
∫∞
−∞ e−t2dt. It is well-known what K(s, t) is the Green’s

function for the symmetric and positive definite degenerate hypergeomet-
rical operator Au(t) = −d2u/dt2 + (t2 + 1)u in the Hilbert space L2[a, b]
with the boundary conditions u(−∞) = u(∞) = 0. D(A) is the set of
functions having absolutely continuous first order derivatives and second
order quadratically summable derivatives on (−∞,∞). D(A∞) consists of
the functions having infinite order quadratically summable derivatives on
R =]−∞,∞[. This space contains countable normed infinite order Sobolev
space W∞

0 (R) [15]. The operator K∞, i.e., the restriction of the integral
operator K on the space D(A∞) = D(K−∞), is a topological isomorphism
onto and the equation (20) has a unique and stable solution. The eigen-
values and the corresponding orthonormal eigen-functions of A are λk = 2k

and ϕk(t) = (−1)k−1(k−1)−1/4((k−1)!)−1/2π−1/421−ket2/2 dk−1e−t2

dtk−1 , k ∈ N.
Using these functions ϕk, we can construct an approximate solution of the
equation (23) of the form

um(t) = 2
m∑

k=1

k

∞∫

−∞
f(s)ϕk(s)dsϕk(t).

The sequence {um} converges in the space EK∞ to the solution of the equa-
tion (20). For that sequence the above reasoning is also valid, and according
to Theorem 2, this generalized spline algorithm is linear and generalized
central one.
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