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LOCALIZED BOUNDARY-DOMAIN INTEGRAL
EQUATIONS APPROACH FOR DIRICHLET PROBLEM

FOR SECOND ORDER STRONGLY ELLIPTIC SYSTEMS
WITH VARIABLE COEFFICIENTS

O. CHKADUA, S. MIKHAILOV AND D. NATROSHVILI

Abstract. Employing a localized parametrix the Dirichlet boundary
value problem for second order strongly elliptic systems with vari-
able coefficients is reduced to a localized boundary-domain integral
equations (LBDIE) system. The equivalence between the Dirichlet
problem and the LBDIE system is studied. It is established that the
localized boundary-domain integral operator obtained in the paper
belongs to the Boutet de Monvel algebra. The Fredholm property of
this operator and its invertibility are investigated by the Wiener-Hopf
factorization method.

îâäæñéâ. èëçŽèæäâĲñèæ ìŽîŽéâðîæóïæï éâåëáæï àŽéëõâêâĲæå
áæîæýèâï ïŽïŽäôãîë ŽéëùŽêŽ éâëîâ îæàæï ùãèŽáçëâòæùæâêðâ-
ĲæŽêæ úèæâîŽá âèæòïñîæ ïæïðâéâĲæïŽåãæï áŽõãŽêæèæŽ èëçŽèæäâ-
Ĳñè ïŽïŽäôãîë-ïæãîùñè æêðâàîŽèñî àŽêðëèâĲŽåŽ ïæïðâéŽäâ.
öâïûŽãèæèæŽ áæîæýèâï ïŽïŽäôãîë ŽéëùŽêæïŽ áŽ éæôâĲñè èë-
çŽèæäâĲñè ïŽïŽäôãîë-ïæãîùñè æêðâàîŽèñî àŽêðëèâĲŽåŽ ïæï-
ðâéæï âçãæãŽèâêðëĲŽ. êŽøãâêâĲæŽ, îëé èëçŽèæäâĲñè ïŽïŽäôãîë-
ïæãîùñè æêðâàîŽèñî àŽêðëèâĲŽåŽ ïæïðâéæå ûŽîéëöëĲæèæ ëìâ-
îŽðëîæ âçñåãêæï Ĳñðâ áâ éëêãâèæï ŽèàâĲîŽï. àŽéëçãèâñèæŽ Žé
ëìâîŽðëîæï òîâáßëèéñîëĲŽ áŽ áŽáàâêæèæŽ éæïæ öâĲîñêâĲŽáë-
ĲŽ ãæêâî-ßëòæï òŽóðëîæäŽùææï éâåëáæå.

1. Introduction

We consider the Dirichlet boundary-value problem (BVP) for second or-
der strongly elliptic systems of partial differential equations in the diver-
gence form with variable coefficients and develop the generalized potential
method based on the localized parametrix method.

The BVP treated in the paper is well investigated in the scientific liter-
ature by the variational and also by the usual classical potential methods
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when the corresponding fundamental solution is available in explicit form
(see, e.g., [13], [16], [17], [21]).

Our goal here is to show that solutions of the problem can be represented
by localized potentials and that the corresponding localized boundary-domain
integral operator (LBDIO) is invertible, which seems very important from
the point of view of numerical analysis, since they lead to very convenient
numerical schemes in applications (for details see [18], [24], [25], [26], [27],
[20]).

By means of the localized layer and volume potentials we reduce the
Dirichlet BVP to the localized boundary-domain integral equations (LBDIE)
system. First we establish the equivalence between the original boundary
value problem and the corresponding LBDIEs system which proved to be a
quite nontrivial problem and plays a crucial role in our analysis.

Afterwards we establish that the localized boundary domain integral
operator obtained belongs to the Boutet de Monvel algebra of pseudo-
differential operators and with the help of the Vishik-Eskin theory, based on
the factorization method (Wiener-Hopf method), we investigate correspond-
ing Fredholm properties and prove invertibility of the localized operator in
appropriate function spaces. This paper develops methods and results of
[4–11], [19].

2. Formulation of the Boundary Value Problems and
Localized Green’s Third Formula

Consider a uniformly strongly elliptic second order matrix partial differ-
ential operator

A(x, ∂x) =
[
Apq(x, ∂x)

]
3×3

=
[

∂

∂xk

(
apq

kj(x)
∂

∂xj

)]

3×3

, (2.1)

where ∂x = (∂1, ∂2, ∂3), ∂j = ∂xj = ∂/∂xj , apq
kj = aqp

jk = akq
pj ∈ C∞,

j, k, p, q = 1, 2, 3. Here and in what follows by repeated indices summa-
tion from 1 to 3 is meant if not otherwise stated.

We assume that the coefficients apq
kj are real and the quadratic from

apq
kj(x) ηkj ηpq is uniformly positive definite in R3 with respect to symmetric

variables ηkj = ηjk ∈ R, which implies that the principal homogeneous sym-
bol of the operator A(x, ∂x) with opposite sign, A(x, ξ) = [apq

kj(x)ξk ξj ]3×3 is
uniformly positive definite, i.e. there are positive constants c1 and c2 such
that

c1 |ξ|2|ζ|2≤
(
A(x, ξ)ζ , ζ

)≤c2 |ξ|2|ζ|2, ∀ x∈R3, ∀ ξ∈R3, ∀ ζ∈C3, (2.2)

where (· , ·) denotes the usual scalar product in C3.
Further, let Ω+ be a bounded domain in R3 with a simply connected

boundary ∂Ω+ = S ∈ C∞, Ω+ = Ω+ ∪ S. Throughout the paper n =
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(n1, n2, n3) denotes the unit normal vector to S directed outward with re-
spect to the domain Ω+. Set Ω− := R3 \ Ω+.

By Hr(Ω) = Hr
2 (Ω) and Hr(S) = Hr

2 (S), r ∈ R, we denote the Bessel
potential spaces on a domain Ω and on a closed manifold S without bound-
ary, while D(R3) stands for C∞ functions in R3 with compact support and
S(R3) denotes the Schwartz space of rapidly decreasing functions in R3.
Recall that H0(Ω) = L2(Ω) is a space of square integrable functions in Ω.

For a vector u = (u1, u2, u3)> the inclusion u = (u1, u2, u3)> ∈ Hr means
that each component uj belongs to the space Hr.

Let us denote u± ≡ {u}± = γ±u, where γ+ and γ− are the trace opera-
tors on S from the interior and exterior of Ω+ respectively.

We also need the following subspace of H1(Ω),

H1, 0(Ω; A) :=
{

u = (u1, u2, u3)> ∈ H1(Ω) : A(x, ∂)u ∈ H0(Ω)
}

. (2.3)

The Dirichlet boundary-value problem reads as follows.
Dirichlet problem: Find a vector-function u=(u1, u2, u3)>∈H1, 0(Ω+, A)

satisfying the differential equation

A(x, ∂x)u = f in Ω+ (2.4)

and the Dirichlet boundary condition

u+ = ϕ0 on S, (2.5)

where ϕ0 = (ϕ01 , ϕ02 , ϕ03)
> ∈ H1/2(S) and f = (f1, f2, f3)> ∈ H0(Ω+).

Equation (2.4) is understood in the distributional sense, while the Dirichlet-
type boundary condition (2.5) is understood in the usual trace sense.

Now, we introduce the co-normal derivative operator associated with the
differential operator A(x, ∂x),

T (x, ∂x) =
[
Tpq(x, ∂x)

]
3×3

:=
[

apq
kj(x)nk(x)

∂

∂xj

]

3×3

. (2.6)

Evidently, the co-normal derivative for a smooth vector-function u, say
u ∈ H2(Ω+), reads as follows

[
T±(x, ∂x) u(x)

]
p

:=
[ {T (x, ∂x)u(x)}± ]

p
:=

= apq
kj(x)nk(x) {∂xj uq(x)}±, x ∈ S, p = 1, 2, 3, (2.7)

which is understood in the usual traces sense.
Note that the co-normal derivative operator defined in (2) can be ex-

tended by continuity to the space H1, 0(Ω+;A) with the help of Green’s
first identity,

〈T+ u , g〉S :=
∫

Ω+

A(x, ∂x)u(x) v(x) dx+
∫

Ω+

E(u(x), v(x)) dx, (2.8)
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where E(u(x), v(x)) = apq
kj(x) ∂xj

uq(x) ∂xk
vp(x), g ∈ H1/2(S) is an arbi-

trary vector-function and v ∈ H1(Ω) is an extension of g from S onto the
whole of Ω+, i.e., v+ = g on S, while 〈· , ·〉S denotes the duality between the
adjoint spaces H− 1

2 (S) and H
1
2 (S) which extends the usual bilinear L2(S)

inner product. Clearly the definition (2.8) does not depend on the extension
operator.

Let us define the following class of cut-off functions (see[7]).

Definition 2.1. We say χ ∈ Xk for integer k ≥ 0 if χ(x) = χ̆(|x|),
χ̆ ∈ W k

1 (0,∞) and %χ̆(%) ∈ L1(0,∞). We say χ ∈ Xk
+ for integer k ≥ 1 if

χ ∈ Xk, χ(0) = 1 and σχ(ω) > 0 for all ω ∈ R, where

σχ(ω) :=





χ̂s(ω)
ω

> 0 for ω ∈ R \ {0},
∞∫

0

%χ̆ (%) d% for ω = 0,
(2.9)

and χ̂s(ω) denotes the sine-transform of the function χ̆

χ̂s(ω) :=

∞∫

0

χ̆ (%) sin(%ω) d%. (2.10)

We say χ ∈ Xk
1+ for integer k ≥ 1 if χ ∈ Xk

+ and

ωχ̂s(ω) ≤ 1, ∀ ω ∈ R. (2.11)

Evidently, we have the following imbeddings: Xk1 ⊂ Xk2 and Xk1
+ ⊂

Xk2
+ , Xk1

1+ ⊂ Xk2
1+ for k1 > k2. The class Xk

+ is defined in terms of the
sine-transform. The following lemma provides an easily verifiable sufficient
condition for non-negative non-increasing functions to belong to this class
(for details see [7]).

Lemma 2.2. Let k ≥ 1. If χ ∈ Xk, χ̆(0) = 1, χ̆(%) ≥ 0 for all % ∈ (0,∞),
and χ̆ is a non-increasing function on [0, +∞), then χ ∈ Xk

+.

The following examples for χ are presented in [7],

χ1(x) =

{ [
1− |x|

ε

]k

for |x| < ε,

0 for |x| ≥ ε,
(2.12)

χ2(x) =





exp
[ |x|2
|x|2 − ε2

]
for |x| < ε,

0 for |x| ≥ ε,
(2.13)

χ3(x) =





(
1− |x|

ε

)2 (
1− 2

|x|
ε

)
for |x| < ε,

0 for |x| ≥ ε.

(2.14)
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One can observe that χ1 ∈ Xk
+, while χ2 ∈ X∞

+ due to Lemma 2.2, and
χ3 ∈ X2

+. Moreover, χ1 ∈ Xk
1+ for k = 2 and k = 3, and χ3 ∈ X2

1+, while
χ1 6∈ X1

1+ and χ2 6∈ X∞
1+ (for details see [7]).

Define a localized matrix parametrix corresponding to the fundamental
solution function F1(x) := −[ 4 π |x| ]−1 of the Laplace operator, ∆ = ∂2

1 +
∂2
2 + ∂2

3 ,

P (x)≡Pχ(x) :=Fχ(x) I = χ(x)F1(x) I =− χ(x)
4 π |x| I with χ(0)=1, (2.15)

where Fχ(x) := χ(x)F1(x), I is the identity 3×3 matrix and χ is a localizing
function

χ ∈ Xk
+ , k ≥ 3. (2.16)

Throughout the paper we assume that the condition (2.16) is satisfied and
χ has a compact support if not otherwise stated.

Denote by B(y, ε) a ball centered at the point y and radius ε > 0 and let
Σ(y, ε) := ∂B(y, ε).

There holds Green’s second identity
∫

Ω+

[
v A(x, ∂)u−A(x, ∂)v u

]
dx =

∫

S

[{v}+{Tu}+−{Tv}+ {u}+]
dS (2.17)

for smooth vector-functions u and v, say u, v ∈ C2(Ω+).
Let us take in the role of v(x) successively the columns of the matrix

P (x − y), where y is an arbitrarily fixed interior point in Ω+, and write
the identity (2.17) for the region Ω+

ε := Ω+ \ B(y, ε) with ε > 0 such
that B(y, ε) ⊂ Ω+. Keeping in mind that P>(x − y) = P (x − y) and
[A(x, ∂x)P (x− y)]> = [A(x, ∂x)P (x− y)], we arrive at the equality,

∫

Ω+
ε

[
P (x− y) A(x, ∂x)u(x)−A(x, ∂x)P (x− y) u(x)

]
dx =

=
∫

S

[
P (x− y) {T (x, ∂x)u(x)}+−{T (x, ∂x)P (x− y)}>{u(x)}+]

dS−

−
∫

Σ(y,ε)

[
P (x−y)T (x, ∂x)u(x)−{T (x, ∂x)P (x−y)}>u(x)

]
dΣ(y, ε). (2.18)

The direction of the normal vector on Σ(y, ε) is chosen as outward.
It is clear that the operator

Au(y) := lim
ε→0

∫

Ω+
ε

[ A(x, ∂)P (x− y) ] u(x) dx =
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=v.p.

∫

Ω+

[ A(x, ∂x)P (x− y) ] u(x) dx (2.19)

is a singular integral operator,“v.p” means the Cauchy principal value inte-
gral. If the domain of integration in (2.19) is the whole space R3, we employ
the notation Au ≡ Au, i.e.,

Au(y) := v.p.

∫

R3

[A(x, ∂x)P (x− y) ] u(x) dx , (2.20)

[
A(x, ∂x)P (x− y)]pq =

= bpq(x) δ(x− y)+v.p.

[
− apq

kj(x)
4 π

∂2

∂xk ∂xj

1
|x− y|

]
+Rpq(x, y) (2.21)

=bpq(y) δ(x− y) + v.p.

[
− apq

kj(y)
4 π

∂2

∂xk ∂xj

1
|x− y|

]
+R(1)

pq (x, y), (2.22)

where

b(x) = [bpq(x) ]3×3 =
1
3

[ apq
kj(x)δkj ]3×3 =

1
3

[ apq
kk(x) ]3×3 =

=
1
3

[ apq
11(x) + apq

22(x) + apq
33(x) ]3×3, (2.23)

R(x, y) = [Rpq(x, y)]3×3 , R1(x, y) = [R(1)
pq (x, y)]3×3, (2.24)

Rpq(x, y) := −apq
kj(x)
4π

{[
χ(x− y)− 1

] ∂2

∂xk∂xj

1
|x− y|+

+
∂2χ(x− y)

∂xk∂xj

1
|x− y| + 2

∂χ(x−y)
∂xj

∂

∂xk

1
|x−y|

}
−

− 1
4π

∂apq
kj(x)
∂xk

[
∂χ(x−y)

∂xj

1
|x−y|+χ(x−y)

∂

∂xj

1
|x−y|

]
, (2.25)

R(1)
pq (x, y) := Rpq(x, y)− apq

kj(x)− apq
kj(y)

4 π

∂2

∂xk ∂xj

1
|x− y| , (2.26)

p, q = 1, 2, 3.

Clearly the entries of the matrix-functions R(x, y) and R(1)(x, y) possess
weak singularities of type O(|x− y|−2) as x → y.

Further, by direct calculations one can easily verify that

lim
ε→0

∫

Σ(y,ε)

P (x− y) T (x, ∂x)u(x) dΣ(y, ε) = 0, (2.27)

lim
ε→0

∫

Σ(y,ε)

{T (x, ∂x)P (x− y)}u(x) dΣ(y, ε) =
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=
[apq

kj(y)
4 π

∫

Σ1

ηk ηj dΣ1

]
3×3

u(y) =

=
[apq

kj(y)
4 π

4 π δkj

3

]
3×3

u(y) = b(y) u(y), (2.28)

where Σ1 is a unit sphere, η = (η1, η2, η3) ∈ Σ1 and b is defined by (2.23).
Passing to the limit in (2.18) as ε → 0 and using the relations (2.19),

(2.27), and (2.28) we obtain

b(y) u(y) +Au(y)− V (T+u)(y) + W (u+)(y) = P(
A(x, ∂x)u

)
(y), (2.29)

y ∈ Ω+,

where A is a localized singular integral operator given by (2.19), while V ,
W , and P are the localized single layer, double layer and Newtonian volume
potentials,

V (g)(y) := −
∫

S

P (x− y) g(x) dSx, (2.30)

W (g)(y) := −
∫

S

[
T (x, ∂x) P (x− y)

]
g(x) dSx, (2.31)

P(h)(y) :=
∫

Ω+

P (x− y)h(x) dx. (2.32)

If the domain of integration in the Newtonian volume potential (2.32) is the
whole space R3, we employ the notation P h ≡ Ph, i.e.,

P(h)(y) :=
∫

R3

P (x− y)h(x) dx. (2.33)

Mapping properties of the above potentials are investigated in [7].
Denote by `0 the extension operator by zero from Ω+ onto Ω−. It is

evident that for a function u ∈ H1(Ω+) we have
(Au

)
(y) =

(
A`0u

)
(y) for y ∈ Ω+.

Now we rewrite Green’s third formula (2.29) in a more convenient form for
our further purposes

[b+A]`0u (y)−V (T+u)(y)+W (u+)(y)=P(
A(x, ∂x)u

)
(y), y ∈ Ω+. (2.34)

The principal homogeneous symbols of the singular integral operators A
and b + A read as

S0(A)(y, ξ) = |ξ|−2A(y, ξ)− b ∀ y ∈ Ω+, ∀ ξ ∈ R3 \ {0}, (2.35)

S0(b + A)(y, ξ) = |ξ|−2A(y, ξ) ∀ y ∈ Ω+, ∀ ξ ∈ R3 \ {0}. (2.36)
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It is evident that the symbol matrix (2.36) is positive definite due to (2.2),
(
S0(b + A)(y, ξ) ζ, ζ

)
= |ξ|−2

(
A(y, ξ) ζ, ζ

) ≥ c1 |ζ|2, (2.37)

∀ y ∈ Ω+, ∀ ξ ∈ R3 \ {0}, ∀ ζ ∈ C3, (2.38)

where c1 is the same positive constant as in (2.2).
Using the properties of localized potentials and taking the trace of equa-

tion (2.34) on S we arrive at the relation:

A+`0u− V(T+u) + (b− µ) u+ +W(u+) = P+
(
A(x, ∂x)u

)
on S, (2.39)

where the localized boundary integral operators V and W are direct values
of the localized single and double layer potentials and µ is the following
matrix

µ(y) = [µpq(y)]3×3 :=
1
2

[
apq

kj(y)nk(y)nj(y)
]
3×3

, y ∈ S, (2.40)

which is positive definite due to (2.2), while

A+`0u ≡ γ+A`0u := {A `0u }+ on S, (2.41)
P+(f) ≡ γ+P(f) := {P(f)}+ on S. (2.42)

Now, we are in the position to reduce the above formulate Dirichlet bound-
ary value problem to the LBDIEs system equivalently.

3. LBDIE Formulation of the Dirichlet Problem and the
Equivalence Theorem

Let u ∈ H1,0(Ω+, A) be a solution to the Dirichlet BVP (2.4)–(2.5) with
ϕ0 ∈ H

1
2 (S) and f ∈ H0(Ω+). As we have derived above there hold the

relations (2.34) and (2.39), which now can be rewritten in the form

[b + A ] `0u− V (ψ) = P(f)−W (ϕ0) in Ω+, (3.1)

A+`0u− V(ψ) = P+(f)− (b− µ)ϕ0 −W(ϕ0) on S, (3.2)

where ψ := T+u ∈ H− 1
2 (S) and µ is defined by (2.40).

One can consider these relations as the LBDIEs system with respect to
the unknown vector-functions u and ψ. The following equivalence theorem
holds.

Theorem 3.1. The Dirichlet boundary value problem (2.4)–(2.5) is
equivalent to LBDIEs system (3.1)–(3.2) in the following sense:

(i) If a vector-function u ∈ H1, 0(Ω+, A) solves the Dirichlet BVP (2.4)–
(2.5), then it is unique and the pair (u, ψ) ∈ H1, 0(Ω+, A)×H− 1

2 (S) with

ψ = T+u , (3.3)

solves the LBDIEs system (3.1)–(3.2) and, vice versa,
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(ii) If a pair (u, ψ) ∈ H1, 0(Ω+, A)×H− 1
2 (S) solves the LBDIEs system

(3.1)–(3.2), then it is unique and the vector-function u solves the Dirichlet
BVP (2.4)–(2.5), and relation (3.3) holds.

4. Invertibility of the Dirichlet LBDIO

From Theorem 3.1 it follows that the LBDIEs system (3.1)–(3.2), which
has a special right hand side, is uniquely solvable in the class H1, 0(Ω+, A)×
H−1/2(S). Let us investigate the localized boundary-domain integral opera-
tor generated by the left hand side expressions in (3.1)–(3.2) in appropriate
functional spaces.

The LBDIEs system (3.1)–(3.2) with an arbitrary right hand side vector-
functions from the space H1(Ω+)×H1/2(S) can be written as

(b + A)`0u − V ψ = F1 in Ω+, (4.1)

A+`0u− Vψ = F2 on S, (4.2)

where F1 ∈ H1(Ω+) and F2 ∈ H1/2(S).
Denote

B := (b + A). (4.3)

Evidently, the principal homogeneous symbol matrix of the operator B reads
as (see (2.36))

S0(B)(y, ξ) = |ξ|−2A(y, ξ) for y ∈ Ω+, ξ ∈ R3 \ {0}, (4.4)

is even rational homogeneous matrix-function of order 0 in ξ and due to
(2.2) it is positive definite,

(
S0(B)(y, ξ)ζ, ζ

) ≥ c1 |ζ|2 for all y ∈ Ω+, ξ ∈ R3 \ {0}andζ ∈ C3.

Consequently, B is a strongly elliptic pseudodifferential operator of zero
order (i.e., singular integral operator) and the partial indices of factorization
of the symbol (4.4) equal to zero (cf. [23], [2], [3]).

Since (4.4) is a rational matrix-function in ξ, we can apply the theory of
pseudodifferential operators with symbol satisfying the transmission condi-
tions (see [12], [1], [22], [2], [23]).

We need some auxiliary assertions in our further analysis. To formulate
them, let y0 ∈ ∂Ω+ be some fixed point and consider the frozen symbol
S0(B)(y0, ξ) ≡ S0(B)(ξ). Further, let B̂ denote the pseudodifferential
operator with the symbol

Ŝ0(B)(ξ ′, ξ3) := S0(B)
(
(1 + |ξ ′|)ω, ξ3

)

with ω =
ξ ′

|ξ ′| , ξ = (ξ ′, ξ3), ξ ′ = (ξ1, ξ2).
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The principal homogeneous symbol matrix S0(B)(ξ) of the operator B̂ can
be factorized with respect to the variable ξ3 as:

S0(B)(ξ) = S−(B)(ξ) S+(B)(ξ), (4.5)

where

S±(B)(ξ) =
1

ξ3 ± i |ξ ′| A
±(ξ ′, ξ3),

A±(ξ ′, ξ3) are the “plus” and “minus” polynomial matrix factors of the first
order in ξ3 of the positive definite polynomial symbol matrix A(ξ ′, ξ3) ≡
A(y0, ξ

′, ξ3) (see [12], [14], [15]), i.e.

A(ξ ′, ξ3) = A−(ξ ′, ξ3) A+(ξ ′, ξ3) (4.6)

with det A+(ξ ′, τ) 6= 0 for Reτ > 0 and detA−(ξ ′, τ) 6= 0 for Reτ < 0.
Moreover, the entries of the matrices A±(ξ ′, ξ3) are homogeneous functions
in ξ = (ξ ′, ξ3) of order 1.

Denote, by a±(ξ ′) the coefficients at ξ3
3 in the determinants det A±(ξ ′, ξ3).

Evidently,

a−(ξ ′) a+(ξ ′) = det A(0, 0, 1) > 0 for ξ ′ 6= 0. (4.7)

It is easy to see that the factor-matrices A±(ξ ′, ξ3) have the following
structure

[
A±(ξ ′, ξ3)

]−1 =
1

det A±(ξ ′, ξ3)
[ p±

ij
(ξ ′, ξ3) ]3×3, (4.8)

where p±
ij

(ξ ′, ξ3) are the co-factors of the matrix A±(ξ ′, ξ3), which can be
written in the form

p±
ij

(ξ ′, ξ3) = c±
ij

(ξ ′) ξ2
3 + b±

ij
(ξ ′) ξ3 + d±

ij
(ξ ′). (4.9)

Here c±
ij

, b±
ij

and d±
ij

, i, j = 1, 2, 3, are homogeneous functions in ξ ′ of
order 0, 1, and 2, respectively.

The following assertions hold.

Lemma 4.1. Let `0 be the extension operator by zero from R3
+ onto the

half-space R3
−. The operator

rR3+
B̂`0 : Hs(R3

+) → Hs(R3
+)

is invertible for all s ≥ 0.

Lemma 4.2. Let the factor matrix A+(ξ ′, τ) be as in (4.6), and a+ and
c+

ij
be as in (4.7) and (4.9) respectively. Then the following equality holds

1
2πi

∫

γ−

[
A+(ξ ′, τ)

]−1
dτ =

1
a+(ξ ′)

[
c+

ij
(ξ ′)

]
3×3

, (4.10)
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and

det [ c+
ij

(ξ ′) ]3×3 6= 0 for ξ ′ 6= 0. (4.11)

Here γ− is a contour in the lower complex half-plane enclosing all the roots
of the polynomial det A+(ξ ′, τ) with respect to τ .

Denote by A the localized boundary-domain integral operator generated
by the left hand side expressions in LBDIEs system (4.1)–(4.2) as

D :=

[
r
Ω+B`0 −r

Ω+ V

A+`0 −V

]
.

The following theorem holds.

Theorem 4.3. Let a cut-off function χ ∈ X∞
+ and r ≥ 0. Then the

following operator

D : Hr+1(Ω+)×Hr−1/2(S) → Hr+1(Ω+)×Hr+1/2(S) (4.12)

is invertible.

Corollary 4.4. Let a cut-off function χ ∈ X3
+. Then the operator

D : H1(Ω+)×H−1/2(S) → H1(Ω+)×H1/2(S)

is invertible.

Acknowledgements

This research was supported by the EPSRC grant No EP/H020497/1:
“Mathematical Analysis of Localized Boundary-Domain Integral Equations
for Variable-Coefficient Boundary Value Problems”.

References

1. L. Boutet de Monvel, Boundary problems for pseudo-differential operators. Acta
Math. 126 (1971), No. 1-2, 11–51.

2. A. V. Brener and E. Shargorodsky, Boundary value problems for elliptic pseudodif-
ferential operators. Encyclopaedia of Math. Sci., Springer-Verlag, Berlin-Heidelberg
79 (1997), No. 9, 145–215.

3. O. Chkadua and R. Duduchava, Pseudodifferential equations on manifolds with
boundary: Fredholm property and asymptotic. Math. Nachr. 222 (2001), 79–139.

4. O. Chkadua, S. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain
integral equations for a mixed BVP with variable coefficient. I. Equivalence and
invertibility. J. Integral Equations Appl. 21 (2009), No. 4, 499–543.

5. O. Chkadua, S. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain
integral equations for a mixed BVP with variable coefficient. II. Solution regularity
and asymptotics. J. Integral Equations Appl. 22 (2010), No. 1, 19–37.

6. O. Chkadua, S. Mikhailov and D. Natroshvili, About analysis of some localized
boundary-domain integral equations for a variable-coefficient BVP. In: Advances
in Boundary Integral Methods. Proceedings of the 6th UK Conference on Boundary
Integral Methods, Durham University Publ., UK (2007), 291–302.



22 O. CHKADUA, S. MIKHAILOV AND D. NATROSHVILI

7. O. Chkadua, S. Mikhailov and D. Natroshvili, Analysis of some localized boundary-
domain integral equations. J. Integral Equations Appl. 21 (2009), No. 3, 405–445.

8. O. Chkadua, S. Mikhailov and D. Natroshvili, Analysis of some boundary-domain in-
tegral equations for variable-coefficient problems with cracks. In: Advances in Bound-
ary Integral Methods. Proceedings of the 7th UK Conference on Boundary Integral
Methods, Nottingham University Publ., UK (2009), 37–51.

9. O. Chkadua, S. Mikhailov and D. Natroshvili, Localized boundary-domain integral
equations for Dirichlet problem for second order elliptic equations with matrix vari-
able coefficients. In: Proceedings of the 8th UK Conference on Boundary Integral
Methods, Leeds University Publ., UK (2011), 19–126.

10. O. Chkadua, S. Mikhailov and D. Natroshvili, Analysis of segregated boundary-
domain integral equations for variable-coefficient with cracks. Numer. Methods Par-
tial Differ. Equations 27 (2011), No. 1, 121–140.

11. O. Chkadua, S. Mikhailov and D. Natroshvili, Localized direct segregated boundary-
domain integral equations for variable-coefficient transmission problem interface with
crack. Memoirs Diff. Equations Math. Physics (Dedicated to the 120-th birthday
anniversary of academicien N. Muskhelishvili), 52 (2011), 17–64.

12. G. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. Transl.
of Mathem. Monographs, Amer. Math. Soc. Providence, Rhode Island 52, 1981.

13. G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Applied Mathemat-
ical Sciences, Springer-Verlag, Berlin-Heidelberg, 2008.

14. L. Ephremidze, An elementary proof of the polynomial matrix spectral factorization
theorem, preprint, http://arxiv.org/abs/1011.3777v1, 2010.

15. L. Ephremidze, G. Janashia and E. Lagvilava, A simple proof of matrix-valued Fejér-
Riesz theorem, J. Fourier Anal. Appl. 15 (2009), No. 1, 124–127.

16. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and appli-
cations. Vol. I. (Translated from the French) Die Grundlehren der mathematischen
Wissenschaften, Band 181. Springer-Verlag, New York–Heidelberg, 1972.

17. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge
University Press, Cambridge, 2000.

18. S. Mikhailov, Localized boundary-domain integral formulation for problems with
variable coefficients. Int. J. Engineering Analysis with Boundary Elements 26 (2002),
681–690.

19. S. E. Mikhailov, Analysis of united boundary-domain integro-differential and integral
equations for a mixed BVP with variable coefficient. Math. Methods Appl. Sci. 29
(2006), No. 6, 715–739.

20. S. E. Mikhailov and I. S. Nakhova, Mesh-based numerical implementation of the
localized boundary-domain integral equation method to a variable-coeffocient Neu-
mann problem. J. Engrg. Math. 51 (2005), No. 3, 251–259.

21. C. Miranda, Partial differential equations of elliptic type. Second revised edition.
(Translated from the Italian) Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 2. Springer-Verlag, New York–Berlin, 1970.

22. S. Rempel and B.-W. Schulze, Index theory of elliptic boundary problems. Akademie-
Verlag Berlin, 1982.

23. E. Shargorodsky, An Lp-Analogue of the Vishik-Eskin Theory. Mem. Differential
Equations Math. Phys. 2 (1994), 41–146.

24. J. Sladek, V. Sladek and S. N. Atluri, Local boundary integral equation (LBIE)
method for solving problems of elasticity with nonhomogeneous material properties.
Comput. Mech. 24 (2000), No. 6, 456–462.

25. A. E. Taigbenu, The Green element method. Kluwer, Academic Publishers, Dor-
drecht/Boston/London, 1999.



LOCALIZED BOUNDARY-DOMAIN INTEGRAL 23

26. T. Zhu, J.-D. Zhang and S. N. Atluri, A local boundary integral equation (LBIE)
method in computational mechanics, and a meshless discretization approach. Com-
put. Mech. 21 (1998), No. 3, 223–235.

27. T. Zhu, J.-D. Zhang and S. N. Atluri, A meshless numerical method based on the
local boundary integral equation (LBIE) to solve linear and non-linear boundary
value problems. Eng. Anal. Bound. Elem. 23 (1999), No. 5–6, 375–389.

(Received 16.02.2012)

Authors’ addresses:

O. Chkadua
Iv. Javakhishvili Tbilisi State University
A. Razmadze Mathematical Institute
2, University str., Tbilisi 0186, Georgia

Sokhumi State University
9, Anna Politkovskaia str., Tbilisi 0186, Georgia
E-mail: chkadua7@yahoo.com

S. Mikhailov
Department of Mathematics, Brunel University
Uxbridge, UB8 3PH, UK
E-mail: sergey.mikhailov@brunel.ac.uk

D. Natroshvili
Department of Mathematics, Georgian Technical University
77, M. Kostava str., Tbilisi 0175, Georgia
E-mail: natrosh@hotmail.com


