
Proceedings of A. Razmadze
Mathematical Institute
Vol. 156 (2011), 1–15

A HIERARCHY OF SINGULAR INTEGRAL OPERATORS
FOR MIXED BOUNDARY VALUE PROBLEMS

Ü. AKSOY AND A. O. ÇELEBİ

Abstract. A class of integral operators having a hierarchy of poly-
harmonic kernels is introduced and some properties are derived. It-
erated mixed boundary value problems for complex model equations
and linear elliptic complex partial differential equations are discussed
in the unit disc of the complex plane.

îâäæñéâ. ûŽîéëáàâêæèæŽ æêðâàîŽèñîæ ëìâîŽðëîâĲæï çèŽïæ
ìëèæßŽîéëêæñèæ àñèâĲæå áŽ áŽáàâêæèæŽ éŽåæ äëàæâîåæ åãæ-
ïâĲŽ. çëéìèâóïñîæ ïæĲîðõæï âîåâñèëãŽê ûîâäâ àŽêýæèñèæŽ çë-
éìèâóïñîæ ðæìæï æðâîŽùæñèæ öâîâñèæ áŽ ûîòæãæ âèæòïñîæ çë-
ìèâóïñîæ çâîúë ûŽîéëâĲñèâĲæŽêæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæ.

1. Introduction

Complex analytic methods for partial differential equations were devel-
oped by N. Muskhelishvili, I. N. Vekua, L. Bers, and others in the 1930’s and
1940’s. These methods has been applied extensively to the mathematical
physics, elasticity theory [31] and shell theory on the treatment of elliptic
systems.

In complex analysis, there are two important boundary value problems
namely, Riemann and Riemann-Hilbert boundary value problems. For an-
alytic functions fundamental investigations were done by N. Muskhelishvili
and F. D. Gakhov. The classical theory of these problems for generalized
analytic functions are contained in the books of N. I. Muskhelishvili [31], F.
D. Gakhov [27], I. N. Vekua [34] and L. Bers [24], see also [11, 28, 29, 30, 33].
For systems in several complex variables, see [13]. Riemann and Riemann-
Hilbert boundary value problems are investigated for generalized Beltrami
equation too, [11, 10, 8, 9, 12, 25, 26, 33, 34, 35]. Singular integral operators
play important roles in the theory of generalized analytic functions. Their
properties were extensively studied by Vekua [34]. H. Begehr and G. N.
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Hile investigated a hierarchy of integral operators and their applications to
the boundary value problems in [14].

In recent years, particular cases of these problems, called as Dirichlet,
Neumann, Schwarz and Robin problems, are considered for some complex
model equations, including Cauchy-Riemann, Poisson, higher-order Pois-
son, polyanalytic equations, see [11, 16, 22, 23, 18, 17], and also some gen-
eral complex linear elliptic partial differential equations [2, 3, 4, 5]. These
problems are closely related with the theory of singular integral equations
developed by N. I. Muskhelishvili [31, 32]. In last studies, there has been an
increasing interest on the mixed boundary value problems. Begehr consid-
ered these type of problems for bi-Poisson equation, [19, 21]. In [6], some
particular mixed problems are considered for higher order Poisson and gen-
eralized n-Poisson equations.

In this paper, we are concerned with the mixed type iterated boundary
value problems, firstly for arbitrary higher-order model equations. In this
case, the given equations may be reduced into a coupled system of equations
with polyanalytic and polyharmonic operators as principal parts. Then, we
investigate the conditions on solvabilities of iterated mixed type boundary
value problems for linear elliptic complex partial differential equations of
arbitrary order. For this purpose, we will introduce a hierarchy of poly-
harmonic Green-type functions defined by an iterative technique which was
left as an open problem by H. Begehr [20], because of the complexity of the
relevant combinatorial nature of the problem. Since it is difficult to obtain
the explicit forms, we will give the polyharmonic kernel functions in an iter-
ative way. Then, using these kernel functions, we will define and investigate
the properties of a hierarchy of singular integral operators related to mixed
boundary value problems.

In the following section, we will give a short preliminary related with
the polyharmonic Green-type functions and their corresponding integral
operators existing in the literature. Section 3 is devoted to the hierarchy of
the iterated generalization of the polyharmonic kernel functions. In section
4, using the class of kernel functions defined in section 3, we give generalized
integral representation formulas for suitable differentiable functions. These
formulas will lead to the solutions of mixed boundary value problems that
are the combinations of Dirichlet, Neumann and Robin type conditions. In
section 5, mixed boundary value problems for higher order linear complex
partial differential equations will be investigated by introducing a class of
integral operators. We will use them to transform the original problem into
a singular integral equation. Solvability of the problem will be studied by
use of the Fredholm theory.



A HIERARCHY OF SINGULAR INTEGRAL OPERATORS 3

2. Preliminaries

2.1. Polyharmonic kernel functions. In the unit disc D harmonic Green,
Neumann and Robin functions are defined as

G1(z, ζ) = log
∣∣∣∣
1− zζ̄

ζ − z

∣∣∣∣
2

,

N1(z, ζ) = − log |(1− zζ)(ζ − z)|2,

R1(z, ζ) = log
∣∣∣∣
1− zζ̄

ζ − z

∣∣∣∣
2

− 2
[
log(1− zζ̄)

zζ̄
+

log(1− z̄ζ)
z̄ζ

+ 1
]
,

respectively, together with their properties in [21, 19].
Polyharmonic Green, Neumann, Robin functions

Gn(z, ζ) = − 1
π

∫∫

D

G1(z, ζ̃)Gn−1(ζ̃, ζ)dξ̃ dη̃,

Nn(z, ζ) = − 1
π

∫∫

D

N1(z, ζ̃)Nn−1(ζ̃, ζ)dξ̃ dη̃,

Rn(z, ζ) = − 1
π

∫∫

D

R1(z, ζ̃)Rn−1(ζ̃, ζ)dξ̃ dη̃

are given by Begehr et al [22, 18, 17, 23].
The higher order Poisson equation with Dirichlet conditions is investi-

gated by Begehr and Vaitekhovich in [22] and with Neumann conditions is
studied by Begehr and Vanegas in [18]. Particularly, for the inhomogeneous
biharmonic equation, analogous results are presented in [21, 19]. Robin
problem for inhomogeneous harmonic equation is treated in [21, 19, 23].
For the higher order Poisson operators the problem is studied by Begehr
and Harutyunyan [17]. In the cases n = 1 and n = 2, the explicit solutions
are given for the corresponding problems.

Apart from these, the iterations of harmonic Green, Neumann and Robin
functions in a mixed way lead to different hybrid polyharmonic Green-type
functions. In [5], convolution of the polyharmonic Green-Almansi function
G̃n,

G̃n(z, ζ) =
|ζ − z|2(n−1)

(n− 1)!2
log

∣∣∣∣
1− zζ̄

ζ − z

∣∣∣∣
2

−

−
n−1∑
µ=1

1
µ(n− 1)!2

|ζ − z|2(n−1−µ)(1− |z|2)µ(1− |ζ|2)µ (1)
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and polyharmonic Green function Gn(z, ζ) is defined by Green-m-Green
Almansi-n function Gm,n(z, ζ) for m ∈ N0, n ∈ N as

Gm,n(z, ζ) = − 1
π

∫∫

D

Gm(z, ζ̃)G̃n(ζ̃, ζ)dξ̃ dη̃ . (2)

Also, some other particular polyharmonic hybrid Green type functions
are obtained by convoluting Green, Neumann and Robin functions itera-
tively [6]. One of them is

Hm,n(z, ζ) = − 1
π

∫∫

D

Gm(z, ζ̃)Nn(ζ̃, ζ)dξ̃ dη̃.

2.2. Integral operators. To discuss the solvability of the equation

∂2nw

∂zn∂z̄n
+

∑
k+l=2n

k 6=l

(
q
(1)
kl (z)

∂2nw

∂zk∂z̄l
+ q

(2)
kl (z)

∂2nw

∂zk∂z̄l

)
+

+
∑

0≤k+l<2n

[
akl(z)

∂k+lw

∂z̄k∂zl
+ bkl(z)

∂k+lw

∂zk∂z̄l

]
= f(z) in D (3)

with proper boundary conditions, we need the following integral operators:
(i) Using Gm,n(z, ζ) and its derivatives with respect to z and z̄ as the

kernels, we define a class of integral operators

Gk,l
m,nf(z) := − 1

π

∫∫

D

∂k
z ∂l

z̄Gm,n−m(z, ζ)f(ζ)dξ d η

for m, k, l ∈ N0, n ∈ N with (k, l) 6= (n, n) and k + l ≤ 2n (see [5]). These
operators are related to the following (m,n)-type Dirichlet problems:

Find w ∈ W 2n,p(D) as a solution to (3) satisfying the Dirichlet conditions

(∂z∂z̄)µw = 0, 0 ≤ µ ≤ m− 1 on ∂D, (4)

(∂z∂z̄)µ+mw = 0, 0 ≤ 2µ ≤ n−m− 1 on ∂D, (5)

∂νz (∂z∂z̄)µ+mw = 0, 0 ≤ 2µ ≤ n−m− 2 on ∂D. (6)

(ii) For n ∈ N, k, l ∈ N0 with (k, l) 6= (n, n) and k+ l ≤ 2n, the operators
given by

Sn,k,lf(z) =
1
π

∫∫

D

∂k
z ∂l

z̄Nn(z, ζ)f(ζ)dξ dη

for a suitable complex valued function f given in D, are related to the
following Neumann problem:

Find w ∈ W 2n,p(D) as a solution to (3) satisfying the Neumann condi-
tions

∂νz (∂z∂z̄)µw = γµ on D γµ ∈ C(∂D) 0 ≤ µ ≤ n− 1,

see [4].
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(iii) The operators Rk,l
n,α,1 are defined by

Rk,l
n,α,1f(z) :=

1
π

∫∫

D

∂k
z ∂l

z̄Rn,α,1(z, ζ)f(ζ)dξ dη

for n ∈ N, α 6= 0, k, l ∈ N0 with (k, l) 6= (n, n) and k + l ≤ 2n, for a
suitable complex valued function f given in D, see [7]. They are related to
the following problem:

Find w ∈ W 2n,p(D) as a solution to (3) satisfying the Robin conditions

α(∂z∂z̄)σw + ∂ν(∂z∂z̄)σw = γσ on ∂D , γσ ∈ C(∂D) for 0 ≤ σ ≤ n− 1 .

Remark 1. For a general linear elliptic complex partial differential equa-
tion whose leading term is the polyanalytic operator, Schwarz problem is
given by (see [2]):

Find w ∈ W k,p(D) as a solution to the k-th order complex differential
equation

∂kw

∂z̄k
+

k∑

j=1

q1j(z)
∂kw

∂z̄k−j∂zj
+

k∑

j=1

q2j(z)
∂kw

∂zk−j∂z̄j
+

+
k−1∑

l=0

l∑
m=0

[
aml(z)

∂lw

∂z̄l−m∂zm
+ bml(z)

∂lw

∂zl−m∂z̄m

]
= f(z) in D (7)

satisfying the nonhomogeneous Schwarz boundary conditions

Re
∂lw

∂z̄l
= γl on ∂D, Im

∂lw

∂z̄l
(0) = cl , 0 ≤ l ≤ k − 1, (8)

where γl ∈ C(∂D;R), cl ∈ R, 0 ≤ l ≤ k − 1.
To discuss the solvability of the above problem, T̃k operators defined by

T̃kf(z) :=
(−1)k

2π(k − 1)!

∫∫

D

(ζ − z+ζ−z)k−1

[
f(ζ)

ζ

ζ + z

ζ − z
+

f(ζ)
ζ̄

1 + zζ̄

1− zζ̄

]
dξ dη

for k ∈ N with T̃0f(z) = f(z) are used. For the properties of such operators,
see [11, 15]. ∂l

zT̃k is a weakly singular integral operator for 0 ≤ l ≤ k − 1,
while

Πkf(z) :=
∂k

∂zk
T̃kf(z) =

(−1)kk

π

∫∫

D

[(
ζ − z

ζ − z

)k−1
f(ζ)

(ζ − z)2
+

+
(

ζ − z + ζ − z

1− zζ̄
ζ̄ − 1

)k−1
f(ζ)

(1− zζ̄)2

]
dξ dη (9)

is a Calderon-Zygmund type strongly singular integral operator. Πk are
shown to be bounded in the space Lp for 1 < p < ∞ and in particular their
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L2 norms are estimated in [1]. These operators are studied by decomposing
them into two parts as Πk = T−k,k + Pk, where

T−k,kf(z) =
(−1)kk

π

∫∫

D

(
ζ − z

ζ − z

)k−1
f(ζ)

(ζ − z)2
dξ dη, (10)

which is investigated extensively in [14].

3. A Hierarchy of Polyharmonic Kernel Functions

Iterating the harmonic Green, Neumann and Robin functions, we intro-
duce the following hybrid Green type polyharmonic kernel functions:

Definition 1. Iterated polyharmonic kernel functions Ke1,e2,...,en(z, ζ)
are defined by

Ke1,e2,...,en(z, ζ) =

=
(
− 1

π

)n−1∫∫

D

∫∫

D

· · ·
∫∫

D

Fe1(z, ζ1) . . . Fen(ζn−1, ζ)dξ1dη1 . . . dξn−1 dηn−1

for z, ζ ∈ D where ζj = ξj + ηj , ej ∈ {1, 2, 3} for j = 1, 2, . . . , n, n ≥ 2 and
F1 := G1, F2 := N1, F3 := R1.

3.1. Properties of Polyharmonic Kernel Functions. The function
Ke1e2...en(z, ζ) is polyharmonic of order n in D\{ζ} for any ζ ∈ D. For
any t, we can write

Ke1,e2,...,en(z, ζ) =
(
− 1

π

)n−t

×

×
∫∫

D

· · ·
∫∫

D

Ke1,...,et(z, ζ1)Fet+1(ζ1, ζ2) . . . Fen(ζt−1, ζ)dξ1dη1 . . . dξt−1 dηt−1.

For any t, since the functions G1, N1 and R1 are fundamental solutions
of ∂z∂z̄

• (∂z∂z̄)tKe1,e2,...,en(z, ζ) = Ket+1,et+2,...,en(z, ζ) in D,

in D for any ζ ∈ D. Moreover,
• (∂z∂z̄)γKe1,e2,...,en(z, ζ) = 0, γ = j − 1 for ej = 1 on ∂D.
• ∂ν(∂z∂z̄)γKe1,e2,...,en(z, ζ) = Hγ(z, ζ), γ = j−1 for ej = 2 on ∂D.

•
∫

∂D

(∂z∂z̄)γKe1,e2,...,en(z, ζ)
dz

z
= 0 γ = j − 1 for ej = 2 on ∂D.

• (I + ∂ν)(∂z∂z̄)γKe1,e2,...,en(z, ζ) = 0, γ = j − 1 for ej = 3 on ∂D
holds for z ∈ ∂D, ζ ∈ D.

For any t, since the functions G1, N1 and R1 are fundamental solutions
of ∂ζ∂ζ̄
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• (∂ζ∂ζ̄)tKe1,e2,...,en
(z, ζ) = Ke1,e2,...,et

(z, ζ) in D,

in D for any z ∈ D. Also
• (∂ζ∂ζ̄)γKe1,e2,...,en

(z, ζ) = 0, γ = j − 1 for ej = 1 on ∂D.
• ∂ν(∂ζ∂ζ̄)γKe1,e2,...,en(z, ζ) = Hγ(z, ζ), γ = j−1 for ej = 2 on ∂D,

where Hγ(z, ζ) can be found as in [18].

•
∫

∂D

(∂ζ∂ζ̄)
γKe1,e2,...,en

(z, ζ)
dζ

ζ
= 0 γ = j − 1 for ej = 2 on ∂D.

• (I + ∂ν)(∂ζ∂ζ̄)γKe1,e2,...,en(z, ζ) = 0, γ = j − 1 for ej = 3 on ∂D
holds for ζ ∈ ∂D, z ∈ D.

In the rest of the article, using these properties, integral representation
formulas will be obtained. These formulas are important for investigating
the corresponding boundary value problems.

4. Iterated Mixed Problems for Higher Order Poisson
Equations

The following integral representation formulas are the generalizations of
the Cauchy-Pompeiu formulas.

4.1. Integral representation formulas.

Theorem 1. Let ej ∈ {1, 2, 3} for j = 1, 2, . . . , n. Any w ∈ C2n(D) ∩
C2n−1(D), n ∈ N can be represented as

w(z) =
n∑

j=1

1
4πi

∫

∂D

(βjI − αj∂ν)(∂ζ∂ζ)
n−j×

×Ke1,e2,...,en(z, ζ)(αjI + βj∂ν)(∂ζ∂ζ)
j−1w(ζ)

dζ

ζ
−

−
n∑

j=1

tj
1

4πi

∫

∂D

∂ν(∂ζ∂ζ)
n−jKe1,e2,...,en(z, ζ)(∂ζ∂ζ)

j−1w(ζ)
dζ

ζ
−

− 1
π

∫∫

D

Ke1,e2,...,en(z, ζ)(∂ζ∂ζ)
nw(ζ)dξ dη

for

(αj , βj) =





(1, 0) if ej = 1 for some j ,
(0, 1) if ej = 2 for some j ,
(1, 1) if ej = 3 for some j

and

tj =
{

1 if ej = 2 for some j ,
0 if ej 6= 2 for some j .
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Proof. Applying the Gauss theorem iteratively to the integral

− 1
π

∫∫

D

Ke1,e2,...,en
(z, ζ)(∂ζ∂ζ)

nw(ζ) dξ dη

the result follows. Because of lack of space, let us consider the case n = 2,
e1 = 1 and e2 = 1. Now we write

− 1
π

∫∫

D

K1,1(z, ζ)(∂ζ∂ζ)
2w(ζ)dξ dη = − 1

2π

∫∫

D

(
∂ζ̄

[
K1,1(z, ζ)∂2

ζ∂ζ̄w(ζ)
]

+

+∂ζ

[
K1,1(z, ζ)∂ζ∂

2
ζ̄w(ζ)

]
− ∂ζ̄

[
∂ζK1,1(z, ζ)(∂ζ∂ζ̄)w(ζ)

]−
−∂ζ

[
∂ζK1,1(z, ζ)(∂ζ∂ζ̄)w(ζ)

]
+ 2∂ζ∂ζ̄K1,1(z, ζ)(∂ζ∂ζ̄)w(ζ)

)
dξ dη.

Applying the Gauss theorem and using the fact that ζ̄dζ = −ζdζ̄ on ∂D
with the boundary behavior of K1,1(z, ζ), we obtain

− 1
π

∫∫

D

K1,1(z, ζ)(∂ζ∂ζ)
nw(ζ)dξ dη =

=
1
4π

∫

∂D

∂νK1,1(z, ζ)(∂ζ∂ζ̄)
n−1w(ζ)− 1

π

∫∫

D

G1(z, ζ)(∂ζ∂ζ̄)w(ζ)dξ dη.

Using the solution of the Dirichlet problem for Poisson equation (see [19]),
we get the result. ¤

4.2. Iterated mixed problems. The next result gives the unique solu-
tion to the n-Poisson equation satisfying homogeneous mixed-type bound-
ary conditions. Let ej ∈ {1, 2, 3} for j = 1, . . . , n.

Theorem 2. Let the mixed type (e1e2 . . . en)-problem

(∂z∂z̄)nw = f in D,

(αjI + βj∂ν)(∂z∂z̄)j−1w = 0 on ∂D ,

where j = 1, . . . , n for

(αj , βj) =





(1, 0) if ej = 1 for some j (Dirichlet condition),
(0, 1) if ej = 2 for some j (Neumann condition),
(1, 1) if ej = 3 for some j (Robin condition),

with the normalization conditions
1

2πi

∫

∂D

tj(∂z∂z̄)j−1w(ζ)
dζ

ζ
= 0 (11)

for

tj =
{

1 if ej = 2 for some j ,
0 if ej 6= 2 for some j .
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This problem is uniquely solvable for f ∈ Lp(D) if

1
π

∫∫

D

∂νz
Nn−γ(z, ζ)f(ζ)dξ dη = 0 γ = j − 1, for ej = 2 (12)

is satisfied. The solution is

w(z) = − 1
π

∫∫

D

Ke1,e2,...,en
(z, ζ)f(ζ)dξ dη.

Proof. The case n = 1 corresponds to the Dirichlet, Neumann and Robin
boundary value problems for Poisson equation. Such problems are studied
in [19]. In the case n = 2, H. Begehr stated nine mixed problems (such as
Dirichlet-Dirichlet, Neumann-Robin, Robin- Dirichlet. . . ) in [21] and gave
the explicit solutions. Therefore, we will consider only the proof of the case
n > 2. We need to discuss only the existence of the solution, since the
uniqueness of the solution comes from the integral representation given in
Theorem 1. Using the polyharmonic property of Ke1,e2,...,en(z, ζ), one can
easily see that the representation for w in Theorem 1 satisfies the equation.
To show that it satisfies the boundary condition, boundary behaviors of
Ke1,e2,...,en(z, ζ) given in Section 3 are used. ¤

The next result gives the unique solution to an equation of arbitrary
order satisfying mixed-type boundary conditions. Let ej ∈ {1, 2, 3} for
j = 1, . . . , n.

Theorem 3. The mixed type (e1e2 . . . en)-Schwarz problem given by

∂m
z ∂n

z̄ w = f in D,

Re
∂lw

∂z̄l
= 0 on ∂D, Im

∂lw

∂z̄l
(0) = 0, 0 ≤ l ≤ n−m− 1 (13)

(αI + β∂ν)∂γ
z ∂γ+n−m

z̄ w = 0 on ∂D ,

where γ = j − 1, j = 1, . . . ,m for

(αj , βj) =





(1, 0) if ej = 1 for some j (Dirichlet condition),
(0, 1) if ej = 2 for some j (Neumann condition),
(1, 1) if ej = 3 for some j (Robin condition),

1
2πi

∫

∂D

tj(∂z∂z̄)j−1w(ζ)
dζ

ζ
= 0 (14)

for

tj =
{

1 if ej = 2 for some j ,
0 if ej 6= 2 for some j
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is uniquely solvable for f ∈ Lp(D) if

1
π

∫∫

D

∂νz
Nm−γ(z, ζ)f(ζ)dξdη = 0 γ = j − 1 for ej = 2 (15)

is satisfied. The solution is

w(z) = T̃n−m

(
− 1

π

∫∫

D

Ke1,e2,...,em(z, ζ)f(ζ)dξ dη

)
.

Proof. The solution is obtained by decomposing the above problem as

∂n−m
z̄ w = w1,

Re
∂lw

∂z̄l
= 0 on ∂D, Im

∂lw

∂z̄l
(0) = 0, 0 ≤ l ≤ n−m− 1

and

(∂z∂z̄)mw1 = f,

(αI + β∂ν)(∂z∂z̄)γw1 = 0 on ∂D ,

where γ = j−1, j = 1, . . . , m and using the representations of the solutions
of mixed type (e1e2 . . . en) and Schwarz problems iteratively. ¤

Remark 2.

a) If the Schwarz conditions are given for m ≤ l ≤ n−m− 1, then the
solution can be found by decomposing the problem as

(∂z∂z̄(∂z∂z̄)mw = w1,

(αI + β∂ν)(∂z∂z̄)γw = 0 on ∂D ,

where γ = j − 1, j = 1, . . . , m and

∂n−m
z̄ w1 = f,

Re
∂lw1

∂z̄l
= 0 on ∂D, Im

∂lw1

∂z̄l
(0) = 0, m ≤ l ≤ n− 1.

b) If the first m1 conditions are related to the arbitrary iteration of
Neumann, Dirichlet, Robin conditions, the second set of n−m con-
ditions are the Schwarz conditions and the third m − m1 set of
conditions are again the arbitrary iteration of Neumann, Dirichlet,
Robin conditions, as in the above cases, this problem can be de-
composed into a system of coupled equations which can be treated
easily.
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5. Iterated Mixed Problems for Linear Complex Partial
Differential Equations

5.1. Operators Related to Mixed-Type Boundary Value Problems.
In the following, using a hierarchy of polyharmonic kernels of the harmonic
Green, Neumann and Robin problems in an arbitrary order, a class of inte-
gral operators are given.

Definition 2.

Ik,l
e1,e2,...,en

f(z) = − 1
π

∫∫

D

∂k
z ∂l

z̄Ke1,e2,...,en(z, ζ)f(ζ)dξ dη .

for a suitable complex valued f .

The operator Ik,l
e1,e2,...,en

may be considered as an iteration of the opera-
tors S1,k,l, Gk,l

n,n−1 and R1,k,l. Thus, the following theorems can be proved
using the boundedness and continuity properties given for these operators,
see [4, 5, 7].

Theorem 4.

(a) For z ∈ D, f ∈ Lp(D) with p > 1 and k + l < 2n,
∣∣Ik,l

e1,e2,...,en
f(z)

∣∣ ≤ C‖f‖Lp(D). (16)

(b) For z1, z2 ∈ D, f ∈ Lp(D) with p > 2
∣∣Ik,l

e1,e2,...,en
f(z1)− Ik,l

e1,e2,...,en
f(z2)

∣∣ ≤

≤ C‖f‖Lp(D)

{ |z1 − z2|(p−2)/p if k + l = 2n− 1,
|z1 − z2| if k + l < 2n− 1.

(c) Ik,l
e1,e2,...,en

f ∈ Lp(D) for f ∈ Lp(D) with p > 1 where k+ l = 2n and

‖Ik,l
e1,e2,...,en

f‖Lp(D) ≤ Cp‖f‖Lp(D) . (17)

Proof. Since the kernels Ke1,e2,...,en(z, ζ) are defined as an arbitrary it-
erations of harmonic Green, Neumann and Robin functions, the opera-
tor Ik,l

e1,e2,...,en
is simply a convolution of the operators G0,0

0,1f , Sn,k,l and
Rn,1,1 defined in preliminaries. Since the statements of the theorem are
valid for these operators, it is trivial how to prove them for the operator
Ik,l
e1,e2,...,en

. ¤

5.2. Iterated mixed problems. Now, we consider the mixed problems for
the generalized higher-order Poisson equation. For simplicity, homogeneous
boundary conditions are discussed.
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Mixed (e1e2 . . . en)-Problem. Find w ∈ W 2n,p(D) as a solution to
equation

∂2nw

∂zn∂z̄n
+

∑
k+l=2n

(k,l)6=(n,n)

(
q
(1)
kl (z)

∂2nw

∂zk∂z̄l
+ q

(2)
kl (z)

∂2nw

∂z̄k∂zl

)
+

+
∑

0≤k+l<2n

[
akl(z)

∂k+lw

∂zk∂z̄l
+ bkl(z)

∂k+lw

∂z̄k∂zl

]
= f(z) (18)

satisfying
(αjI + βj∂ν)(∂z∂z̄)j−1w = 0 on ∂D,

where j = 1, . . . , n for

(αj , βj) =





(1, 0) if ej = 1 for some j ,
(0, 1) if ej = 2 for some j ,
(1, 1) if ej = 3 for some j ,

1
2πi

∫

∂D

tj(∂z∂z̄)j−1w(ζ)
dζ

ζ
= 0 (19)

in which
akl, bkl, f ∈ Lp(D), (20)

and q
(1)
kl and q

(2)
kl , are measurable bounded functions subject to

∑
k+l=2n

k 6=l

(|q(1)
kl (z)|+ |q(2)

kl (z)|) ≤ q0 < 1, (21)

To derive the solutions of the iterated mixed boundary value problem, we
start with transforming the equation (18) to a singular integral equation.

Lemma 1. The (e1e2 . . . en)-problem is equivalent to the singular integral
equation

(I + M̂ + K̂)g = f (22)

if
w = I0,0

e1,e2,...,en
g ,

where

M̂g =
∑

k+l=2n
k 6=l

(q(1)
kl Ik,l

e1,e2,...,en
g + q

(2)
kl Ik,l

e1,e2,...,eng) ,

K̂g =
∑

k+l<2n

(
aklI

k,l
e1,e2,...,en

g + bklI
k,l
e1,e2,...,eng

)
.

For the proof, we use the ideas given in [4], for example.
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5.3. Solvability of the Mixed (e1e2 . . . en)-Problem. Lastly, we will give
solvability result for such boundary value problems.

Theorem 5. If

q0 max
k+l=2n

‖Ik,l
e1,e2,...,en

‖Lp(D) ≤ 1 (23)

is satisfied, then the Fredholm alternative applies the equation (22) and the
(e1e2 . . . en)-problem has a solution of the form

w = I0,0
e1,e2,...,en

g (24)

where g ∈ Lp(D), p > 2, is a solution of the singular integral equation (22)
satisfying the conditions

1
π

∫∫

D

∂νz
Nn−γ(z, ζ)g(ζ)dξdη = 0 γ = j − 1, for ej = 2 .

Proof. As an outline of the proof, we can state that, K̂ is compact by
Theorem 4 parts (a) and (b), M̂ is Lp bounded by Theorem 4 part (c). I+M̂

is invertible if (23) is satisfied, which leads that I + M̂ + K̂ is a Fredholm
operator with index zero. Thus the representation (24) is valid. ¤
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