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FRACTIONAL ORDER HYPERBOLIC DIFFERENTIAL
INCLUSIONS WITH INFINITE DELAY

SAÏD ABBAS, MOUFFAK BENCHOHRA AND YONG ZHOU

Abstract. This paper deals with the existence of solutions for the
initial value problems (IVP for short), for fractional order hyperbolic
and neutral hyperbolic functional differential inclusions with infinite
delay. Our work will be considered by using the nonlinear alternative
of Leray-Schauder type.

îâäæñéâ. êŽöîëéæ âýâĲŽ ûæèŽáñîæ îæàæï ßæìâîĲëèñîæ áŽ êâ-
æðîŽèñî ßæìâîĲëèñî òñêóùæëêŽèñî-áæòâîâêùæŽèñîæ øŽîåãâ-
ĲæïŽåãæï ñïŽïîñèë áŽàãæŽêâĲâĲæå ïŽûõæï ìæîëĲæŽêæ ŽéëùŽêæï Žéë-
êŽýïêâĲæï ŽîïâĲëĲŽï.

1. Introduction

This paper deals with the initial value problems (IV P for short) for
hyperbolic functional differential inclusions

(cDr
0u)(x, y) ∈ F (x, y, u(x,y)), if (x, y) ∈ J, (1)

u(x, y) = φ(x, y), if (x, y) ∈ J̃ , (2)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], y ∈ [0, b], (3)

where J = [0, a]× [0, b], a, b > 0, J̃ = (−∞, a]× (−∞, b]\(0, a]× (0, b], cDr
0

is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈ (0, 1]×
(0, 1], F : J × B → P(Rn) is a multivalued map with compact, convex
values, P(Rn) is the family of all subsets of Rn, φ : J̃ → Rn is a given
continuous function, ϕ : [0, a] → Rn, ψ : [0, b] → Rn are given absolutely
continuous functions such that ϕ(x) = φ(x, 0), ψ(y) = φ(0, y) for each
x ∈ [0, a], y ∈ [0, b] and B is called a phase space that will be specified in
Section 3.

We denote by u(x,y) the element of B defined by

u(x,y)(s, t) = u(x + s, y + t); (s, t) ∈ (−∞, 0]× (−∞, 0].
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Next we consider the following initial value problem for neutral hyperbolic
functional differential inclusions

cDr
0[u(x, y)− g(x, y, u(x,y))] ∈ F (x, y, u(x,y)), if (x, y) ∈ J, (4)

u(x, y) = φ(x, y), if (x, y) ∈ J̃ , (5)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], y ∈ [0, b], (6)

where F, φ, ϕ, ψ are as in problem (1)-(3) and g : J ×B → P(Rn) is a given
continuous function.

The problem of existence of solutions of Cauchy-type problems for ordi-
nary differential equations of fractional order in spaces of integrable func-
tions without delay was studies in numerous works (see [27, 40]), a similar
problem in spaces of continuous functions was studies in [41]. We can find
numerous applications of differential equations of fractional order in vis-
coelasticity, electrochemistry, control, porous media, electromagnetic, etc.
(see [15, 17, 18, 23, 34, 35]). There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the
monographs of Kilbas citeKiSrJuTr, Lakshmikantham et al. [31], Miller
and Ross [36], Samko et al. [39], the papers of Abbas and Benchohra [1, 2],
Agarwal et al. [3], Benchohra et al. [5, 6, 7], Belarbi et al. [4], Diethelm
[15, 16], Kilbas and Marzan [28], Mainardi [34], Podlubny [38], Vityuk and
Golushkov [42], Zhou et al. [43, 44, 45] and the references therein.

In this paper, we present existence results for problems (1)-(3) and (4)-
(6). Our approach here is based on the nonlinear alternative of Leray-
Schauder type for multivalued operators. The present results extend those
considered with integer order derivative [8, 9, 10, 13, 25, 26, 33, 37], and
those with fractional derivative [1, 2, 28].

This paper initiates the study of fractional order differential inclusions
with infinite delay involving the Caputo fractional derivative.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. By L1(J,Rn) we denote the space of
Lebesgue-integrable functions u : J → Rn with the norm

‖u‖L1 =

a∫

0

b∫

0

‖u(x, y)‖dydx,

where ‖.‖ denotes a suitable complete norm on Rn. C(J,Rn) is the Banach
space of continuous functions on J normed by

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖,
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and AC(J,Rn) is the space of absolutely continuous functions from J into
Rn.

Definition 2.1 ([38]). Let r1, r2 > 0 and r = (r1, r2). For u ∈ L1(J,Rn),
the expression

(Ir
0u)(x, y) =

1
Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds,

where Γ(.) is the gamma function, is called the left-sided mixed Riemann-
Liouville integral of order r.

Definition 2.2 ([38]). For u ∈ L1(J,Rn), the Caputo fractional-order
derivative of order r is defined by the expression

(cDr
0u)(x, y) = (I1−r

0

∂2

∂x∂y
u)(x, y).

We need also some properties of set-valued maps. Let (X, ‖ ·‖) be a Banach
space. let Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) :
Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,c(X) = {Y ∈
P(X) : Y compact and convex}.

Definition 2.3. A multivalued map T : X → P (X) is convex(closed)
valued if T (x) is convex (closed) for all x ∈ X.
A multivalued map T : X → P (X) is bounded on bounded sets if T (B) =
∪x∈BT (x) is bounded in X for all B ∈ Pb(X) (i.e. sup

x∈B
{sup{‖y‖ : y ∈

T (x)}} < ∞).
A multivalued map T : X → P (X) is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set T (x0) is a nonempty closed subset of X,
and if for each open set N of X containing T (x0), there exists an open
neighborhood N0 of x0 such that T (N0) ⊆ N .
A multivalued map T : X → P (X) is said to be completely continuous
if T (B) is relatively compact for every B ∈ Pb(X). A multivalued map
T : X → P (X) has a fixed point if there is x ∈ X such that x ∈ T (x). The
fixed point set of the multivalued operator T will be denoted by FixT .
A multivalued map T : X → Pcl(Rn) is said to be measurable if for every
v ∈ Rn, the function

x 7−→ d(v, T (x)) = inf{‖v − z‖ : z ∈ T (x)}
is measurable.

Definition 2.4. A multivalued map F : J × B → P(Rn) is said to be
Carathéodory if

(i) (x, y) 7−→ F (x, y, u) is measurable for each u ∈ B;
(ii) u 7−→ F (x, y, u) is upper semicontinuous for almost all (x, y) ∈ J.
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For each u ∈ C((−∞, a]× (−∞, b],Rn), define the set of selections of F by

SF,u = {f ∈ L1(J,Rn) : f(x, y) ∈ F (x, y, u(x,y)) a.e. (x, y) ∈ J}.
Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖).
Consider Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X),Hd) is a

metric space and (Pcl(X),Hd) is a generalized metric space (see [29]).

Theorem 2.5 ([19]). (Nonlinear alternative of Leray Schauder type)
Let X be a Banach space and C a nonempty convex subset of X. Let U
a nonempty open subset of C with 0 ∈ U and T : U → P(C) an upper
semicontinuous and compact multivalued operator. Then either

(a) T has fixed points. Or
(b) There exist u ∈ ∂U and λ ∈ [0, 1] with u ∈ λT (u).

3. The Phase Space B
The notation of the phase space B plays an important role in the study

of both qualitative and quantitative theory for functional differential equa-
tions. A usual choice is a semi-normed space satisfying suitable axioms,
which was introduced by Hale and Kato (see [21, 24, 32]).

For any (x, y) ∈ J denote E(x,y) := [0, x]×{0}∪{0}× [0, y], furthermore
in case x = a, y = b we write simply E. Consider the space (B, ‖(., .)‖B)
is a seminormed linear space of functions mapping (−∞, 0] × (−∞, 0] into
Rn, and satisfying the following fundamental axioms which were adapted
from those introduced by Hale and Kato for ordinary differential functional
equations:

(A1) If z : (−∞, a] × (−∞, b] → Rn continuous on J and z(x,y) ∈ B, for
all (x, y) ∈ E, then there are constants H,K, M > 0 such that for
any (x, y) ∈ J the following conditions hold:

(i) z(x,y) is in B;
(ii) ‖z(x, y)‖ ≤ H‖z(x,y)‖B,
(iii) ‖z(x,y)‖B ≤ K sup

(s,t)∈[0,x]×[0,y]

‖z(s, t)‖+ M sup
(s,t)∈E(x,y)

‖z(s,t)‖B,

(A2) For the function z(., .) in (A1), z(x,y) is a B-valued continuous func-
tion on J.

(A3) The space B is complete.

Now, we present some examples of phase spaces.
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Example 3.1. Let B be the set of all functions φ : (−∞, 0]× (−∞, 0] →
Rn which are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is
isometric to the space C([−α, 0] × [−β, 0],Rn) of all continuous functions
from [−α, 0] × [−β, 0] into Rn with the supremum norm, this means that
partial differential functional equations with finite delay are included in our
axiomatic model.

Example 3.2. Let Cγ be the set of all continuous functions φ : (−∞, 0]×
(−∞, 0] → Rn for which a limit lim

‖(s,t)‖→∞
eγ(s+t)φ(s, t) exists, with the norm

‖φ‖Cγ = sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)‖φ(s, t)‖.

Then we have H = K = M = 1.

Example 3.3. Let α, β, γ ≥ 0 and let

‖φ‖CLγ = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖+

0∫

−∞

0∫

−∞
eγ(s+t)‖φ(s, t)‖dtds.

be the seminorm for the space CLγ of all functions φ : (−∞, 0]× (−∞, 0] →
Rn which are continuous on [−α, 0] × [−β, 0] measurable on (−∞,−α] ×
(−∞, 0] ∪ (−∞, 0]× (−∞,−β], and such that ‖φ‖CLγ < ∞. Then

H = 1, K =

0∫

−α

0∫

−β

eγ(s+t)dtds, M = 2.

4. Main Results

Let us start by defining what we mean by a solution of the problem
(1)-(3). Let the space

Ω := {u : (−∞, a]× (−∞, b] → Rn : u(x,y) ∈ B
for (x, y) ∈ E and u|J is continuous}.

Definition 4.1. A function u ∈ Ω is said to be a solution of (1)-(3) if
there exists a function f ∈ L1(J,Rn) with f(x, y) ∈ F (x, y, u(x,y)) such that
(cDr

0u)(x, y) = f(x, y) and u satisfies (3) on J and the condition (2) on J̃ .

Let f ∈ L1(J,Rn) and consider the following problem
{

(cDr
0u)(x, y) = f(x, y), (x, y) ∈ J,

u(x, 0) = ϕ(x), u(0, y) = ψ(y), ϕ(0) = ψ(0). (7)
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For the existence of solutions for the problem (1)-(3), we need the following
lemma:

Lemma 4.2 ([1, 2]). A function u ∈ AC(J,Rn) is a solution of problem
(7) if and only if u(x, y) satisfies

u(x, y) = µ(x, y) + (Ir
0f)(x, y); (x, y) ∈ J, (8)

where
µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Remark 4.3. A function u ∈ Ω is said to be a solution of (2) and (7) if
and only if u(x, y) satisfies (8) on J and the condition (2) on J̃ .

In the sequel we will make use of the following generalization of Gron-
wall’s lemma for two independent variables and singular kernel.

Lemma 4.4 ([22]). Let υ : J → [0,∞) be a real function and ω(., .) be
a nonnegative, locally integrable function on J. If there are constants c > 0
and 0 < r1, r2 < 1 such that

υ(x, y) ≤ ω(x, y) + c

x∫

0

y∫

0

υ(s, t)
(x− s)r1(y − t)r2

dtds,

then there exists a constant k = k(r1, r2) such that

υ(x, y) ≤ ω(x, y) + kc

x∫

0

y∫

0

ω(s, t)
(x− s)r1(y − t)r2

dtds,

for every (x, y) ∈ J.

Theorem 4.5. Assume
(H1) F : J × B → Pcp,c(Rn) is a Carathéodory multi-valued map;
(H2) there exists l ∈ L∞(J,R) such that

Hd(F (x, y, u), F (x, y, u)) ≤ l(x, y)‖u− u‖B for every u, u ∈ B,

and
d(0, F (x, y, 0)) ≤ l(x, y), a.e. (x, y) ∈ J.

Then the IV P (1)− (3) has at least one solution on (−∞, a]× (−∞, b].

Proof. Let l∗ = ‖l‖L∞ . Transform the problem (1)-(3) into a fixed point
problem. Consider the multivalued operator N : Ω → P(Ω) defined by

N(x, y) = {h ∈ Ω},
such that

h(x, y) =





φ(x, y), (x, y) ∈ J̃ ,
µ(x, y) + 1

Γ(r1)Γ(r2)

∫ x

0
×

× ∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t)dtds, f ∈ SF,u, (x, y) ∈ J.
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Let v(., .) : (−∞, a]× (−∞, b] → Rn be a function defined by,

v(x, y) =
{

φ(x, y), (x, y) ∈ J̃ ,
µ(x, y), (x, y) ∈ J.

Then v(x,y) = φ for all (x, y) ∈ E. For each w ∈ C(J,Rn) with
w(0, 0) = 0, we denote by w the function defined by

w(x, y) =
{

0, (x, y) ∈ J̃ ,
w(x, y) (x, y) ∈ J.

If u(., .) satisfies the integral equation,

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

we can decompose u(., .) as u(x, y) = w(x, y) + v(x, y); (x, y) ∈ J, which
implies u(x,y) = w(x,y) + v(x,y), for every (x, y) ∈ J, and the function w(., .)
satisfies

w(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

where f ∈ SF,w(s,t)+v(s,t) . Set

C0 = {w ∈ C(J,Rn) : w(x, y) = 0 for (x, y) ∈ E},
and let ‖.‖(a,b) be the seminorm in C0 defined by

‖w‖(a,b) = sup
(x,y)∈E

‖w(x,y)‖B + sup
(x,y)∈J

‖w(x, y)‖ = sup
(x,y)∈J

‖w(x, y)‖, w ∈ C0.

C0 is a Banach space with norm ‖.‖(a,b). Let the operator P : C0 → P(C0)
be defined by

(Pw)(x, y) = {h ∈ C0},
such that

h(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds, (x, y) ∈ J,

where f ∈ SF,w(s,t)+v(s,t) . Obviously, that the operator N has a fixed point
is equivalent to P has a fixed point.

Step 1: P (u) is convex for each u ∈ C0.
Indeed, if h1, h2 belong to P (u), then there exist f1, f2 ∈ SF,w(s,t)+v(s,t)

such that for each (x, y) ∈ J we have

hi(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1fi(s, t)dtds, i = 1, 2.
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Let 0 ≤ ξ ≤ 1. Then, for each (x, y) ∈ J , we have

(ξh1 + (1− ξ)h2)(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1

×[ξf1(s, t) + (1− ξ)f2(s, t)]dtds.

Since S̃F,w(s,t)+v(s,t) is convex (because F has convex values), we have

ξh1 + (1− ξ)h2 ∈ P (u).

Step 2: P maps bounded sets into bounded sets in C0: Indeed, it is
enough to show that there exists a positive constant ` such that, for each
z ∈ Bρ = {u ∈ C0 : ‖z‖ ≤ ρ}, one has ‖P (z)‖ ≤ `. Let z ∈ Bρ and h ∈ P (z)
Then there exists f ∈ SF,w(s,t)+v(s,t) , such that, for each (x, y) ∈ J, we have

h(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds.

Then, for each (x, y) ∈ J,

‖h(x, y)‖ ≤ 1
Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1‖f(s, t)‖dtds ≤

≤ 1
Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1l(s, t)(1+

+ ‖w(s,t) + v(s,t)‖B)dtds ≤

≤ l∗(1 + ρ∗)
Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1dtds ≤

≤ ar1br2 l∗(1 + ρ∗)
Γ(r1 + 1)Γ(r2 + 1)

,

where

‖w(s,t) + v(s,t)‖B ≤ ‖w(s,t)‖B + ‖v(s,t)‖B ≤
≤ Kρ + M‖φ‖B = ρ∗.

Step 3: P (Bρ) is equicontinuous. Let P (Bρ) as in Step 2 and let
(x1, y1), (x2, y2) ∈ J, x1 < x2 and y1 < y2, let u ∈ Bρ and h ∈ P (u), then
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there exists f ∈ SF,w(s,t)+v(s,t) such that for each (x, y) ∈ J we have

‖h(x2, y2)− h(x1, y1)‖ =

=
∥∥∥ 1

Γ(r1)Γ(r2)

x1∫

0

y1∫

0

[(x2 − s)r1−1(y2 − t)r2−1−(x1 − s)r1−1(y1 − t)r2−1]×

× f(s, t)dtds +
1

Γ(r1)Γ(r2)

x2∫

x1

y2∫

y1

(x2 − s)r1−1(y2 − t)r2−1f(s, t)dtds+

+
1

Γ(r1)Γ(r2)

x1∫

0

y2∫

y1

(x2 − s)r1−1(y2 − t)r2−1f(s, t)dtds+

+
1

Γ(r1)Γ(r2)

x2∫

x1

y1∫

0

(x2 − s)r1−1(y2 − t)r2−1f(s, t)dtds
∥∥∥ ≤

≤ l∗(1 + ρ∗)
Γ(r1)Γ(r2)

x1∫

0

y1∫

0

[(x1−s)r1−1(y1−t)r2−1−(x2−s)r1−1(y2−t)r2−1]dtds+

+
l∗(1 + ρ∗)
Γ(r1)Γ(r2)

x2∫

x1

y2∫

y1

(x2−s)r1−1(y2−t)r2−1dtds+

+
l∗(1 + ρ∗)
Γ(r1)Γ(r2)

x1∫

0

y2∫

y1

(x2 − s)r1−1(y2 − t)r2−1dtds+

+
l∗(1 + ρ∗)
Γ(r1)Γ(r2)

x2∫

x1

y1∫

0

(x2 − s)r1−1(y2 − t)r2−1dtds ≤

≤ l∗(1 + ρ∗)
Γ(r1 + 1)Γ(r2 + 1)

[2yr2
2 (x2 − x1)r1 + 2xr1

2 (y2 − y1)r2+

+ xr1
1 yr2

1 − xr1
2 yr2

2 − 2(x2 − x1)r1(y2 − y1)r2 ].

As x1 −→ x2 and y1 −→ y2, the right-hand side of the above inequality
tends to zero. As a consequence of Steps 1 to 3 together with the Arzelá-
Ascoli theorem, we can conclude that N : C0 −→ Pcp(C0) is completely
continuous.

Step 4: P has a closed graph.

Let un → u∗, hn ∈ P (un) and hn → h∗. We need to show that
h∗ ∈ P (u∗).
hn ∈ P (un) means that there exists fn ∈ SF,w(s,t)+v(s,t) such that, for each
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(x, y) ∈ J ,

hn(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1fn(s, t)dtds.

We must show that there exists f∗ ∈ S̃F,w(s,t)+v(s,t)) such that, for each
(x, y) ∈ J ,

h∗(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f∗(s, t)dtds.

Since F (x, y, ·) is upper semicontinuous, then for every ε > 0, there exist
n0(ε) ≥ 0 such that for every n ≥ n0, we have

fn(x, y) ∈ F (x, y, wn(x, y) + v(x,y)) ⊂
⊂ F (x, y, w∗(x,y)) + εB(0, 1), a.e. (x, y) ∈ J.

Since F (., ., .) has compact values, then there exists a subsequence fnm such
that

fnm(·, ·) → f∗(·, ·) as m →∞

and

f∗(x, y) ∈ F (x, y, w∗(x, y) + v(x,y))(x, y), a.e. (x, y) ∈ J.

Then for every w ∈ F (x, y, w(x, y) + v(x,y)), we have

‖fnm(x, y)− f∗(x, y)‖ ≤ ‖fnm(x, y)− w‖+ ‖w − f∗(x, y)‖.

Then

‖fnm(x, y)− f∗(x, y)‖ ≤ d(fnm(x, y), F (x, y, w∗(x, y) + v(x,y)).

By an analogous relation, obtained by interchanging the roles of fnm and
f∗, it follows that

‖fnm(x, y)− f∗(x, y)‖ ≤
≤ Hd(F (x, y, wn(x, y) + v(x,y)), F (x, y, w∗(x, y) + v(x,y)) ≤

≤ l(x, y)‖wn − w∗‖B .
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Then

‖hnm
(x, y)−h∗(x, y)‖ ≤ 1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1‖wnm
(s, t)−

− w∗(s, t)‖dtds ≤ ‖wnm
− w∗‖(a,b)

Γ(r1)Γ(r2)
×

×
x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1l(s, t)dtds ≤

≤ ar1br2 l∗

Γ(r1 + 1)Γ(r2 + 1)
‖wnm

− w∗‖(a,b).

Hence

‖hnm − h∗‖(a,b) ≤ ar1br2 l∗

Γ(r1 + 1)Γ(r2 + 1)
‖wnm − w∗‖(a,b) → 0 as m →∞.

Step 5: (A priori bounds)

We now show there exists an open set U ⊆ C0 with w ∈ λP (w), for
λ ∈ (0, 1) and w ∈ ∂U. Let w ∈ C0 and w ∈ λP (w) for some 0 < λ < 1.
Thus there exists f ∈ SF,w(s,t)+v(s,t) such that, for each (x, y) ∈ J,

w(x, y) =
λ

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds.

This implies by (H2) that, for each (x, y) ∈ J, we have

‖w(x, y)‖ ≤ 1
Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1×

× l(s, t)(1 + ‖w(s,t) + v(s,t)‖B)dtds ≤

≤ l∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+

+
l∗

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1‖w(s,t) + v(s,t)‖Bdtds.

But

‖w(s,t) + v(s,t)‖B ≤ ‖w(s,t)‖B + ‖v(s,t)‖B ≤
≤ K sup{w(s̃, t̃) : (s̃, t̃) ∈ [0, s]× [0, t]}+ M‖φ‖B. (9)

If we name z(s, t) the right hand side of (4), then we have

‖w(s,t) + v(s,t)‖B ≤ z(x, y),
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and therefore, for each (x, y) ∈ J we obtain

‖w(x, y)‖ ≤ l∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+

+
l∗

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1z(s, t)dtds. (10)

Using the above inequality and the definition of z we have that

z(x, y) ≤ M‖φ‖B +
Kl∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+

+
Kl∗

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1z(s, t)dtds,

for each (x, y) ∈ J. Then, Lemma 4.4 implies there exists δ = δ(r1, r2)

‖z(x, y)‖ ≤ R + δ
Kl∗

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1Rdtds,

where

R = M‖φ‖B +
Kl∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
.

Hence

‖z‖∞ ≤ R +
RδKl∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= M̃.

Then, (4) implies that

‖w‖∞ ≤ l∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
(1 + M̃) := M∗.

Set
U = {w ∈ C0 : ‖w‖(a,b) < M∗ + 1}.

P : U → C0 is continuous and completely continuous. By Theorem 2.5 and
our choice of U, there is no w ∈ ∂U such that w ∈ λP (w), for λ ∈ (0, 1). As
a consequence of the nonlinear alternative of Leray-Schauder type [19], we
deduce that N has a fixed point which is a solution to problem (1)-(3). ¤

Now we present a similar existence result for the problem (4)-(6).

Definition 4.6. A function u ∈ Ω is said to be a solution of (4)-(6) if there
exists f ∈ F (x, y, u(x,y)) such that u satisfies the equations cDr

0[u(x, y) −
g(x, y, u(x,y))]=f(x, y) and (6) on J and the condition (5) on J̃ .
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Let f ∈ L1(J,Rn) and g ∈ AC(J,Rn) and consider the following linear
problem

cDr
0

(
u(x, y)− g(x, y)

)
= f(x, y); (x, y) ∈ J, (11)

u(x, 0) = ϕ(x), u(0, y) = ψ(y); (x, y) ∈ J, (12)
with ϕ(0) = ψ(0).

For the existence of solutions for the problem (4) − (6), we need the
following lemma:

Lemma 4.7. A function u ∈ AC(J,Rn) is a solution of problem (11)−
(12) if and only if u(x, y) satisfies

u(x, y) = µ(x, y) + g(x, y)− g(x, 0)−
−g(0, y) + g(0, 0) + Ir

0 (f)(x, y), (x, y) ∈ J. (13)

Proof. Let u(x, y) be a solution of problem (11)-(12). Then, taking into
account the definition of the fractional Caputo derivative, we have

I1−r
0

(
D2

xy(u(x, y)− g(x, y))
)

= f(x, y).

Hence, we obtain

Ir
0 (I1−r

0 D2
xy)

(
u(x, y)− g(x, y)

)
= (Ir

0f)(x, y),

then
I1
0D2

xy

(
u(x, y)− g(x, y)

)
= (Ir

0f)(x, y).

Since

I1
0 (D2

xy)
(
u(x, y)− g(x, y)

)
= u(x, y)− u(x, 0)− u(0, y) + u(0, 0)−
− [g(x, y)− g(x, 0)− g(0, y) + g(0, 0)],

we have

u(x, y) = µ(x, y) + g(x, y)− g(x, 0)− g(0, y) + g(0, 0) + Ir
0 (f)(x, y).

Now let u(x, y) satisfy (4.7). It is clear that u(x, y) satisfies (11)-(12). ¤
As a consequence of Lemma 4.7 we have the following auxiliary result

Corollary 4.8. The function u ∈ Ω is a solution of problem (4)− (6) if
and only if there exists f ∈ F (x, y, u(x,y)) such that u satisfies the equation

u(x, y) =
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds+

+ µ(x, y) + g(x, y, u(x,y))− g(x, 0, u(x,0))−
− g(0, y, u(0,y)) + g(0, 0, u(0,0)),

for all (x, y) ∈ J and the condition (5) on J̃ .
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Theorem 4.9. Assume (H1)− (H2) and the following condition holds
(H3) the function g is continuous and completely continuous, and for any

bounded set B in Ω, the set {(x, y) → g(x, y, u) : u ∈ B}, is equicontinuous
in C(J,Rn), and there exist constants 0 ≤ d1K < 1

4 , d2 ≥ 0 such that

‖g(x, y, u)‖ ≤ d1‖u‖B + d2, (x, y) ∈ J, u ∈ B.

Then the IVP (4)− (6) has at least one solution on (−∞, a]× (−∞, b].

Proof. Consider the operator N1 : Ω → P(Ω) defined by

(N1u)(x, y) =

=





h ∈ Ω : h(x, y)=





φ(x, y), (x, y)∈ J̃ ,
µ(x, y) + g(x, y, u(x,y))− g(x, 0, u(x,0))
−g(0, y, u(0,y)) + g(0, 0, u(0,0))
+ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y−t)r2−1

f(s, t)dtds, (x, y)∈J,

where f ∈ SF,u.
In analogy to Theorem 4.5, we consider the operator P1 : C0 → P(C0)

defined by

(P1u)(x, y) =

=





h∈Ω : h(x, y)=





0, (x, y)∈ J̃ ,
g(x, y, w(x,y) + v(x,y))
−g(x, 0, w(x,0) + v(x,0))
−g(0, y, w(0,y)

+v(0,y)) + g(0, 0, w(0,0) + v(0,0))
+ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y−t)r2−1

f(s, t)dtds, (x, y)∈J,

where f ∈ SF,w+v. We shall show that the operator P1 is continuous and
completely continuous. Using (H3) it suffices to show that the operator
P2 : C0 → P(C0) defined by,

(P2u)(x, y) =

=



 h∈Ω : h(x, y)=





0, (x, y)∈ J̃ ,
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1

f(s, t)dtds, (x, y)∈J,

is continuous and completely continuous. This was proved in Theorem 4.5.
We now show there exists an open set U ⊆ C0 with w ∈ λP1(w), for
λ ∈ (0, 1) and w ∈ ∂U. Let w ∈ C0 and w ∈ λP1(w) for some 0 < λ < 1.
Thus for each (x, y) ∈ J,
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w(x, y) =λ[g(x, y, w(x,y) + v(x,y))− g(x, 0, w(x,0) + v(x,0))−
−g(0, y, w(0,y) + v(0,y)) + g(0, 0, w(0,0) + v(0,0))]+

+
λ

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

where f ∈ F (x, y, w + v). Then

‖w(x, y)‖ ≤ 4d1‖w(x,y) + v(x,y)‖B +
l∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+

+
1

Γ(r1)Γ(r2)

x∫

0

y∫

0

(x− s)r1−1(y − t)r2−1l(s, t)‖w(s,t) + v(s,t)‖Bdtds.

Using the above inequality and the definition of z we have that

‖z‖∞ ≤ R1 +
R1δ(r1, r2)Kl∗∗ar1br2

(1− 4d1K)Γ(r1 + 1)Γ(r2 + 1)
:= L,

where

R1 =
1

1− 4d1K

[
8d2K +

Kl∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

]
,

and

l∗∗ =
l∗

1− 4d1K
.

Then

‖w‖∞ ≤ 4d1‖φ‖B + 8d2 + 4Ld1 +
ar1br2 l∗(1 + L)

Γ(r1 + 1)Γ(r2 + 1)
:= L∗.

Set
U1 = {w ∈ C0 : ‖w‖(a,b) < L∗ + 1}.

By Theorem 2.5 and our choice of U1, there is no w ∈ ∂U such that w ∈
λP2(w), for λ ∈ (0, 1). As a consequence of the nonlinear alternative of
Leray-Schauder type [19], we deduce that N1 has a fixed point which is a
solution to problem (4)-(6). ¤

5. An Example

As an application of our results we consider the following partial hyper-
bolic functional differential inclusion of the form

(cDr
0u)(x, y) ∈ F (x, y, u(x,y)), if (x, y) ∈ J := [0, 1]× [0, 1], (14)

u(x, y) = φ(x, y), (x, y) ∈ J̃ , (15)
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where J̃ := (−∞, 1]× (−∞, 1]\J. Let γ ≥ 0 and consider the space

Bγ = {u ∈ C((−∞, 0]× (−∞, 0],R) : lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) exists in R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let u : (−∞, 1] × (−∞, 1] → R such that u(x,y) ∈Bγ for (x, y) ∈E :=
[0, 1]× {0} ∪ {0} × [0, 1], then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−x+η−y)u(θ, η) =

= e−γ(x+y) lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η)

<∞.

Hence u(x,y) ∈ Bγ . Finally we prove that

‖u(x,y)‖γ = K sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}+
+M sup{‖u(s,t)‖γ : (s, t) ∈ E(x,y)},

where K = M = 1 and H = 1.
If x + θ ≤ 0, y + η ≤ 0 we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]× (−∞, 0]},
and if x + θ ≥ 0, y + η ≥ 0 then we have

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.
Thus for all (x + θ, y + η) ∈ [0, 1]× [0, 1], we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]× (−∞, 0]}+
+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.

Then

‖u(x,y)‖γ = sup{‖u(s,t)‖γ : (s, t) ∈ E}+
+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.

(Bγ , ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.
Set

F (x, y, u(x,y)) = {u ∈ R : f1(x, y, u(x,y)) ≤ u ≤ f2(x, y, u(x,y))},
where f1, f2 : [0, 1] × [0, 1] × Bγ → R. We assume that for each (x, y) ∈
J, f1(x, y, .) is lower semi-continuous (i.e, the set {z ∈ Bγ : f1(x, y, z) > ν}
is open for each ν ∈ R), and assume that for each (x, y) ∈ J, f2(x, y, .) is
upper semi-continuous (i.e the set {z ∈ Bγ : f2(x, y, z) < ν} is open for
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each ν ∈ R). Assume that there are l ∈ L∞(J,R+) and Ψ : [0,∞) → (0,∞)
continuous and nondecreasing such that

max(|f1(x, y, z)|, |f2(x, y, z)|) ≤ l(x, y)Ψ(|z|),
for a.e. (x, y) ∈ J and all z ∈ Bγ .

It is clear that F is compact and convex valued, and it is upper semi-
continuous (see [14]). Since all the conditions of Theorem 4.5 are satisfied,
problem (14)-(15) has at least one solution defined on (−∞, 1]× (−∞, 1].
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