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SOLUTION OF THE MIXED PROBLEM OF THE PLANE

THEORY OF ELASTICITY FOR A MULTIPLY

CONNECTED DOMAIN WITH PARTIALLY UNKNOWN

BOUNDARY IN THE PRESENCE OF AXIAL SYMMETRY

N. T. ODISHELIDZE

Abstract. In the present paper we consider the problem of the plane
theory of elasticity for the multiply connected domain S, a square,
weakened by unknown equi-strong holes, four of which, the same
ones, lie symmetrically with respect to the segments connecting midde
points of the opposite square sides, while the fifth hole has a point of
intersection of these segments and is symmetric to them and to the
coordinate axes. The vertices of the square lie on the coordinate axes,

and their vicinities are cut out by the equal smooth arcs, symmetric
to the coordinate axes.

To every segment of the broken line of the elastic body are applied
absolutely smooth, with rectilinear bases, stamps which are under
action of the force P . Unknown equi-strong parts of the boundary
are free from external forces. Using the method of the theory of
functions of a complex variable the equi-strong parts of the boundary
and a stressed state of the body are defined.

îâäæñéâ. à�éëçãèâñèæ� �îðõâèæ áîâç�áë�æï �éëù�ê� éî�ãè�á

�éñèæ S �îæï�åãæï, çã�áî�ðæï�åãæï, öâïñïðâ�ñèï å�ê��î�á

éðçæùâ ýãîâèâ�æå, îëéâèå�à�ê ëåýæ ýãîâèæ ðëèæ� á� ïæéâðîæ-

ñèæ� éëìæîá�ìæîâ àãâîáâ�æï öñ� ûâîðæèâ�æï öâé�âîåâ�âèæ éë-

ê�çãâåâ�æï éæé�îå. éâýñåâ ýãîâèæ öâæù�ãï é�å à�á�çãâåæï ûâî-

ðæèï á� ïæéâðîæñèæ� �é éëê�çãâåâ�æï� á� çëëîáæê�ðå� �âî-

úâ�æï éæé�îå. çã�áî�ðæï ûãâîëâ�æ éáâ��îâë�âê çëëîáæê�ðå�

�âîúâ�äâ á� é�åæ éæá�éëâ�æ �éëüîæèæ� çëëîáæê�ðå� �âîúâ�æï

ïæéâðîæñèæ ðëèæ ïæáæáæï àèñãæ îç�èâ�æå.

ï�ä�ãîæï ûîòæã éëê�çãâåâ�äâ éëáâ�ñèæ� ��ïëèñðñî�á àèñ-

ãæ éõ�îæ öð�éìâ�æ ïûëîý�äëã�êæ òñúââ�æå, îëéèâ�äâù éëáâ�ñèæ�

ú�è� P . ï�úæâ�âèæ å�ê��î�áéðçæùâ ï�ä�ãîæï ê�ûæèâ�æ å�ãæïñ-

ò�èêæ �îæ�ê à�îâöâ äâéëóéâáâ�æï�à�ê. çëéìèâóïñîæ ùãè�áæï òñ-

êóùææï åâëîææï �ì�î�ðæï à�éëõâêâ�æå à�êæï�ä�ãîâ�� ï�ä�ãîæï

å�ê��î�á éðçæùâ ê�ûæèâ�æ á� ïýâñèæï á�ú��ñèæ éáàëé�îâë��.
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The boundary value problems of the plane theory of elasticity for infi-
nite plates with weakened unknown equi-strong holes when constant normal
stresses act on the hole boundary and forces are applied at infinity, have
been studied in [1,5,12,13], but analogous problems of bending were consid-
ered in [6].

The case dealing with a finite domain when some part of its boundary
is unknown equi-strong, while the remaining portion of the boundary is a
broken line, is investigated in [3,4].

In the present work we consider the problem of plane elasticity for a
square which is weakened by five holes, and the vicinities of the angle vertices
are cut out by equal unknown equi-strong arcs. The boundary conditions
of the third problem are assigned on the linear segments.

The third problem for a polygon is solved in [10,11], but for a doubly
connected domain bounded by a broken line it is considered in [2].

1. Statement of the Problem and the Method of Its Solution

Let a homogeneous isotropic elastic body on a complex plane z = x+ iy

occupy a multiply connected domain S, the square, which is weakened by
unknown equi-strong holes, four of which, the same ones, lie symmetrically
with respect to the segments connecting middle points of opposite sides of
the square, while the fifth hole has the point of intersection of these segments
and is symmetric with respect to them and to the coordinate axes.

Fig. 1



SOLUTION OF THE MIXED PROBLEM 99

Assume that the square vertices lie on the coordinate axes, and their
vicinities are cut out by equal smooth arcs which are symmetric with respect
to the coordinate axes (Fig. 1).

Assume that the side length of the square is 2a.
Let to every link of the broken line, the outer boundary of the given

elastic body, be applied absolutely smooth rigid stamps with rectilinear
bases which are under action of the force P . Under the above assumptions,
the normal displacement of every link of the broken line is νn = ν = const.
The unknown parts of the boundary are free from external forces. On the
boundary of the domain S the tangential stress τns = 0 .

We formulate the following problem: Find a stressed state of the body
and unknown parts of the boundary under the condition that tangential
normal stress σs takes on them constant value σs = K = const.

Since the problem is axially symmetric, therefore on the segments [A1, A2],
[A3, A4], [A5, A6], [A7, A8], the normal displacements and tangential stesses
νn = τns = 0. To study the above-posed problem it suffices to consider
a curvilinear polygon A1A2A3A4A5A6A7A8A9A10 which we denote by D.
Introduce the notation

Γ1 = [A1, A2], Γ2 = [A3, A4], Γ3 = [A5, A6], Γ4 = [A7, A8],

Γ5 = [A9, A10], Γ6 = [A10, A1], Γ =

6
⋃

j=1

Γj ,

γ1 = A2A3, γ2 = A3A4, γ3 = A6A7, γ4 = A9A10, γ =

4
⋃

j=1

γj .

By P1

2 and P2

2 we denote principal vectors of normal stresses applied on
Γ1 and Γ2, respectively:

∫

Γ1

σn ds =
P1

2
,

∫

Γ2

σn ds =
P2

2
.

Since Γ5 ‖Γ1 and Γ5 ‖Γ2 the principal vector of the normal stress
∫

Γ2

σn ds = P2

2 acts on Γ5, in view of equilibrium of the cut out body D,

we have
∫

Γ1

σn ds+

∫

Γ2

σn ds =

∫

Γ5

σn ds =
P

2
.

Because of the symmetry of D, we obtain
∫

Γ2

σn ds =

∫

Γ3

σn ds =
P2

2
,

∫

Γ1

σn ds =

∫

Γ4

σn ds =
P1

2
,

and analogously, just as above, P1

2 + P2

2 = P
2 .
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The boundary conditions of the problem can be written as follows:

νn =

{

0, t ∈ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

ν, t ∈ Γ5 ∪ Γ6,
(1.1)

τns = 0, t ∈ Γ ∪ γ, (1.2)

σn =
P

2
, t ∈ Γ5 ∪ Γ6, σs = K, t ∈ γ, (1.3)

where σn is the normal stress.
The affixes of the points Ak, k = 1, 10 we denote by the same letters.
Owing to the well-known Kolosov-Muskhelishvili’s formulas [8], the solu-

tion of the above-formulated problem is reduced to finding two holomorphic
functions ψ and ϕ in the domain D with the following boundary conditions:

Re e−ia(t)
(

χϕ(t) − tϕ′(t) − ψ(t)
)

= 2µ νn(t), t ∈ Γ, (1.4)

Re e−ia(t)
(

ϕ(t) + tϕ′(t) + ψ(t)
)

= C(t), t ∈ Γ, (1.5)

ϕ(t) + tϕ′(t) + ψ(t) = B(t), t ∈ γ, (1.6)

Re ϕ′(t) =
σn + σs

4
=
K

4
, t ∈ γ, (1.7)

where χ and µ are the elastic constants, α(t) is the angle made by the outer
normal to Γ and the Ox-axis. The coordinate abscissa of the point t counted
from the point A1 we denote by s

α(t) = αk, t ∈ Γk, k = 1, 6, α1 = α2 =
π

4
,

α3 = α4 =
3π

4
, α5 =

5π

4
, α6 =

7π

4
,

(1.8)

C(t) = Re
(

e−iα(t)B(t)
)

, B(t) = i

( t
∫

A1

σn(t0) e
iα(t0)ds0 −

P

2
e

π
4

i

)

.

Taking into account (1.8), we obtain

B(t) =



































−P2

2
e

π
4

i i, t ∈ γ1,

0, t ∈ γ2,

−P2

2
e

π
4

i, t ∈ γ3,

−P2

2
e

π
4

i (i+ 1), t ∈ γ4,

C(t) =







0, t ∈ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,
P

2
, t ∈ Γ5 ∪ Γ6.

(1.9)
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Let t ∈ Γk, k = 1, 6, then t − Ak = i|t − Ak|eiαk . Thus we have
Re t e−iα(t) = Re e−iα(t)A(t), where A(t) is the piecewise constant func-
tion, A(t) = Ak, t ∈ Γk, k = 1, 2, 3, 4, 5, 6.

The functions ϕ′(z) and ψ(z) are continuously extendable on the bound-
ary of the domainD everywhere, except possibly of the vertices of the broken
lines A2, A3, A4, A5, A6, A7, A9, A10, and in their vicinities are fulfilled the
conditions of the type

|ϕ′(z)| < M |z −Ak|−δk , |ψ(z)| < M |z −Ak|−δk , (1.10)

where 0 ≤ δk <
1
2 , k = 2, 3, 4, 5, 6, 7, 9, 10, M > 0.

Summing up equations (1.4) and (1.5), differentiating with respect to the
coordinate abscissa s, and taking into account that νn(t) is the piecewise
constant function, we obtain

Im ϕ′(t) = 0, t ∈ Γ0. (1.11)

The conditions (1.7) and (.11) is, in fact, the Keldysh-Sedov’s problem [7]:

Re
(

ϕ′(t) − K

4

)

= 0, t ∈ γ,

Im
(

ϕ′(t) − K

4

)

= 0, t ∈ Γ.

On the basis of the conditions (1.10) it is proved that the Keldysh-Sedov’s
problem has a unique solution [7]

ϕ′(z) =
K

4
,

whence

ϕ(z) =
K

4
z. (1.12)

Here we neglect the constant summand.
Substituting the values B(t), C(t), ϕ(t) defined by formulas (1.9) and

(1.12) into the boundary conditions (1.5)–(1.6), we get

Re

[

e−α(t)

(

k

2
t+ ψ(t)

)]

=







0, t ∈ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,
P

2
, t ∈ Γ5 ∪ Γ6,

(1.13)

e−
π
4

i

(

k

2
t+ ψ(t)

)

= B(t) =



































−P2

2
i, t ∈ γ1,

0, t ∈ γ2,

−P2

2
, t ∈ γ3,

−P
2

(i+ 1), t ∈ γ4,

(1.14)

Re
[

e−αjtt
]

=

{

0, t ∈ Γj , j = 1, 2, 3, 4,

−a, t ∈ Γ5 ∪ Γ6.
(1.15)
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Taking into account (1.8), we rewrite the conditions (1.13), (1.14) and
(1.15) in the form

Re

[

k

2
e−

π
4

i t+ e
π
4

i ψ(t)

]

=



















0, t ∈ Γ1 ∪ Γ2 ∪ γ1 ∪ γ2,

−P
2
, t ∈ Γ5 ∪ γ4,

−P2

2
, t ∈ γ3,

(1.16)

Im

[

e−
π
4

i k

2
t− e

π
4

i ψ(t)

]

=



















0, t ∈ Γ3 ∪ Γ4 ∪ γ2 ∪ γ3,

−P
2
, t ∈ Γ6 ∪ γ4.

−P2

2
, t ∈ γ1,

(1.17)

Re
[

e−
π
4

i t
]

=

{

0, t ∈ Γ1 ∪ Γ2,

−a, t ∈ Γ5,
(1.18)

Im
[

e−
π
4

i t
]

=

{

0, t ∈ Γ3 ∪ Γ4,

−a, t ∈ Γ6.
(1.19)

Adding equality (1.19) multiplied by k, and equality (1.17) with the
changed sign, we find that

Im

[

k

2
e−

π
4

i t+ ψ(t) e
π
4

i

]

=







0, t ∈ Γ3 ∪ Γ4,
P

2
− ak, t ∈ Γ6.

(1.20)

Analogously, equalities (1.18) and (1.16) yield

Re

[

k

2
e−

π
4

i t− ψ(t) e
π
4

i

]

=







0, t ∈ Γ1 ∪ Γ2,
P

2
− ak, t ∈ Γ5.

(1.21)

Let the function z = ω(ζ), ζ = ξ + iη map conformally the domain D

onto the upper half-plane Im ζ > 0. By aj we denote the image of the point
Aj , j = 1, 10. Assume that a9 = −1, a10 = 1, and the middle point of the
arc A4A5 turns into ζ = ∞.

Since the domain is symmetric with respect to the Oy-axis, −a1 = a8,
−a2 = a7, −a3 = a6, −a4 = a5.

Denote by

Φ(ζ) =
k

2
e−

π
4

i ω(ζ) + e
π
4

i ψ(ω(ζ)), (1.22)

Ψ(ζ) =
k

2
e−

π
4

i ω(ζ) − e
π
4

i ψ(ω(ζ)). (1.23)
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Taking into account (1.22) and (1.23), the boundary conditions (1.16),
(1.17), (1.1.20) and (1.21) take the form

Φ(ξ) + Φ(ξ) =











0, ξ ∈ (−∞,−a4) ∪ (a1,∞),

−P ξ ∈ (−a1, 1),

−P2 ξ ∈ (−a3,−a2),

Φ(ξ) − Φ(ξ) =

{

0, ξ ∈ (−a4,−a3) ∪ (−a2,−a1),

(P − 2ak)i, ξ ∈ (1, a1),

(1.24)

Ψ(ξ) + Ψ(ξ) =

{

0, ξ ∈ (a1, a2) ∪ (a3, a4),

P − 2ak, ξ ∈ (−a1,−1),

Ψ(ξ) − Ψ(ξ) =











0, ξ ∈ (−∞,−a1) ∪ (a4,∞),

−Pi ξ ∈ (−1, a1),

−P2i ξ ∈ (a2, a3).

(1.25)

The solution of the boundary problems (1.24), (1.25) is given by the
Keldysh-Sedov’s formula ([12],§95)

Φ(ζ) =
X1(ζ)

2πi

[ −a2
∫

−a3

−P2 dξ

X1(ξ)(ξ − ζ)
−

1
∫

−a1

P dξ

X1(ξ)(ξ − ζ)
+

+

a1
∫

1

(P − 2ak)i dξ

X1(ξ)(ξ − ζ)
− C

]

, (1.26)

Ψ(ζ) =
X2(ζ)

2πi

[ −1
∫

−a1

(P − 2ak)i dξ

X2(ξ)(ξ − ζ)
−

a1
∫

−1

Pi dξ

X2(ξ)(ξ − ζ)
+

+

a1
∫

a2

−P2i dξ

X2(ξ)(ξ − ζ)
+ Ci

]

, Im ζ > 0, (1.27)

where

X1(ζ) =

√

(ζ + a4)(ζ + a2)(ζ − 1)

(ζ + a3)(ζ + a1)(ζ − a1)
, Im ζ > 0, (1.28)

X2(ζ) =

√

(ζ + 1)(ζ − a2)(ζ − a4)

(ζ + a1)(ζ − a1)(ζ − a3)
, Im ζ > 0. (1.29)

Under X1(ζ), X2(ζ) we mean the branch of the holomorphic function in
the upper half-plane which at infinity takes the value

X1(∞) = X2(∞) = 1.
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It can be easily shown that

X1(ξ) =

{

|X1(ξ)|, ξ ∈ (−∞,−a4) ∪ (−a3,−a2) ∪ (−a1, 1),

−i|X1(ξ)|, ξ ∈ (−a4,−a3) ∪ (−a2,−a1) ∪ (1, a1),
(1.30)

X2(ξ) =











|X2(ξ)|, ξ ∈ (−∞,−a1) ∪ (−1, a1) ∪ (a2, a3)∪
∪(a4,∞),

i|X2(ξ)|, ξ ∈ (−a1,−1) ∪ (a1, a2) ∪ (a3, a4),

(1.31)

|X1(ξ)| = |X2(−ξ)|. (1.32)

Taking into account equalities (1.30) and (1.31), we rewrite formulas
(1.26) and (1.27) in the form

Φ(ζ) =
X1(ζ)i

2π

[ −a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ − ζ)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ζ)
−

− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ζ)
+ C

]

, (1.33)

Ψ(ζ) = − X2(ζ)

2πi

[ a1
∫

−a1

P dξ

|X2(ξ)|(ξ − ζ)
+

a3
∫

a2

P2 dξ

|X2(ξ)|(ξ − ζ)
−

− 2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − ζ)
− C

]

, Im ζ > 0. (1.34)

2. Investigation of the Solution of the Problem and

Construction of Graphs of the Unknown Part of the

Boundary

Since the functions X1(ζ), X2(ζ) have singularities of 0.5 order at the
points ξ = ±a1,±a3, therefore for the functions Φ(ζ), Ψ(ζ) to be bounded
in the vicinity of the points −a1, a1, −a3, a3, it is necessary and sufficient
that the following conditions be fulfilled:
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−a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ + a1)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ + a1)
−

−2ak

a1
∫

1

dξ

|X1(ξ)|(ξ + a1)
+ C = 0,

−a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ − a1)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − a1)
−

−2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − a1)
+ C = 0,

−a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ + a3)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ + a3)
−

−2ak

a1
∫

1

dξ

|X1(ξ)|(ξ + a3)
+ C = 0

(2.1)

and


































































































































a1
∫

−a1

P dξ

|X2(ξ)|(ξ − a1)
+

a3
∫

a2

P2 dξ

|X2(ξ)|(ξ − a1)
−

−2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − a1)
− C = 0,

a1
∫

−a1

P dξ

|X2(ξ)|(ξ + a1)
+

a3
∫

a2

P2 dξ

|X2(ξ)|(ξ + a1)
−

−2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ + a1)
− C = 0,

a1
∫

−a1

P dξ

|X2(ξ)|(ξ − a3)
+

a3
∫

a2

P2 dξ

|X2(ξ)|(ξ − a3)
−

−2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − a3)
− C = 0.

(2.2)

If in the condition (2.2) we replace ξ by −ξ and take into account (1.32),
then we will obtain the condition coinciding with (2.1) which is, in fact, a
system of three equations with unknown parameters a1, a2, a3, C, k, P2.
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Solving the system with respect to k and C, P2 for fixed a1, a2, a3, we
obtain the solutions of the problem and hence the equations of unknown
parts of the boundary.

From equalities (1.22), (1.23) we have

ω(ζ) =
Φ(ζ) + Ψ(ζ)

k
e

π
4

i, Im ζ > 0. (2.3)

If we pass in formulas (1.33) and (1.34) to the limit ζ → ξ0 ∈ (−1, 1) and
use the Sokhotskii-Plemelj formulas, then we will get

Φ(ξ0) = iΦ0(ξ0) −
P

2
, Ψ(ξ0) = Ψ0(ξ0) −

P

2
i, (2.4)

where

Φ0(ξ0) =
X1(ξ0)

2π

[ −a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ − ξ0)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ξ0)
−

− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ξ0)
+ C

]

, ξ0 ∈ (−1, 1), (2.5)

Ψ0(ξ0) = − X2(ξ0)

2π

[ a3
∫

a2

P2 dξ

|X2(ξ)|(ξ − ξ0)
+

a1
∫

−a1

P dξ

|X2(ξ)|(ξ − ξ0)
−

− 2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − ξ0)
− C

]

, ξ0 ∈ (−1, 1). (2.6)

The integrals
1
∫

−1

P dξ
|X1(ξ)|(ξ−ξ0)

and
1
∫

−1

P dξ
|X2(ξ)|(ξ−ξ0)

appearing in the second

integrals of equalities (2.5) and (2.6) are singular and they exist in the sense
of the Cauchy principal value.

If in equality (2.5) we replace ξ0 by −ξ0 and ξ by −ξ, then using formula
(1.32) we will obtain

Φ0(−ξ0) = Ψ0(ξ0). (2.7)

Equation of the arc γ4 is given by the formula

t = ω(ξ0) =
Φ(ξ0) + Ψ(ξ0)

k
e

π
4

i, ξ0 ∈ (−1, 1).

Inserting in the above formula the values Φ(ξ0) and Ψ(ξ0) defined by
equalities (2.4), and taking into account (2.7), we obtain

t = ω(ξ0) =
Φ(−ξ0) − Ψ(ξ0)

2k

√
2+i

Φ(ξ0) + Ψ(−ξ0) − P

2k

√
2, (2.8)

ξ0 ∈ (−1, 1).

Obviously, the arc γ2 is symmetric with respect to the Oy-axis.
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Analogously we can obtain equations for the arcs γ1 and γ3, if in formulas
(1.33) and (1.34) we pass to the limits ζ → ξ0 ∈ (a2, a3) and ζ → ξ0 ∈
(−a3,−a2) and make use of Sokhotskii-Plemelj formulas. Thus we get

Φ(ξ0) = iΦ0(ξ0), Ψ(ξ0) = Ψ0(ξ0) −
P2

2
i, where ξ0 ∈ (a2, a3) for γ1,

Φ(ξ0)= iΦ0(ξ0) −
P2

2
, Ψ(ξ0) = Ψ0(ξ0), where ξ0 ∈ (−a3,−a2) for γ3,

Φ0(ξ0) =
X1(ξ0)

2π

[ −a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ − ξ0)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ξ0)
−

− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ξ0)
+ C

]

, (2.9)

ξ0 ∈ (a2, a3) and ξ0 ∈ (−a3,−a2),

Ψ0(ξ0) = − X2(ξ0)

2π

[ a1
∫

−a1

P dξ

|X2(ξ)|(ξ − ξ0)
+

a3
∫

a2

P2 dξ

|X2(ξ)|(ξ − ξ0)
−

− 2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − ξ0)
− C

]

, (2.10)

ξ0 ∈ (a2, a3), and ξ0 ∈ (−a3,−a2).

The equation of the arcs γ1 and γ3 is given by the formula

t = ω(ξ0) =
Φ(ξ0) + Ψ(ξ0)

k
e

π
4

i

for ξ0 ∈ (a2, a3) for the arc γ1, and for ξ0 ∈ (−a3,−a2) for the arc γ3, that
is,

t = ω(ξ0) =
Φ0(−ξ0) − Φ0(ξ0) + P2

2

2k

√
2+

+ i
Φ0(ξ0) + Φ0(−ξ0) − P2

2

2k

√
2, ξ0 ∈ (a2, a3), (2.11)

t = ω(ξ0) =
Φ0(−ξ0) − Φ0(ξ0) − P2

2

2k

√
2+

+ i
Φ0(ξ0) + Φ0(−ξ0) − P2

2

2k

√
2, ξ0 ∈ (−a3,−a2). (2.12)

Similarly, the equation of the arc γ2 is given by the formula

t = ω(ξ0) =
Φ0(−ξ0) − Φ0(ξ0)

2k

√
2 + i

Φ0(ξ0) + Φ0(−ξ0)
2k

√
2, (2.13)

ξ0 ∈ (−∞,−a4) ∪ (a4,∞),
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Φ0(ξ0) =
X1(ξ0)

2π

[ −a2
∫

−a3

P2 dξ

|X1(ξ)|(ξ − ξ0)
+

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ξ0)
−

− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ξ0)
+ C

]

,

ξ0 ∈ (−∞,−a4) ∪ (a4,∞).

Let us consider a particular case when the square is weakened only by
one equi-strong central hole, i.e., a2 = a3.

In this case the solution of the problem takes the form

Φ(ζ) =
X1(ζ)i

2π

[ a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ζ)
− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ζ)
+ C

]

, (2.14)

Ψ(ζ)= − X2(ζ)

2πi

[ a1
∫

−a1

P dξ

|X2(ξ)|(ξ − ζ)
−2ak

−1
∫

−a1

dξ

|X2(ξ)|(ξ − ζ)
−C

]

, (2.15)

Im ζ > 0,

where

X1(ζ) =

√

(ζ + a4)(ζ − 1)

(ζ + a1)(ζ − a1)
, Im ζ > 0,

X2(ζ) =

√

(ζ + 1)(ζ − a4)

(ζ + a1)(ζ − a1)
. Im ζ > 0

(2.16)

Since the functions X1(ζ) and X2(ζ) have singularities of 0.5 order at
the points ξ = ±a1, therefore for the functions Φ(ζ), Ψ(ζ) to be bounded
in the vicinity of the points a1,−a1, it is necessary and sufficient that the
following conditions be fulfilled:































a1
∫

−a1

P dξ

|X1(ξ)|(ξ + a1)
− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ + a1)
+ C = 0,

a1
∫

−a1

P dξ

|X1(ξ)|(ξ − a1)
− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − a1)
+ C = 0.

(2.17)

The above conditions is a system of two equations involving unknown pa-
rameters a1, C, k.
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Solving the system with respect to k and C, we obtain

k =
P

2a

a1
∫

−a1

dξ

|X1(ξ)|(ξ2 − a2
1)

a1
∫

1

dξ

|X1(ξ)|(ξ2 − a2
1)

, (2.18)

C =2ak

a1
∫

1

dξ

|X1(ξ)|(a1 + ξ)
− P

a1
∫

−a1

dξ

|X1(ξ)|(a1 + ξ)
, (2.19)

Analogously, the equation of the arc γ2 is given by the formula

t = ω(ξ0) =
Φ0(−ξ0) − Φ0(ξ0)

2k

√
2 + i

Φ0(ξ0) + Φ0(−ξ0)
2k

√
2,

ξ0 ∈ (−∞,−a4) ∪ (a4,∞), (2.20)

Φ0(ξ0) =
X1(ξ0)

2π

[ a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ξ0)
− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ξ0)
+ C

]

,

ξ0 ∈ (−∞,−a4) ∪ (a4,∞),

and the equation of the arc γ4 is given by the formula

t = ω(ξ0) =
Φ(−ξ0) − Φ0(ξ0)

2k

√
2 + i

Φ(ξ0) + Φ0(−ξ0) − P

2k

√
2, (2.21)

ξ0 ∈ (−1, 1),

where

Φ0(ξ0) =
X1(ξ0)

2π

[ a1
∫

−a1

P dξ

|X1(ξ)|(ξ − ξ0)
− 2ak

a1
∫

1

dξ

|X1(ξ)|(ξ − ξ0)
+ C

]

,

ξ0 ∈ (−1, 1).

Calculations and construction of graphs are performed by means of the
Mathcad system. The graphs are constructed for the arcs γ2 and γ4. Since
the problem is cyclically symmetric, the rest parts of the contour are con-
structed by turning the graph ω(ξ0) by the angle π

2 .
Graphs of equi-strong contours for particular cases
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Fig. 2
P = −10, a = 1, a1 = 9, a4 = 24, K = −11.289, C = 16.802.

Fig. 3
P = −10, a = 1, a1 = 19, a4 = 104, K = −10.499, C = 10.949.
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Fig. 4
P = −10, a = 1, a1 = 3, a4 = 124, K = −10.914, C = 4.007.

Fig. 5
P = −10, a = 1, a1 = 79, a4 = 104, K = −12.754, C = 29.642.
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