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THE NOETHER PROPERTY OF A REGULAR OPERATOR

WITH CONSTANT COEFFICIENTS IN A REGION

G. A. KARAPETYAN AND A. A. DARBINYAN

Abstract. In this paper we proved the criterion for the regular op-
erator with constant coefficients to be Noetherian. We show that the
index of that operator in the region is equal to zero.

îâäæñéâ. ê�öîëéöæ á�áàâêæèæ� �îâöæ éñáéæãçëâòæùæâêðâ�æ�êæ

îâàñè�îñèæ ëìâî�ðëîâ�æïåãæï êâðâîæïâñèë�æï çîæðâîæñéæ. á�éð-

çæùâ�ñèæ� �àîâåãâ �é ëìâî�ðëîæï æêáâóïæï êñèå�ê ðëèë��.

The present work is devoted to the investigation of the Noether property
of a linear differential regular operator with constant coefficients in a region.
It is proved that for the operator to be Noetherian, it is necessary and
sufficient for it to be regular. In particular, it is proved that the index of
the regular operator with constant coefficients in the region is equal to zero.

The index theory of an elliptic operator has been studied by many au-
thors. In particular, the two-dimensional theory (R2) was, to a considerable
extent, completed in 1961 by A.I. Volpert [1], who studied general bound-
ary value problems for an arbitrary elliptic system in a simply-connected
bounded region on a plane, and proved the equivalence of ellipticity and
Noetherity of these problems in spaces of sufficiently smooth functions. M.S.
Agronovich [2] proved that for a singular integro-differentail operator on a
smooth manifold to be elliptic, it is necessary and sufficient for it to be
Noetherian. L. A. Bagirov [3] has proved that if coefficients of the elliptic
operator are sufficiently smooth in Rn, then the operator in certain weight
spaces is Noetherian. However, the index theory of the regular operator
is little studied. In [4] and [5] we proved that if some of the supplemen-
tary conditions on the symbol of the operator in Rn (in the statement of
which there occur lowest terms) are fulfilled, the index of the semi-elliptical
operator in certain weighted spaces is finite.

In what follows, the use will be made of the following standard notation:
Rn is the n-dimensional Euclidean space, Zn

+ is a set of multiindices, i.e., of
vectors α = (α1, . . . , αn) with integral, nonnegative components. For x, ξ ∈
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Rn and α ∈ Zn
+ we put |α| = α1 + · + αn, α! = α1! . . . αn!, ξα = ξα1

1 . . . ξαn
n

where Dk =
1

i

∂

∂xk

i2 = −1.

Let N = {e1, . . . , eN}, ej ∈ Zn
+ (j = 1, 2, . . . , N).

Definition 1. A characteristic polytope of a set of multiindices N is caled
a smallest convex polytope R = R(N ) in Rn which contains all points of
the set N .

Definition 2. A nonempty polytope R is called complete if the origin
of coordinates Zn

+ is the vertex of R, and R has vertices on each of the
coordinate axes Zn

+, different from the origin.

The complete polytope R is called entirely perfect, if outer normals of all
(n−1)-dimensional non-coordinate faces of R have only positive coordinates.

The multiindex α ∈ R is called principal if it belongs to any (n − 1)-
dimensional non-coordinate face of the polytope R. The set of all principal
points from R we denote by ∂R.

Let R be an arbitrary entirely perfect polytope, and k be a positive
number. Suppose R0 = R\∂′R, Rk = {kα = (kα1, kα2, . . . , kαn), α ∈ R}.
By α ∈ R we mean α ∈ R ∩ Zn

+.

By Rn−1
k we denote (k = 1, 2, . . . , In−1)(n − 1)-dimensional faces of the

polytope R.
Let µk (k = 1, . . . , In−1) be such outer normal of the face of Rn−1

k for

which for all α ∈ Rn−1
k , (µk, α) = 1. By ak = (0, . . . , 0, ak, 0, . . . , 0) ∈ ∂′R

ak 6= 0 we denote the vertex of the polytope which lies on the k-th coordinate
axis. Assume γk = 1

ak
(k = 1, . . . , n), λmax = max

1≤j≤n
λj , λmin = min

1≤j≤n
λj .

For x ∈ Rn, µ = (µ1, µ2, . . . , µn) we denote |x|µ =

(

∑n
i=1 |xi|

2
µi

)
1
2

.

Definition 3. For the polytope R and for the bounded region Ω ⊂ Rn

we denote by HR(Ω) a set of measurable functions {u} with a finite norm

‖u‖
R

(Ω) ≡

(

∑

α∈R

∫

Ω

|Dαu(x)|2dx

)
1
2

, (1)

and by HR(Ω) we denote the closure of the set C∞
0 (Ω) with respect to the

norm (1).

For an open bounded cube ∆ (Ω ⊂ ∆) and for the function Φ ∈ ḢR(∆)

we denote HR(Ω, Φ) = {u ∈ HR(Ω); (u − Φ) ∈ ḢR(Ω)}.
In the sequel, it will be assumed that k is a natural number, Φ ∈

ḢR+1(∆) is a fixed function, the region Ω ⊂ Rn satisfies the condition
of the rectangle (see, for e.g., [6]), R is the entirely perfect polytope, and
all multiindices from ∂′R have even coordinates.
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We will consider the operators having only real coefficients.

Definition 4. We say that the linear differential operator P (D) =
∑

α∈R

pαDα is regular, if for some constant χ > 0

|P 0(ξ)| ≥ χ
∑

α∈∂′R

|ξα|, ∀ξ ∈ Rn,

where P 0(ξ) ≡
∑

α∈∂′R

pαξα.

Definition 5. We say that the linear bounded operator A acting from
the Banach space B1 to the Banach space B2 is Noetheria, if:

(1) a subspace of solutions of the equation Au = 0 in B1 is of finite
dimension, i.e., dimKerA < ∞;

(2) the range of values {A : B1} of the operator A in B2 is closed;
(3) the factor-space B2/{A : B1} is of finite dimension, i.e., dim CokerA

< ∞.

The difference Ind A = dimkerA−dimCokerA is called the index of the
operator A.

It is well-known from the theory of Noetherian operators that

dimKerA∗ = dimCokerA, and dimCokerA∗ = dim KerA,

where the operator A∗ is formally conjugate to A.
Let P0(D) ≡

∑

α∈∂′R palDα + p0 be the regular operator with constant
coefficients for which P0(ξ) ≡

∑

α∈∂′R pαξα + p0 6= 0 for all ξ ∈ Rn. Then
it is evident that for some constant χ > 0,

|P0(ξ)| ≥ χ

(

∑

α∈∂′R

|ξα| + 1

)

∀ξ ∈ Rn. (2)

The following theorem is known (see [7]).

Theorem 1. Let P0(D) satisfy the condition (2). Then there exists

the only one function u ∈ HRa/2

(Ω, Φ) which is a solution of the equation
P0(D)u = 0.

Corollary 1. The kernel of the operator P0(D), acting from HRk+1

(Ω, Φ)

to HRk

(Ω, Φ), is of zero dimension, i.e.,

dimKerP0 = 0.

Proof. Since HRk+1

(Ω, Φ) ⊂ u ∈ HRa/2

(Ω, Φ), from Theorem 1 it imme-
diately follows that the equation P0(D)u = 0 can have not more than one

solution in HRk+1

(Ω, Φ).
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It is not difficult to see that the operator P0(D), considered as that from

HRk+1

(Ω, Φ) to HRk

(Ω, Φ), is self-conjugate. Consequently,

dim kerP0 = 0.

By virtue of the fact that the region of values of the operator P0(D), consid-

ered as that from HRk+1

(Ω, Φ) to HRk

(Ω, Φ), is closed, the operator P0(D),

acting from HRk+1

(Ω, Φ) to HRk

(Ω, Φ), is Noetherian, and

IndP0 = dimKerP0 − dimCokerP0 = 0. �

Thus we have proved the following

Theorem 2. The operator P0(D), acting from HRk+1

(Ω, Φ) to HRk

(Ω, Φ),
is Noetherian, and its index is equal to zero.

The following theorem is known (see [2]).

Theorem 3. Let the operator A(D) be bounded from ḢRk+1

(Ω) to

ḢRk

(Ω) for which for any ε > 0 and a constant Mε > 0

‖A(D)u‖Rk(Ω) ≤ ε‖u‖Rk+1(Ω) + Mε‖u‖L2(Ω) ∀u ∈ ḢcRk+1

(Ω).

Then A(D) is the compact operator from ḢcRk+1

(Ω) to ḢcRk

(Ω).
Let P1(D) be the linear differential operator with constant coefficients of

the type

P1(D) =
∑

α∈R0

pαDα.

Theorem 4. P1(D) is the compact operator from ḢcRk+1

(Ω) to ḢcRk

(Ω).

Since for any ε > 0 and α ∈ Zn
+ α ∈ R0 (see [6], Ch. VI) there exists the

constant Cε,α > 0, such that

‖Dαu‖Rk(Ω) ≤ ε‖u‖Rk+1(Ω) + Cε,α‖u‖L2(Ω) ∀u ∈ ḢR+1(Ω),

we have

‖P1(D)u‖Rk(Ω) =

∥

∥

∥

∥

∑

α∈R0

pαDαu

∥

∥

∥

∥

Rk

(Ω) + Mε‖u‖L2(Ω) ∀u ∈ ḢR+1(Ω),

where C = card{α ∈ Zn
+; α ∈ R0} · maxα∈R0 |pα|, Mε = maxα∈R0 Cε,α.

Consequently, by Theorem 2, P1(D) is the compact operator from

ḢRk+1

(Ω) to ḢRk

(Ω).

Corollary 2. P1(D) is the compact operator from ḢRk+1

(Ω) to ḢRk

(Ω).

Proof. Let un ∈ HRk+1

(Ω, Φ) (n = 1, 2, . . . ). Then v ≡ un−Φ ∈ ḢRk+1

(Ω).
By Theorem 4, we can select from {P1(D)vn} a convergent subsequence
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{P1(D)vnk
}

(

P1(D)vnk

k→∞
−→ gv ∈ ḢRk

(Ω)
)

. But, on the other hand, we

have

P(D)unk
= P1(D)(vnk

+ Φ) =

= P1(D)vnk
+ P1(D)Φ

k→∞
−→ gv + P1(D)Φ ∈ HRk

(Ω, Φ). �

From the theory of Noether operators the following theorem is well-known
(see [8], [9], [10]).

Theorem 5. Let P (D) be the Noetherian operator, and A(D) be the com-

pact operator from HRk+1

(Ω, Φ) to HRk

(Ω, Φ). Then the operator P (D) +

A(D) from HRk+1

(Ω, Φ) to HRk

(Ω, Φ) is likewise Noetherian, and Ind(P +
A) = IndP .

Theorem 6. The index of the regular operator with constant coefficients

from HRk+1

(Ω, Φ) to HRk

(Ω, Φ) is finite and equal to zero.

Proof. Let P (D) be the linear differential regular operator with constant
coefficients. Then for any number p′0 the operator P (D) can be represented
in the form

P (D) ≡
∑

α∈R

pαDα = P0(D) + P1(D),

where P0(D) ≡
∑

α∈∂′R pαDα + p′0 and P1(D) ≡
∑

α∈∂′R0 pαDα + p′0.
Let the number p′0 be chosen in such a way that P0(ξ) 6= 0 for all ξ ∈ Rn

(this is possible on the strength of regularity and owing to the fact that the
coefficients of the operator P (D) are real).

From Theorem 2 and Corollary 2 it follows that P0(D) in the Noether

operator (Ind P = 0), and P1(D) is the compact one from HRk+1

(Ω, Φ) to

HRk

(Ω, Φ).

Consequently, by Theorem 5, the operator P (D), acting from HRk+1

(Ω, Φ)

to HRk

(Ω, Φ), is Noethrian, and its index is equal to zero.
The theorem below is well-known (see [2]). �

Theorem 7. Let P (D) =
∑

α∈R pαDα be the linear differential operator

with constant coefficients, acting from ḢRk+1

(Ω) to ḢRk

(Ω). Then for the

operator P (D) to have a finite-dimensional kernel in ḢRk+1

(Ω) and a closed

range of values in ḢRk

(Ω), it is necessary and sufficient that the inequality

‖u‖Rk+1(Ω) ≤ C
(

‖P (D)u‖Rk(Ω) + ‖u‖L2(Ω)
)

∀u ∈ ḢRk+1

(Ω),

holds; here C is some constant, not depending on the function u.
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Corollary 3. Let P (D) be the linear differential self-conjugate operator
with constant coefficients of the type

P (D) =
∑

α∈R

pαDα,

acting from ḢRk+1

(Ω) to ḢRk

(Ω). Then for the operator P (D) to be Noe-
therian, it is necessary and sufficient that the inequality

‖u‖Rk+1(Ω) ≤ C
(

‖P (D)u‖Rk(Ω) + ‖u‖L2(Ω)
)

∀u ∈ ḢRk+1

(Ω),

holds; here C is aome constant, not depending on the function u.

Corollary 4. Let P (D) be the linear differential regular operator with

constant coefficients, acting from ḢRk+1

(Ω) to ḢRk

(Ω). Then for some
constant C > 0, the following inequality holds:

‖u‖Rk+1(Ω) ≤ C
(

‖P (D)u‖Rk(Ω) + ‖u‖L2(Ω)
)

∀u ∈ ḢRk+1

(Ω).

The proof follows from Theorems 6 and 7.

Theorem 8. Let P (D) =
∑

α∈R pαDα be the linear differential operator

with constant coefficients, acting from ḢRk+1

(Ω) to ḢRk+1

(Ω), for which
for some constant C > 0,

‖u‖Rk+1(Ω) ≤ C
(

‖P (D)u‖Rk(Ω) + ‖u‖L2(Ω)
)

∀u ∈ ḢRk+1,v

(Ω). (3)

Then the operator P (D) is regular.

Proof. Let Rn−1
j j = 1, . . . , In−1 be one of the (n − 1)-dimensional faces of

the polytope R, and µj be its outer normal. Let M be an arbitrary positive

number, and ξ ∈ Rn. Assume M
µj

k+1 ξ =
(

M
µ

j
1

k+1 ξ1, M
µ

j
2

k+1 ξ2, . . . , M
µ

j
n

k+1 ξn

)

.

Let ϕ ∈ C∞
0 (Ω) and ‖ϕ‖L2(Ω) = 1. Denote uµj (x) ≡ e

i

(

M
µj

k+1
ξ,x

)

ϕ(x). Let

(µj , α) ≤ k + 1 α ∈ Zn
+. Then we have

Dαuµj (x) = Dα
(

e
i

(

M
µj

k+1
ξ,x

)

ϕ(x)
)

= ξαM
(µj ,α)

k+1 e
i

(

M
µj

k+1
ξ,x

)

ϕ(x)+

+
∑

0≤β<α

ξβM
µj,β
k+1 e

i

(

M
µj

k+1
ξ,x

)

Dα−βϕ(x) =

= ξαM
µj ,β
k+1 e

i

(

M
µj

k+1
ξ,x

)

ϕ(x)(1 + o(1)), for M → ∞

whence

DαPj(D)uµj (x)=ξαM
µj ,α
k+1 e

i

(

M
µj

k+1
ξ,x

)

∑

β∈Rn−1
j

pβξβM
µj,β
k+1 ϕ(x)(1 + o(1)),
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where Pj(D) is the suboperator of the operator P (D), which corresponds

to the face Rn−1
j . Substitution into (3) yields

∑

α∈(Rn−1
j )k+1

|ξα|M
µj,α
k+1 ‖ϕ‖L2

(Ω)(1 + o(1)) =
∑

α∈(Rn−1
j )k+1

‖Dαuµj‖L2
(Ω) ≤

≤
∑

α∈(R)k+1

‖Dαuµj‖L2
(Ω)≤C

(

∑

α∈(R)k

‖DαP (D)u
µj ‖L2

(Ω) + ‖uµj‖L2
(Ω)

)

=

= C

(

∑

α∈(R)k

∥

∥

∥

∥

Dα
∑

α∈Rn−1
j

p
β
Dαu

µj

∥

∥

∥

∥

L2

(Ω)+

+
∑

α∈(R)k

∥

∥

∥

∥

Dα
∑

β∈R\Rn−1
j

p
β
Dαu

µj

∥

∥

∥

∥

L2

(Ω) + ‖u
µj ‖L2

(Ω)

)

=

(4)

= C

(

∑

α∈(R)k

|ξα|M
µj,α
k+1

∣

∣

∣

∣

∑

β∈Rn−1
j

p
β
ξβM

µj,β
k+1

∣

∣

∣

∣

)

‖ϕ‖
L2

(Ω)(1 + o(1))+

+
∑

α∈(R)k

|ξα|M
µj,α
k+1

∣

∣

∣

∣

∑

β∈Rn−1
j

p
β
ξβM

µj ,β
k+1

∣

∣

∣

∣

)

‖ϕ‖
L2

(Ω)(1 + o(1)) + ‖ϕ‖
L2

(Ω).

Since the characteristic polytope R of the operator P (D) is entirely perfect,
it follows for any β ∈ Zn

+ ∩ (R\Rn−1
j ) that (µj , β) < 1. Consequently,

tending in (4) M → ∞ and dividing hitherto by M(‖ϕ‖L2
(Ω) = 1), we

obtain
∑

α∈∂′(Rn−1
j )k+1

|ξα| ≤ C
∑

α∈∂′(Rn−1
j )k

|ξα|

∣

∣

∣

∣

∑

α∈∂′Rn−1
j

pβξβ

∣

∣

∣

∣

and hence
∑

α∈∂′Rn−1
j

|ξα| < C|P 0
j (ξ)|, (5)

where

P 0
j (ξ) =

∑

α∈∂′Rn−1
j

pαξα.

It follows from (5) that the suboperator Pj(D) of the operator P (D),

corresponding to the face Rn−1
j , is regular. Since j is arbitrary, we find

that all suboperators Pj(D) (j = 1, 2, . . . , In−1) of the operator P (D) are
regular. This implies that the operator P (D) is regular (see [11]). �

Lemma 1. Let P (D) =
∑

α∈cR p
α
Dα be the linear differential operator

with constant coefficients, for which for some constant C > 0,

‖v‖Rk+1(Ω) ≤ C
(

‖P (D)v‖
Rk

(Ω) + ‖v‖L2(Ω)
)

. (6)
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Then for some (maybe another one) constant C1 > 0 the inequality

‖u‖Rk+1(Ω)≤C1

(

‖P (D)u‖
Rk

(Ω)+‖u‖L2(Ω)+‖Φ‖
Rk+1

)

∀u∈HRk+1

(Ω, Φ).

holds.

Proof. By virtue of the triangle inequality, we have

‖u‖k+1
R

(Ω) − ‖Φ‖
Rk+1

(Ω) ≤ ‖v‖k+1
R

(Ω),

‖P (D)v‖k
R

(Ω) ≤ ‖P (D)u‖k
R

(Ω) + ‖P (D)Φ‖k
R

(Ω) (7)

‖v‖L2
(Ω) ≤ ‖u‖L2

(Ω) + ‖Φ‖L2
(Ω),

where v ≡ u − Φ
(

v ∈ ḢRk+1

(Ω)
)

.

From the estimates (6) and (7), taking into account that Φ is the fixed
function, we have

‖u‖
Rk+1

(Ω) ≤ ‖v‖
Rk+1

(Ω) + ‖Φ‖
Rk+1

(Ω) ≤

≤ C
(

‖P (D)v‖
Rk

(Ω) + ‖v‖
L2

(Ω)
)

+ ‖Φ‖Rk+1(Ω) ≤

≤ C
(

‖P (D)u‖
Rk

(Ω) + ‖P (D)Φ‖
Rk

(Ω)+

+‖u‖L2
(Ω) + ‖Φ‖

L2(Ω)

)

+ ‖Φ‖Rk+1(Ω) ≤

≤ C
(

‖P (D)u‖
Rk

(Ω) + ‖u‖
L2

(Ω)
)

+ ‖Φ‖Rk+1(Ω). �

Corollary 5. Let P (D) be the linear differential regular operator with

constant coefficients, acting from HRk+1

(Ω, Φ) to HRk

(Ω, Φ). Then for
some constant C > 0 the inequality

‖u‖Rk+1(Ω)≤C(‖P (D)u‖k
R

(Ω)+‖u‖L2
(Ω)+‖Φ‖k+1

R

(Ω)) ∀u ∈ HRk+1

(Ω, Φ).

holds.

Corollary 6. Let P (D) =
∑

α∈R pαDα be the linear differential operator

with constant coefficients, acting from HRk+1

(Ω, Φ) to HRk+1

(Ω, Φ), for
which for some constant C > 0,

‖u‖Rk+1(Ω)≤C(‖P (D)u‖k
R

(Ω)+‖u‖
L2

(Ω)+‖Φ‖k+1
R

(Ω)) ∀u ∈ HRk+1

(Ω, Φ).

Then the operator P (D) is regular.

The proof follows immediately from Theorem 8.
Let A be the bounded operator from the Banach space B1 into the Ba-

nach space B2. The bounded operator R1 from B2 to B1 is called the left
regularizer for A, if

R1 = I1 + T1,
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where T1 and I1 are, respectively, the unit and the compact operators in
B2.

The bounded operator R2 from B2 to B1 is called the right regularizer
for A, if

AR2 = I2 + T2,

where T2 and I2 are, respectively, the unit and the compact operators in
B2.

If the operator A possesses the left regularizer R1 and the right one R2,
then

R1AR2 = R1(I2 + T2) = (I1 + T1)R2,

whence

R1 − R2 = T1R2 − R1T2.

Thus R1 − R2 is the compact operator from B2 to B1. This implies that
in this case each of the operators R1 and R2 is simultaneously the left and
the right regularizer. The operator which is simultaneously the left and the
right regularizer, is called the regularizer for A.

The theorem below is well-known from the theory of Noether operators
(see [8]).

Theorem 9. Let A be the bounded operator from B1 to B2. Then:
(1) if a possesses the left regularizer R1, then the kernel of the operator

A in B1 is finite-dimensional;
(2) if A possesses the right regularizer R2, then the region of values of

the operator A is closed in B2, and there takes place the finite-dimensional
co-kernel.

Theorem 10. The closed linear operator is Noetherian, if and only if it
possesses the bounded left and right regularizer.

The Basic Theorem. Let P (D) =
∑

α∈R

pαFα be the linear differential

operator with constant coefficients, acting from HRk+1

(Ω, Φ) to HRk

(Ω, Φ).
Then the following conditions are equivalent:

(1) P (D) is the regular operator;

(2) P (D) is the Noether operator from HRk+1

(Ω, Φ) to HRk

(Ω, Φ);
(3) for some constant C > 0 the estimate

‖u‖
Rk+1

(Ω) ≤

≤ C
(

‖P (D)u‖
Rk

(Ω) + ‖u‖
L2

(Ω) + ‖Φ‖Rk+1(Ω)
)

∀u ∈ HRk+1

(Ω, Φ)

holds;

(4) the operator P (D) is bounded from HRk+1

(Ω, Φ) to HRk

(Ω, Φ) and
posseses the regularizer.
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Proof. 1 ⇒ 2. Follows from Theorem 6.
2 ⇒ 3. Follows from Theorem 7.
3 ⇒ 1. Follows from Corollary 6.
2 ⇐⇒ 4. Follows from Theorem 10. �

References

1. A. I. Volpert, On the index and normal solvability of boundary-value problems for
elliptic systems of differential equations on the plane. (Russian) Trudy Moskov. Mat.
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