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ON A NEW TYPE OF MULTIPLE INTEGRALS OF

MULTI-VALUED FUNCTIONS OF AN ABSTRACT SET

D. GOGUADZE AND P. KARCHAVA

Abstract. In the present paper we introduce a new type of multiple
integrals of multi-valued functions of abstract sets. Fundamental re-
lations are established between double upper and lower and between
repeated upper and lower integrals from which we obtain generaliza-
tions of Fubini’s theorem both for the functions of a set and for the
functions of a point.

îâäæñéâ. ûæê�éáâ��îâ ê�öîëéöæ öâéë�â�ñèæ� ��ïðî�óðñèæ ïæé-

î�ãèæï éî�ã�èï�ý� òñêóùææï �ý�èæ ðæìæï þâî�áæ æêðâàî�èâ�æ.

á�áàâêæèæ� òñêá�éâêðñîæ á�éëçæáâ�ñèâ�â�æ ëîþâî�á äâá� á�

óãâá� á� à�êéâëîâ�æå äâá� á� óãâá� æêðâàî�èâ�ï öëîæï, îëéèâ-

�æá�ê�ù éææ�â�� òñ�æêæï åâëîâéæï à�êäëà�áëâ�â�æ îëàëîù ïæé-

î�ãèæï, �ïâãâ ûâîðæèæï òñêóùæâ�æï�åãæï.

A class of sets which along with its any two sets contains their intersection
is called multiplicative, and we denote it by M.

Let M be the multiplicative class of sets, and E ∈ M. A finite or a
countable class of pairwise nonintersecting sets {E1, E2, . . . }, belonging to
the class M and the union of which is equal to the set E, is called a partition
of the set E and denoted by DE. Moreover, the sets Ek (k = 1, 2, . . . ) are
called the components of a partition DE. If the partition contains only a
finite number of components, then it is called finite and denoted by D∗E.

The partition D1E of the set E ∈ M is called a continuation of the
partition DE of the set E, in the notation DE ≺ D1E, if every component
of the partition D1E is a subset of some component of the partition DE, or
what is the same thing, if the partition D1E contains the partition of every
component of the partition DE.

Let D1E = {E′

1, E
′

2, . . . } and D2E = {E′′

1 , E′′

2 , . . . } be two partitions of
the set E ∈ M. The product of the partitions D1E and D2E is called a
partition whose components are all possible intersections E′

i ∩ E′′

k (i, k =
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1, 2, . . . ), and we denote it by (D1 · D2)E. Obviously, the product of two
partitions is the continuation of both partitions.

By ME we denote a set of all partitions of the set E ∈ M, and by
∑
M

(E)

a set of all components of all possible partitions of the set E.
A class of sets which along with its any two sets contains also the partition

of their intersections, is called generalized-multiplicative, and denoted by M.
It is evident that the multiplicative class is also a generalized-multiplica-

tive. Here we present an example of a generalized-multiplicative class which
is not multiplicative. Let E be an arbitrary set with capacity more than
or equal to a countable capacity, and let P (E) be a class of all its subsets.
We take a finite subset e ⊂ E and remove from the class P (E) the set e

and all its subsets, with the exclusion of the subsets consisting of a single
element. The remaining class we denote by M and show that this class
is generalized-multiplicative, and not multiplicative. Indeed, we take the
set E − e and represent it as E − e = F1 ∪ F2, where F1 ∩ F2 = ∅ (∅ is
an empty set). We construct the sets E1 = F1 ∪ e and E2 = F2 ∪ e. Then
E1∩E2 = (F1∪e)∩(F2∪e) = e. Consequently, E1∩E2 = e 6∈ M. However,
M

′ contains the partition of the set E1 ∩ E2 = e.
A class of sets is called normal and denoted by N, if for every E ∈

N the set NE of all partitions of the set E is a directed relation of the
continuation ≻.

Theorem 1. A class of the sets N is normal if and only if for every set

E ∈ N the set
∑
N

(E) of all components of all possible partitions of the set

E is generalized-multiplicative one.

Proof. The necessity. Let E′, E′′ ∈
∑
N

(E). Then there exist the partitions

D1E and D2E of the set E, such that the sets E′ and E′′ are the components
of the partitions D1E and D2E, respectively.

Let DE = {e1, e2, . . . } be the continuation of the partitions D1E and
D2E. Then according to the definition of a continuation of partitions,

E′ = ∪
i
e′i and E′′ = ∪

i
e′′i ,

where {e′i} ⊂ {e1, e2, . . . } and {e′′i } ⊂ {e1, e2, . . . }.
Let us consider the intersection

E′ ∩ E′′ = ∪
i
e′i ∩ ∪

k
e′′k = ∪

i
∪
k

e′i ∩ e′′k.

Since {e1, e2, . . . } is the partition of the set E,

e′i ∩ e′′k = ∅ or e′i = e′′k (i, k = 1, 2, . . . ).

Thus we have found that the class
∑
N

(E) contains the partition of the

intersection E′ ∩ E′′.
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The sufficiency. Let the class
∑
N

(E) be generalized-multiplicative, and

D1E = {E′

1, E
′

2, . . . } and D2E = {E′′

1 , E′′

2 , . . . } be two partitions of the set
E ∈ N. Then by the definition of products, we have

D1E · D2E = ∪
i
∪
k

(E′

i ∩ E′′

k ) = ∪
i
∪
k
∪
j

E
j
ik,

where E
j
ik (j = 1, 2, . . . ) is the partition of the intersection E′

i ∩ E′′

k .

Thus the partition E
j
ik (i, k, j = 1, 2, . . . ) of the set E is the continuation

of the partitions D1E and D2E.
The generalized-multiplicative class M is said to be a semi-ring denoted

by P , if it contains an empty set ∅, and it follows from E1, E ∈ P and
E1 ⊂ E that P contains the partition of the set E whose component is the
set E1.

Let X and Y be arbitrary sets. The set of all ordered pairs (x, y), where
x ∈ X and y ∈ Y , is called the Cartesian product of the sets X and Y

and denoted by X × Y . If A ⊂ X and B ⊂ Y , then the set E = A × B,
contained in X × Y , is called a rectangle, and the sets A and B are called
the sides of that rectangle.

Let N1 and N2 be the normal classes. The class of all rectangles A× B,
where A ∈ N1 and B ∈ N2, is called a product of the normal classes N1

and N2 and denoted by N1 ⊗ N2.
It can immediately be verified that the product of normal classes is like-

wise a normal class.
Towards this end, according to Theorem 1, it suffices to show that for

any A×B ∈ N1⊗N2 = N the class
∑
N

(A×B) is generalized-multiplicative.

Indeed, let A1 × B1, A2 × B2 ∈ N1 ⊗ N2. Then we have

(A1 × B1) ∩ (A2 × B2) = (A1 ∩ A2) × (B1 ∩ B2) =

= ∪
i=1

Ai × ∪
j=1

Bj = ∪
i=1

∪
j=1

(Ai × Bj). �

Proposition 1. If P1 and P2 are the semi-rings, then their product

P = P1 ⊗ P2 is likewise a semi-ring (see [1]).

The partition D(A×B) of the rectangle A×B ∈ N is said to be netting,
if it has the form {Ai × Bk} (i, k = 1, 2, . . . ), where {Ai} (i = 1, 2, . . . ) is
the partitions of the side A, and {Bk} (k = 1, 2, . . . ) is that of the side B.

The partition D(A × B) of the rectangle A × B ∈ N is said to be the
right generalized-netting if it has the form {Ai×Bi

k} (i, k = 1, 2, . . . ), where
{Ai} (i = 1, 2, . . . ) is the partition of the side A, and {Bi

k} (k = 1, 2, . . . ) is
that of the side B, corresponding to the component {Ai} (i = 1, 2, . . . ).

The partition D(A × B) of the rectangle A × B ∈ N is said to be the
left generalized-netting if it has the form {Ak

i ×Bk} (k, i = 1, 2, . . . ), where
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{Bk} (k = 1, 2, . . . ) is the partitions of the side B, and {Ak
i } (i = 1, 2, . . . )

is that of the side A, corresponding to the component {Bk} (k = 1, 2, . . . ).
The partition D(A × B) of the rectangle A × B ∈ N is said to be twice

netting if has the form {Ak
i × Bl

j} (i, j, k, l = 1, 2, . . . ), where {Ai × Bj}

(i, j = 1, 2, . . . ) is the netting partition of the rectangle A×B, and {Ak
i ×Bl

j}
(k, l = 1, 2, . . . ) is that of the rectangle Ai × Bj .

Let {Ai × Bj} (i, j = 1, 2, . . . ) and {Ck × Dl} (k, l = 1, 2, . . . ) be two
netting partitions of the rectangle A × B. Then their product

{
(Ai × Bj) ∩ (Ck × Dl)

}
(i, j, k, l = 1, 2, . . . )

is likewise the netting partition of the rectangle A × B.
Indeed, we have

{
(Ai × Bj) ∩ (Ck × Dl)

}
(i, j, k, l = 1, 2, . . . ) =

=
{
(Ai × Ck) ∩ (Bj × Dl)

}
(i, j, k, l = 1, 2, . . . ).

Since N1 is the normal class of sets, it contains, by Theorem 1, the
partition {Sik

p } (p = 1, 2, . . . ) of the intersection Ai ∩ Ck (i, k = 1, 2, . . . ).
Analogously, since N2 is the normal class of sets, it contains, by Theorem 1,
the partition {T jl

q } (q = 1, 2, . . . ) of the intersection Bj∩Dl (j, l = 1, 2, . . . ).
Taking the above-said into consideration, we obtain

{
(Ai × Bj) ∩ (Ck × Dl)

}
(i, j, k, l = 1, 2, . . . ) =

=
{

∞

∪
p=1

Sik
p ×

∞

∪
q=1

T jl
q

}
(i, j, k, l = 1, 2, . . . ) =

=
{
Sik

p × T jl
q

}
(i, j, k, l, p, q = 1, 2, . . . ),

where {Sik
p } (i, k, p = 1, 2, . . . ) is the partition of the side A, and {T jl

q }
(j, l, q = 1, 2, . . . ) is that of the side B.

Consequently, the set of all netting partitions of the rectangle A×B ∈ N

is the directed relation of the continuation.
Therefore the mapping of the sets of all netting partitions of the rectangle

A×B ∈ N into the set of real numbers is the directedness, and to them can
be applied the generalized theory of limits (see [2], Ch.II).

Assume that {Ai × Bi
k} (i, k = 1, 2, . . . ) and {Cj × D

j
l } (j, l = 1, 2, . . . )

are two the right generalized-netting partitions of the rectangle A×B. Then
their product

{
(Ai × Bi

k) ∩ (Cj × D
j
l )

}
(i, j, k, l = 1, 2, . . . )

is likewise the right generalized-netting partition of the rectangle A × B.
Since {Ai} (i = 1, 2, . . . ) and {Cj} (j = 1, 2, . . . ) are the partitions of

the side A of the rectangle A × B, therefore the class N, by Theorem 1,
contains the partition {Sij

p } (p = 1, 2, . . . ) of the intersection Ai ∩ Cj .
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Analogously, since {Bi
k} (k = 1, 2, . . . ) and {Dj

l } (j = 1, 2, . . . ) are the
partitions of the side B, corresponding to the components Ai and Ck, be-
cause of the fact that the class N2 is normal, it contains the partition DijB

following the partitions {Bi
k} (k = 1, 2, . . . ) and {Dj

l } (l = 1, 2, . . . ).
Thus we have found that for any i = 1, 2, . . . and j = 1, 2, . . . , to every

component {Sij
p } (p = 1, 2, . . . ) of the product {Sij

p } (i, j, p = 1, 2, . . . ) of
the partitions {Ai} (i = 1, 2, . . . ) and {Cj} (j = 1, 2, . . . ) of the side A there
corresponds the partition DijB of the side B following the partitions {Bi

k}

(k = 1, 2, . . . ) and {Dj
l } (l = 1, 2, . . . ).

Therefore we have
{
(Ai∩Cj)×(Bi

k∩D
j
l )

}
(i, j, k, l=1, 2, . . . )=

{
Sij

p ×DijB
}

(i, j, p=1, 2, . . . ).

Thus the set of all the right generalized-netting partitions of the rectangle
A × B ∈ N is the directed relation of the continuation.

Similarly, the set of all left generalized-netting partitions of the rectangle
A × B ∈ N is the directed relation of the continuation.

That is why the mappings of the sets of all the right generalized-netting
partitions of the rectangle A × B ∈ N and the sets of all left generalized-
netting partitions of the rectangle A × B ∈ N into the set of real numbers
is the directedness, and to them can be applied the generalized theory of
limits.

Let {Ak
i ×Bl

j} (i, j, k, l = 1, 2, . . . ) and {Cr
m ×Ds

n} (m, n, r, s = 1, 2, . . . )
be two twice netting partitions of the rectangle A × B, where {Ai × Bj}
(i, j = 1, 2, . . . ) and {Cm ×Dn} (m, n = 1, 2, . . . ) are the netting partitions
of the rectangle A × B, and {Ak

i × Bl
j} (k, l = 1, 2, . . . ) is the netting

partition of the rectangle Ai × Bj , and {Cr
m × Ds

n} (r, s = 1, 2, . . . ) is the
netting partition of the rectangle Cm × Dn.

Indeed, we have
{
(Ak

i × Bl
j) ∩ (Cr

m × Ds
n)

}
(i, j, k, l, m, n, r, s = 1, 2, . . . ) =

=
{
(Ak

i ∩ Cr
m) × (Bl

j ∩ Ds
n)

}
(i, j, k, l, m, n, r, s = 1, 2, . . . )

and {
(Ai ∩ Cm) × (Bj ∩ Dn)

}
(i, m, j, n = 1, 2, . . . )

is the netting partition of the rectangle A × B, since {Ai × Bj} (i, j =
1, 2, . . . ) and {Cm × Dn} (m, n = 1, 2, . . . ) are the netting partitions of the
rectangle A × B. From its side,

{
(Ak

i ∩ Cr
m) × (Bl

j ∩ Ds
n)

}
(k, l, r, s = 1, 2, . . . )

is the netting partition of the rectangle (Ai ∩ Cm) × (Bj ∩ Dn), since
{Ak

i ×Bl
j} (k, l = 1, 2, . . . ) is the netting partition of the rectangle Ai ×Bj,

and {Cr
m × Ds

n} (r, s = 1, 2, . . . ) is the netting partition of the rectangle
Cm × Dn.
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Thus the set of all twice netting partitions of the rectangle A × B ∈ N

is the directed relation of the continuation, and hence its mappings into
the set of real numbers is the directedness, and to them can be applied the
generalized theory of limits.

Proposition 2. The partition D(A×B) of the rectangle A×B is twice

netting if and only if it is a product of the left and of the right generalized-

netting partitions of the rectangle A × B.

Proof. The necessity. Let {Ak
i ×Bl

j} (i, j, k, l = 1, 2, . . . ) be the twice netting
partition of the rectangle A × B. Then {Ai × Bj} (i, j = 1, 2, . . . ) is the
netting partition of the rectangle A × B, and {Ak

i × Bl
j} (k, l = 1, 2, . . . ) is

the netting partition of the rectangle Ai × Bj .
But {Ai×Bl

j} (i, j, l = 1, 2, . . . ) is the right generalized-netting partition
of the rectangle A × B.

Analogously, {Ak
i × Bj} (i, k, j = 1, 2, . . . ) is the left generalized-netting

partition of the rectyangle A × B.
Constructing the product of the partitions {Ai × Bl

j} (i, j, l = 1, 2, . . . )

and {Ak
i × Bj} (i, k, j = 1, 2, . . . ), we obtain an unknown partition

{
(Ai × Bl

j) ∩ (Ak
i × Bj)

}
(i, k, j, l = 1, 2, . . . ) =

=
{
(Ai ∩ Ak

i ) × (Bj ∩ Bl
j)

}
(i, k, j, l = 1, 2, . . . ) =

=
{
Ak

i × Bl
j

}
(i, k, j, l = 1, 2, . . . ).

The sufficiency. Let D1(A × B) = {Ai × Bi
k} (i, k = 1, 2, . . . ) be the

right generalized-netting partition of the rectangle A×B, and D2(A×B) =

{Aj
l × Bj} (j, l = 1, 2, . . . ) be the left generalized-netting partition of the

rectangle A×B. Then by the definition of the partition product, we obtain

(D1 · D2)(A × B) =
{
(Ai × Bi

k) ∩ (Aj
l × Bj)

}
(i, k, j, l = 1, 2, . . . ) =

=
{
(Ai ∩ A

j
l ) × (Bj ∩ Bi

k)
}

(i, k, j = 1, 2, . . . ).

But {
(Ai ∩ A

j
l ) × (Bj ∩ Bi

k)
}

(k, l = 1, 2, . . . )

is the netting partition of the rectangle Ai×Bj , and {Ai×Bj} i, j = 1, 2, . . . )
is the netting partition of the rectangle A × B. Consequently,

{
(Ai ∩ A

j
l ) × (Bj ∩ Bi

k)
}

(k, l = 1, 2, . . . )

is the twice netting partition of the rectangle A × B. �

Proposition 3. If A1, . . . , Am is an arbitrary finite class from the semi-

ring P , then their union can be represented as

A1 ∪ . . . ∪ Am = A1
1 ∪ . . . ∪ Ak1

1 ∪ . . . ∪ A1
m ∪ . . . ∪ Akm

m ,

where A1
i , . . . , A

ki

i are contained in the set Ai (i = 1, . . . , m), and all sets

the right belong to the semi-ring P and do not intersect pairwise.
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For the proof, see [1].
This proposition is, as is erroneously mentioned in [3], p.132, invalid for

the countable classes. As a counterexample we can mention the countable
class {[

m − 1

2n
,
m

2n

]}
(n = 1, 2, . . . ; m = 1, 2, . . . , 2n)

in a semi-ring P of all semi-segments from the semi-segment [0, 1).

Proposition 4. Let N1 and N2 be the normal classes of the sets, N1⊗N2

be their product, the rectangle A×B ∈ N1⊗N2, and D(A×B) = {Ak×Bk}
(k = 1, 2, . . . ) be the partition of the rectangle A×B. For the countable con-

tinuation of the partition D(A × B) to exist, it is necessary and sufficient

that there exist the partition {Ã1, Ã2, . . . } ⊂ N1 of the set A and the par-

tition {B̃1, B̃2, . . . } ⊂ N2 of the set B, such that every Ak (k = 1, 2, . . . )
(respectively, Bk (k = 1, 2, . . . )) is the union of a finite or a countable num-

ber of sets from {Ã1, Ã2, . . . } (respectively, from {B̃1, B̃2, . . . }).

Proof. The necessity. Let there exist a countable continuation

{Ãi × B̃j} (i, j = 1, 2, . . . )

of the partition D(A×B). Then {Ã1, Ã2, . . . } is the partition of the set A,

and {B̃1, B̃2, . . . } is that of the set B. According to the definition of the
continuation of partition, every Ak ×Bk is a finite or countable union of the

rectangles from {Ãi × B̃j} (i, j = 1, 2, . . . ),

A × B = ∪
i
∪
j

(
Ãi × B̃j

)
.

But then

A = ∪
i
Ãi, B = ∪

j
B̃j .

The sufficiency. Let there exist the partitions {Ã1, Ã2, . . . } ⊂ N1 of

the set A and {B̃1, B̃2, . . . } ⊂ N2 those of the set B, such that every Ak

(k = 1, 2, . . . ) (respectively, every Bk (k = 1, 2, . . . )) is the union of a

finite or a countable number of sets from {Ã1, Ã2, . . . } (respectively, from

{B̃1, B̃2, . . . }).

Let us show that the netting partition {Ãi× B̃j} is unknown. Indeed, let
Ak0

× Bk0
be an arbitrary rectangle from {Ak × Bk} (k = 1, 2, . . . ). Then

by the assumption,

Ak0
= ∪

i
Ãi, Bk0

= ∪
j

B̃j ,

and hence

Ak0
× Bk0

=
(
∪
i

Ãi

)
×

(
∪
j

B̃j

)
= ∪

i
∪
j

(
Ãi × B̃j

)
. �
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Corollary 1. Let P1 and P2 be the semi-rings, and P1 ⊗ P2 be their

product. Then for every finite partition {Ak × Bk} (k = 1, . . . , n) of the

rectangle A × B ∈ P1 ⊗ P2 there exists its netting continuation.

Proof. From the equality

A × B =
n
∪

k=1
(Ak × Bk),

it follows that

A =
n
∪

k=1
Ak, B =

n
∪

k=1
Bk.

Then by Proposition 2, there exist the finite partitions {Ã1, Ã2, . . . , Ãr} ⊂

P1 and {B̃1, B̃2, . . . } ⊂ N2 of the sets A and B, such that every Ak

(k = 1, 2, . . . ) (respectively, every Bk (k = 1, 2, . . . )) is the union of a finite

number of some sets from {Ã1, Ã2, . . . , Ãr} (respectively, from {B̃1, B̃2,

. . . , B̃s}). �

By Proposition 4, the netting partition {Ai × Bj} (i = 1, . . . , r; j =
1, . . . , s) is unknown.

Corollary 1 does not extend to the countable partitions. Indeed, let P1

be the semi-ring of all semi-segments [a, b) contained in [0, 1), and let P2 be
the semi-ring of all semi-segments contained in [a, b) contained in [0, +∞)
and P = P1 ⊗ P2. Consider the countable partition

{[m − 1

2n
,
m

2n

]
× [n − 1, n)

}
(n = 1, 2, . . . ; m = 1, 2, . . . , 2n)

of the rectangle [0, 1) × [0, +∞). This partition is the right generalized-
netting, however it fails to have a countable continuation.

They say that to the class N is assigned the multi-valued function of the
set µ if to every set E ∈ N there corresponds the uniquely defined set µ(E)
of real numbers, and µ(∅) = 0.

Let N1 and N2 be the normal classes of the sets, N = N1 ⊗ N2 be
their product, and on the rectangle A × B ∈ N be assigned an arbitrary
multi-valued function of the rectangle µ.

The real number I is called a netting double integral of the multi-valued
real function of the rectangle µ, denote by

(N)

∫∫

A×B

µ(dA, dB)

if for every number ε > 0 there exists the netting partition Dε(A × B) of
the rectangle A × B, such that for any its netting continuation {Ai × Bj}
(i, j = 1, 2, . . . ) for every choice of the value µ(Ai, Bj) (i, j = 1, 2, . . . ) the
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inequality ∣∣∣∣1 −

∞∑

i=1

∞∑

j=1

µ(Ai, Bj)

∣∣∣∣ < ε

holds.
The real number I is called the right (the left) generalized-netting double

integral of the multi-valued real function of the rectangle µ denoted by

(Nr)

∫∫

A×B

µ(dA, dB)

(
(Nl)

∫∫

A×B

µ(dA, dB)

)
,

if for every number ε > 0 there exists the right (the left) generalized netting
partition Dε(A × B) of the rectangle A × B, such that for any its right
(left) generalized-netting continuation {Ai×Bi

j} (i, j = 1, 2, . . . ) ({Ai
j ×Bi}

(i, j = 1, 2, . . . )) for every choice of the value µ(Ai, B
i
j) (i, j = 1, 2, . . . )

(µ(Ai
j , Bi) (i, j = 1, 2, . . . )) the inequality

∣∣∣∣1 −

∞∑

i=1

∞∑

j=1

µ(Ai, B
i
j)

∣∣∣∣ < ε

(∣∣∣∣1 −

∞∑

j=1

∞∑

i=1

µ(Ai
j , Bi)

∣∣∣∣ < ε

)

holds.
Definition of the double upper and lower and of the repeated double

upper and lower integrals for multiplicative classes can be found in [4].

Theorem 2. Let N1 and N2 be the normal classes of the sets, N =
N1⊗N2 be their product, and let on the rectangle A×B ∈ N be assigned an

arbitrary real multi-valued function of the rectangle µ. Then the inequalities

(Nr)

∫∫

A×B

µ(dA, dB) ≤ (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤

≤ (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤ (Nr)

∫∫

A×B

µ(dA, dB),

(Nl)

∫∫

A×B

µ(dA, dB) ≤ (N2)

∫

B

(
(N1)

∫

A

µ(dA, dB)

)
≤

(N2)

∫

B

(
(N1)

∫

A

µ(dA, dB)

)
≤ (Nl)

∫∫

A×B

µ(dA, dB)

(1)

hold.

Proof. We prove the inequality

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤ (Nr)

∫∫

A×B

µ(dA, dB).
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The rest inequalities can be proved analogously.
If

(Nr)

∫∫

A×B

µ(dA, dB) = +∞,

then we have nothing to prove.
Thus we first assume that

−∞ < (Nr)

∫∫

A×B

µ(dA, dB) < +∞.

Then for every number ε > 0 there is the right generalized-netting partition
{Ai ×B i

j} (i, j = 1, 2, . . . ) of the rectangle A×B, such that for any choice

of its from the right generalized-netting continuation {Ai × Bi
j} (i, j =

1, 2, . . . ), for any choice of values µ{Ai ×Bi
j} (i, j = 1, 2, . . . ) the inequality

∞∑

i=1

∞∑

j=1

µ(Ai, B
i
j) < (Nr)

∫∫

A×B

µ(dA, dB) + ε (2)

holds.
Let us now show that for every set A ∈ N1Ai (i = 1, 2, . . . ) and for any

choice of values of the multi-valued function µ

(N2)

∫

B

µ(A, dB) < +∞.

Assume to the contrary that for some set A ∈ N1A1 and for any choice
of values of the multi-valued function µ

(N2)

∫

B

µ(A, dB) = +∞,

Since A ∈ N1A1i, there exists the partition of the set A1, having the
form {A, A11, A12, . . . }. Then for the number

(Nr)

∫∫

A×B

µ(dA, dB) + ε −

∞∑

i=2

∞∑

j=1

µ
(
Ai × B i

j

)
−

∞∑

k=1

∞∑

j=1

µ
(
A1k × B̃ 1

j

)
,

where µ(Ai, B
i
k) (i = 2, 3, . . . ; k = 1, 2, . . . ) and µ(A1j , B̃

1
k) (j, k = 1, 2, . . . )

is one of the values of the multi-valued function µ, there exists the contin-
uation {B1

1 , B1
2 , . . . } of the partition {B 1

j} of the set B, such that for any

choice of values µ(A × B1
k) (k = 1, 2, . . . ) the inequality

∞∑

j=1

µ(A, B1
j )>(Nr)

∫

A×B

µ(dA, dB)+ε−

∞∑

i=2

∞∑

j=1

µ
(
Ai, B

i
j

)
−

∞∑

k=1

∞∑

j=1

µ
(
A1j , B

1
k

)



ON A NEW TYPE OF MULTIPLE INTEGRALS 31

holds, whence

∞∑

j=1

µ(A, B1
j )+

∞∑

i=2

∞∑

j=1

µ
(
Ai, B

i
j

)
+

∞∑

k=1

∞∑

j=1

µ
(
A1j , B

1
k

〉
(Nr)

∫

A×B

µ(dA, dB)+ε,

which contradicts inequality (2) because the right generalized-netting par-
tition

{
{A × B1

j } (j = 1, 2, . . . ), {A1j × B 1
k} (j, k = 1, 2, . . . ),

{Ai × B i
j} (i = 2, 3, . . . ; j = 1, 2, . . . )

}

of the rectangle A × B is the continuation of the right generalized-netting
partition {Ai × B i

j} (i, j = 1, 2, . . . ).
Let us now prove that

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
< +∞.

Suppose to the contrary that

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
= +∞.

Then for the number

(Nr)

∫∫

A×B

µ(dA, dB) + 2ε

there exists the continuation {A′

1, A
′

2, . . . } of the partition {A1, A2, . . . } of
the set A, such that for some choice of values of the integrals

(N2)

∫

B

µ(A′

i, dB) (i = 1, 2, . . . ),

the inequality

(N2)

∫

B

µ(A′

i, dB) > (Nr)

∫∫

A×B

µ(dA, dB) + 2ε (3)

holds.
On the other hand, according to the above-proven, for every A′

i (i =
1, 2, . . . ) and any choice of values of the multi-valued function µ,

(N2)

∫

B

µ(A′

i, dB) < +∞.
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Thus for the number ε
2i there exists the continuation {B′

1, B
′

2, . . . } of the

partition {B′

1, B
′

2, . . . }, such that for any choice of values µ(A′

i, B
′

k) (k =
1, 2, . . . ) the inequality

(N2)

∫

B

µ(A′

i, dB) <

∞∑

k=1

µ(A′

i, B
i
k) +

ε

2i
(4)

holds.
From inequalities (3) and (4) we find that for some choice of values

µ(A′

i, B̃
i
k) (k = 1, 2, . . . ),

∞∑

i=1

∞∑

k=1

µ(A′

i, B
i
k) > (Nr)

∫∫

A×B

µ(dA, dB) + ε,

which contradicts inequality (2), since the right generalized-netting partition
{A′

i×Bi
k} (i, k = 1, 2, . . . ) is the continuation of the right generalized-netting

partition {Ai × B i
k} (i, k = 1, 2, . . . ).

Now for the chosen number ε>0 there exists the continuation {A′

1, A
′

2, . . .}
of the partition {A1, A2, . . . }, such that the inequality

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
<

∞∑

i=1

(N2)

∫

B

µ(A′

i, dB) +
ε

2
(5)

holds.
On the other hand, for the number ε

2i+1 there exists the continuation

{Bi
1, B

i
2, . . . } of the partition {Bi

1, B
i
2, . . . }, such that for some choice of

values µ(A′

i, B
i
k) (k = 1, 2, . . . ) the inequality

(N2)

∫

B

µ(A′

i, dB) <

∞∑

k=1

µ(A′

i, B
i
k) +

ε

2i+1

holds.
From inequalities (2) and (5) we find that for some choice of values

µ(A′

i, B
i
k) (k = 1, 2, . . . ),

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
<

∞∑

i=1

∞∑

k=1

µ(A′

i, B
i
k) + ε.

From the obtained inequality, since the right generalized-netting partition
{A′

i×Bi
k} (i, k = 1, 2, . . . ) is the continuation of the right generalized-netting

partition {Ai × Bi
k} (i, k = 1, 2, . . . ), in view of inequalities (2) we obtain

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤ (Nr)

∫∫

A×B

µ(dA, dB) + 2ε,
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whence, owing to the fact that the number ε > 0 is arbitrary, we obtain

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤ (Nr)

∫∫

A×B

µ(dA, dB).

Let us now prove that

(Nr)

∫∫

A×B

µ(dA, dB) = −∞

and

−∞ < (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)

are incompatible.
We first assume that

(Nr)

∫∫

A×B

µ(dA, dB) = −∞

and

−∞ < (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
< +∞.

Then on the one hand, for the number

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
− ε

there exists the right generalized-netting partition {Ai×B i
k} (i, k = 1, 2, . . . )

of the rectangle A × B, such that for any its right generalized-netting con-
tinuation {Ai × Bi

k} (i, k = 1, 2, . . . ), for any choice of values µ(Ai × Bi
k)

(i, k = 1, 2, . . . ) the inequality

∞∑

i=1

∞∑

k=1

µ(Ai, B
i
k) < (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
− ε (6)

holds.
On the other hand, for the number ε

2
there exists the continuation

{A′

i, A
′

2, . . . } of the partition {A1, A2, . . . }, such that for some choice of
values of the integrals

(N2)

∫

B

µ(A′

i, dB) (i = 1, 2, . . . )
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the inequality

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
<

∞∑

i=1

(N2)

∫

B

µ(A′

i, dB) +
ε

2
(7)

holds.
Let us now show that for any A ∈ N1Ai (i = 1, 2, . . . ) and for every

choice of values of the multi-valued function µ,

(N2)

∫

B

µ(A, dB) < +∞.

Assume to the contrary that for some A ∈ N1A1 and for some choice of
values of the multi-valued function µ,

(N2)

∫

B

µ(A, dB) = +∞.

Since A ∈ NA1, there exists the partition of the set A1 having the form
{A, A11, A12, . . . }. Then for the numbers

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
− ε −

∞∑

i=2

∞∑

j=1

µ(Ai, B
i
j) −

∞∑

k=1

∞∑

j=1

µ(A1k, B 1
j),

where µ(Ai, B
i
k) (i = 2, 3, . . . ; k = 1, 2, . . . ) and µ(A1k, B 1

j) (j, k = 1, 2, . . . )
are the values of the multi-valued function µ, there exists the continuation
{B′

1, B
′

2, . . . } of the partition {B 1
j} of the set B, such that for some choice

of values µ(A, B′

j) (j = 1, 2, . . . ) the inequality

∞∑

j=1

µ(A, B′

j) > (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
− ε−

−

∞∑

i=2

∞∑

j=1

µ(Ai, B
i
j) −

∞∑

k=1

∞∑

j=1

µ(A1i, B
′

j)

holds, whence

∞∑

j=1

µ(A, B′

j) +

∞∑

i=2

∞∑

j=1

µ(Ai, B
i
j) +

∞∑

k=1

∞∑

j=1

µ(A1i, B
′

j) >

> (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
− ε.

But this contradicts inequality (6), since the right generalized-netting par-

tition
{
{A × B′

j} (j = 1, 2, . . . ), {A1j × B
1j
k } (j, k = 1, 2, . . . ), {Ai × B i

j}
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(i = 2, 3, . . . ; j = 1, 2, . . . )
}

of the rectangle A × B is the continuation of

the right generalized-netting partition {Ai × B i
j} (i, j = 1, 2, . . . ).

Therefore for the number ε
2i there exists the continuation {Bi

1, B
i
2, . . . }

of the partition {B i
1, B

i
2, . . . }, such that for some choice of values µ(A′

i, B
i
k)

(k = 1, 2, . . . ) the inequality

(N2)

∫

B

µ(A′

i, dB) <

∞∑

j=1

µ(A′

i, B
i
j) +

ε

2i+1
(8)

holds.
It follows from inequalities (7) and (8) that for some choice of values

µ(A′

j , B
j
k) (j, k = 1, 2, . . . ),

(N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
<

∞∑

j=1

∞∑

k=1

µ(Ã1j × B̃
1j
k ) + ε,

which contradicts inequality (6), since the right generalized-netting parti-
tion {A′

i × Bi
j} (i, j = 1, 2, . . . ) is the continuation of the right general-

ized=netting partition {Ai × B i
j} (i, j = 1, 2, . . . ).

It is also proved that the equalities

(Nr)

∫∫

A×B

µ(dA, dB) = −∞

and

(N1)

∫

A

(
(N2)

∫

B

µ(Ã, dB)

)
= +∞.

are incompatible. �

Since the inequalities

(N)

∫∫

A×B

µ(dA, dB) ≤ (Nr)

∫∫

A×B

µ(dA, dB) ≤ (Nr)

∫∫

A×B

µ(dA, dB) ≤

≤ (N)

∫∫

A×B

µ(dA, dB),

(N)

∫∫

A×B

µ(dA, dB) ≤ (Nl)

∫∫

A×B

µ(dA, dB) ≤ (Nl)

∫∫

A×B

µ(dA, dB) ≤

≤ (N)

∫∫

A×B

µ(dA, dB)

hold, the above-proven theorem immediately results in
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Corollary 2. Let N1 and N2 be the normal classes of the sets, N =
N1 ⊗ N2 be their product, and let on the rectangle A × B ∈ N be assigned

an arbitrary multi-valued function of the rectangle µ. Then the inequalities

(N)

∫∫

A×B

µ(dA, dB) ≤ (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤

≤ (N1)

∫

A

(
(N2)

∫

B

µ(dA, dB)

)
≤ (N)

∫∫

A×B

µ(dA, dB),

(N)

∫∫

A×B

µ(dA, dB) ≤ (N2)

∫

B

(
(N1)

∫

A

µ(dA, dB)

)
≤

≤ (N2)

∫

B

(
(N1)

∫

A

µ(dA, dB)

)
≤ (N)

∫∫

A×B

µ(dA, dB)

hold.

Theorem 3. Let N1, . . . , Nn be the normal classes of the sets, N =
N1⊗· · ·⊗Nn be their product, and let on the rectangle A1×· · ·×An ∈ N be

assigned an arbitrary multi-valued function of the rectangle µ. Then there

take place the n! inequalities

(N)

∫∫

A1×···×An

µ(dA1, . . . , dAn) ≤

≤ (Nn)

∫

An

(
· · ·

(
(N1)

∫

A1

µ(dA1, . . . , dAn)

)
· · ·

)
≤

≤ (Nn)

∫

An

(
· · ·

(
(N1)

∫

A1

µ(dA1, . . . , dAn)

)
· · ·

)
≤

≤ (N)

∫∫

A1×···×An

µ(dA1, . . . , dAn),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (∗)

(N)

∫∫

A1×···×An

µ(dA1, . . . , dAn) ≤

≤ (N1)

∫

An

(
· · ·

(
(Nn)

∫

An

µ(dA1, . . . , dAn)

)
· · ·

)
≤
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≤ (N1)

∫

A1

(
· · ·

(
(Nn)

∫

An

µ(dA1, . . . , dAn)

)
· · ·

)
≤

≤ (N)

∫∫

A1×···×An

µ(dA1, . . . , dAn),

which can, respectively, be obtained from inequalities (∗) by means of all

possible permutations of the sets A1, . . . , An.

The proof of the above theorem follows directly from Corollary 2 by using
the method of mathematical induction.
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