ON A NEW TYPE OF MULTIPLE INTEGRALS OF MULTI-VALUED FUNCTIONS OF AN ABSTRACT SET

D. GOGUADZE AND P. KARCHAVA

Abstract

In the present paper we introduce a new type of multiple integrals of multi-valued functions of abstract sets. Fundamental relations are established between double upper and lower and between repeated upper and lower integrals from which we obtain generalizations of Fubini's theorem both for the functions of a set and for the functions of a point.

A class of sets which along with its any two sets contains their intersection is called multiplicative, and we denote it by \mathfrak{M}.

Let \mathfrak{M} be the multiplicative class of sets, and $E \in \mathfrak{M}$. A finite or a countable class of pairwise nonintersecting sets $\left\{E_{1}, E_{2}, \ldots\right\}$, belonging to the class \mathfrak{M} and the union of which is equal to the set E, is called a partition of the set E and denoted by $D E$. Moreover, the sets $E_{k}(k=1,2, \ldots)$ are called the components of a partition $D E$. If the partition contains only a finite number of components, then it is called finite and denoted by $D^{*} E$.

The partition $D_{1} E$ of the set $E \in \mathfrak{M}$ is called a continuation of the partition $D E$ of the set E, in the notation $D E \prec D_{1} E$, if every component of the partition $D_{1} E$ is a subset of some component of the partition $D E$, or what is the same thing, if the partition $D_{1} E$ contains the partition of every component of the partition $D E$.

Let $D_{1} E=\left\{E_{1}^{\prime}, E_{2}^{\prime}, \ldots\right\}$ and $D_{2} E=\left\{E_{1}^{\prime \prime}, E_{2}^{\prime \prime}, \ldots\right\}$ be two partitions of the set $E \in \mathfrak{M}$. The product of the partitions $D_{1} E$ and $D_{2} E$ is called a partition whose components are all possible intersections $E_{i}^{\prime} \cap E_{k}^{\prime \prime}(i, k=$

[^0]$1,2, \ldots)$, and we denote it by $\left(D_{1} \cdot D_{2}\right) E$. Obviously, the product of two partitions is the continuation of both partitions.

By $\mathfrak{M} E$ we denote a set of all partitions of the set $E \in \mathfrak{M}$, and by $\sum_{\mathfrak{M}}(E)$ a set of all components of all possible partitions of the set E.

A class of sets which along with its any two sets contains also the partition of their intersections, is called generalized-multiplicative, and denoted by \mathfrak{M}.

It is evident that the multiplicative class is also a generalized-multiplicative. Here we present an example of a generalized-multiplicative class which is not multiplicative. Let E be an arbitrary set with capacity more than or equal to a countable capacity, and let $P(E)$ be a class of all its subsets. We take a finite subset $e \subset E$ and remove from the class $P(E)$ the set e and all its subsets, with the exclusion of the subsets consisting of a single element. The remaining class we denote by \mathfrak{M} and show that this class is generalized-multiplicative, and not multiplicative. Indeed, we take the set $E-e$ and represent it as $E-e=F_{1} \cup F_{2}$, where $F_{1} \cap F_{2}=\varnothing(\varnothing$ is an empty set). We construct the sets $E_{1}=F_{1} \cup e$ and $E_{2}=F_{2} \cup e$. Then $E_{1} \cap E_{2}=\left(F_{1} \cup e\right) \cap\left(F_{2} \cup e\right)=e$. Consequently, $E_{1} \cap E_{2}=e \notin \mathfrak{M}$. However, \mathfrak{M}^{\prime} contains the partition of the set $E_{1} \cap E_{2}=e$.

A class of sets is called normal and denoted by \mathfrak{N}, if for every $E \in$ \mathfrak{N} the set $\mathfrak{N E}$ of all partitions of the set E is a directed relation of the continuation \succ.

Theorem 1. A class of the sets \mathfrak{N} is normal if and only if for every set $E \in \mathfrak{N}$ the set $\sum_{\mathfrak{N}}(E)$ of all components of all possible partitions of the set E is generalized-multiplicative one.
Proof. The necessity. Let $E^{\prime}, E^{\prime \prime} \in \sum_{\mathfrak{N}}(E)$. Then there exist the partitions $D_{1} E$ and $D_{2} E$ of the set E, such that the sets E^{\prime} and $E^{\prime \prime}$ are the components of the partitions $D_{1} E$ and $D_{2} E$, respectively.

Let $D E=\left\{e_{1}, e_{2}, \ldots\right\}$ be the continuation of the partitions $D_{1} E$ and $D_{2} E$. Then according to the definition of a continuation of partitions,

$$
E^{\prime}=\cup_{i} e_{i}^{\prime} \quad \text { and } \quad E^{\prime \prime}=\cup_{i} e_{i}^{\prime \prime}
$$

where $\left\{e_{i}^{\prime}\right\} \subset\left\{e_{1}, e_{2}, \ldots\right\}$ and $\left\{e_{i}^{\prime \prime}\right\} \subset\left\{e_{1}, e_{2}, \ldots\right\}$.
Let us consider the intersection

$$
E^{\prime} \cap E^{\prime \prime}=\cup_{i} e_{i}^{\prime} \cap \cup_{k} e_{k}^{\prime \prime}=\bigcup_{i} \cup_{k} e_{i}^{\prime} \cap e_{k}^{\prime \prime} .
$$

Since $\left\{e_{1}, e_{2}, \ldots\right\}$ is the partition of the set E,

$$
e_{i}^{\prime} \cap e_{k}^{\prime \prime}=\varnothing \quad \text { or } \quad e_{i}^{\prime}=e_{k}^{\prime \prime} \quad(i, k=1,2, \ldots)
$$

Thus we have found that the class $\sum_{\mathfrak{N}}(E)$ contains the partition of the intersection $E^{\prime} \cap E^{\prime \prime}$.

The sufficiency. Let the class $\sum_{\mathfrak{N}}(E)$ be generalized-multiplicative, and $D_{1} E=\left\{E_{1}^{\prime}, E_{2}^{\prime}, \ldots\right\}$ and $D_{2} E=\left\{E_{1}^{\prime \prime}, E_{2}^{\prime \prime}, \ldots\right\}$ be two partitions of the set $E \in \mathfrak{N}$. Then by the definition of products, we have

$$
D_{1} E \cdot D_{2} E=\cup_{i} \cup_{k}\left(E_{i}^{\prime} \cap E_{k}^{\prime \prime}\right)=\cup_{i} \cup_{k} \cup_{j} E_{i k}^{j},
$$

where $E_{i k}^{j}(j=1,2, \ldots)$ is the partition of the intersection $E_{i}^{\prime} \cap E_{k}^{\prime \prime}$.
Thus the partition $E_{i k}^{j}(i, k, j=1,2, \ldots)$ of the set E is the continuation of the partitions $D_{1} E$ and $D_{2} E$.

The generalized-multiplicative class \mathfrak{M} is said to be a semi-ring denoted by P, if it contains an empty set \varnothing, and it follows from $E_{1}, E \in P$ and $E_{1} \subset E$ that P contains the partition of the set E whose component is the set E_{1}.

Let X and Y be arbitrary sets. The set of all ordered pairs (x, y), where $x \in X$ and $y \in Y$, is called the Cartesian product of the sets X and Y and denoted by $X \times Y$. If $A \subset X$ and $B \subset Y$, then the set $E=A \times B$, contained in $X \times Y$, is called a rectangle, and the sets A and B are called the sides of that rectangle.

Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be the normal classes. The class of all rectangles $A \times B$, where $A \in \mathfrak{N}_{1}$ and $B \in \mathfrak{N}_{2}$, is called a product of the normal classes \mathfrak{N}_{1} and \mathfrak{N}_{2} and denoted by $\mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$.

It can immediately be verified that the product of normal classes is likewise a normal class.

Towards this end, according to Theorem 1, it suffices to show that for any $A \times B \in \mathfrak{N}_{1} \otimes \mathfrak{N}_{2}=\mathfrak{N}$ the class $\sum_{\mathfrak{N}}(A \times B)$ is generalized-multiplicative. Indeed, let $A_{1} \times B_{1}, A_{2} \times B_{2} \in \mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$. Then we have

$$
\begin{gathered}
\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)=\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)= \\
=\bigcup_{i=1}^{\cup} A_{i} \times \bigcup_{j=1}^{\cup} B_{j}=\bigcup_{i=1}^{\cup} \bigcup_{j=1}\left(A_{i} \times B_{j}\right)
\end{gathered}
$$

Proposition 1. If P_{1} and P_{2} are the semi-rings, then their product $P=P_{1} \otimes P_{2}$ is likewise a semi-ring (see [1]).

The partition $D(A \times B)$ of the rectangle $A \times B \in \mathfrak{N}$ is said to be netting, if it has the form $\left\{A_{i} \times B_{k}\right\}(i, k=1,2, \ldots)$, where $\left\{A_{i}\right\}(i=1,2, \ldots)$ is the partitions of the side A, and $\left\{B_{k}\right\}(k=1,2, \ldots)$ is that of the side B.

The partition $D(A \times B)$ of the rectangle $A \times B \in \mathfrak{N}$ is said to be the right generalized-netting if it has the form $\left\{A_{i} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$, where $\left\{A_{i}\right\}(i=1,2, \ldots)$ is the partition of the side A, and $\left\{B_{k}^{i}\right\}(k=1,2, \ldots)$ is that of the side B, corresponding to the component $\left\{A_{i}\right\}(i=1,2, \ldots)$.

The partition $D(A \times B)$ of the rectangle $A \times B \in \mathfrak{N}$ is said to be the left generalized-netting if it has the form $\left\{A_{i}^{k} \times B_{k}\right\}(k, i=1,2, \ldots)$, where
$\left\{B_{k}\right\}(k=1,2, \ldots)$ is the partitions of the side B, and $\left\{A_{i}^{k}\right\}(i=1,2, \ldots)$ is that of the side A, corresponding to the component $\left\{B_{k}\right\}(k=1,2, \ldots)$.

The partition $D(A \times B)$ of the rectangle $A \times B \in \mathfrak{N}$ is said to be twice netting if has the form $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(i, j, k, l=1,2, \ldots)$, where $\left\{A_{i} \times B_{j}\right\}$ $(i, j=1,2, \ldots)$ is the netting partition of the rectangle $A \times B$, and $\left\{A_{i}^{k} \times B_{j}^{l}\right\}$ $(k, l=1,2, \ldots)$ is that of the rectangle $A_{i} \times B_{j}$.

Let $\left\{A_{i} \times B_{j}\right\}(i, j=1,2, \ldots)$ and $\left\{C_{k} \times D_{l}\right\}(k, l=1,2, \ldots)$ be two netting partitions of the rectangle $A \times B$. Then their product

$$
\left\{\left(A_{i} \times B_{j}\right) \cap\left(C_{k} \times D_{l}\right)\right\} \quad(i, j, k, l=1,2, \ldots)
$$

is likewise the netting partition of the rectangle $A \times B$.
Indeed, we have

$$
\begin{aligned}
& \left\{\left(A_{i} \times B_{j}\right) \cap\left(C_{k} \times D_{l}\right)\right\}(i, j, k, l=1,2, \ldots)= \\
& =\left\{\left(A_{i} \times C_{k}\right) \cap\left(B_{j} \times D_{l}\right)\right\}(i, j, k, l=1,2, \ldots)
\end{aligned}
$$

Since \mathfrak{N}_{1} is the normal class of sets, it contains, by Theorem 1 , the partition $\left\{S_{p}^{i k}\right\}(p=1,2, \ldots)$ of the intersection $A_{i} \cap C_{k}(i, k=1,2, \ldots)$. Analogously, since \mathfrak{N}_{2} is the normal class of sets, it contains, by Theorem 1, the partition $\left\{T_{q}^{j l}\right\}(q=1,2, \ldots)$ of the intersection $B_{j} \cap D_{l}(j, l=1,2, \ldots)$. Taking the above-said into consideration, we obtain

$$
\begin{aligned}
& \left\{\left(A_{i} \times B_{j}\right) \cap\left(C_{k} \times D_{l}\right)\right\}(i, j, k, l=1,2, \ldots)= \\
& \quad=\left\{\bigcup_{p=1}^{\infty} S_{p}^{i k} \times \bigcup_{q=1}^{\infty} T_{q}^{j l}\right\}(i, j, k, l=1,2, \ldots)= \\
& \\
& =\left\{S_{p}^{i k} \times T_{q}^{j l}\right\}(i, j, k, l, p, q=1,2, \ldots),
\end{aligned}
$$

where $\left\{S_{p}^{i k}\right\}(i, k, p=1,2, \ldots)$ is the partition of the side A, and $\left\{T_{q}^{j l}\right\}$ $(j, l, q=1,2, \ldots)$ is that of the side B.

Consequently, the set of all netting partitions of the rectangle $A \times B \in \mathfrak{N}$ is the directed relation of the continuation.

Therefore the mapping of the sets of all netting partitions of the rectangle $A \times B \in \mathfrak{N}$ into the set of real numbers is the directedness, and to them can be applied the generalized theory of limits (see [2], Ch.II).

Assume that $\left\{A_{i} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$ and $\left\{C_{j} \times D_{l}^{j}\right\}(j, l=1,2, \ldots)$ are two the right generalized-netting partitions of the rectangle $A \times B$. Then their product

$$
\left\{\left(A_{i} \times B_{k}^{i}\right) \cap\left(C_{j} \times D_{l}^{j}\right)\right\}(i, j, k, l=1,2, \ldots)
$$

is likewise the right generalized-netting partition of the rectangle $A \times B$.
Since $\left\{A_{i}\right\}(i=1,2, \ldots)$ and $\left\{C_{j}\right\}(j=1,2, \ldots)$ are the partitions of the side A of the rectangle $A \times B$, therefore the class \mathfrak{N}, by Theorem 1, contains the partition $\left\{S_{p}^{i j}\right\}(p=1,2, \ldots)$ of the intersection $A_{i} \cap C_{j}$.

Analogously, since $\left\{B_{k}^{i}\right\}(k=1,2, \ldots)$ and $\left\{D_{l}^{j}\right\}(j=1,2, \ldots)$ are the partitions of the side B, corresponding to the components A_{i} and C_{k}, because of the fact that the class \mathfrak{N}_{2} is normal, it contains the partition $D^{i j} B$ following the partitions $\left\{B_{k}^{i}\right\}(k=1,2, \ldots)$ and $\left\{D_{l}^{j}\right\}(l=1,2, \ldots)$.

Thus we have found that for any $i=1,2, \ldots$ and $j=1,2, \ldots$, to every component $\left\{S_{p}^{i j}\right\}(p=1,2, \ldots)$ of the product $\left\{S_{p}^{i j}\right\}(i, j, p=1,2, \ldots)$ of the partitions $\left\{A_{i}\right\}(i=1,2, \ldots)$ and $\left\{C_{j}\right\}(j=1,2, \ldots)$ of the side A there corresponds the partition $D^{i j} B$ of the side B following the partitions $\left\{B_{k}^{i}\right\}$ $(k=1,2, \ldots)$ and $\left\{D_{l}^{j}\right\}(l=1,2, \ldots)$.

Therefore we have

$$
\left\{\left(A_{i} \cap C_{j}\right) \times\left(B_{k}^{i} \cap D_{l}^{j}\right)\right\}(i, j, k, l=1,2, \ldots)=\left\{S_{p}^{i j} \times D^{i j} B\right\}(i, j, p=1,2, \ldots) .
$$

Thus the set of all the right generalized-netting partitions of the rectangle $A \times B \in \mathfrak{N}$ is the directed relation of the continuation.

Similarly, the set of all left generalized-netting partitions of the rectangle $A \times B \in \mathfrak{N}$ is the directed relation of the continuation.

That is why the mappings of the sets of all the right generalized-netting partitions of the rectangle $A \times B \in \mathfrak{N}$ and the sets of all left generalizednetting partitions of the rectangle $A \times B \in \mathfrak{N}$ into the set of real numbers is the directedness, and to them can be applied the generalized theory of limits.

Let $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(i, j, k, l=1,2, \ldots)$ and $\left\{C_{m}^{r} \times D_{n}^{s}\right\}(m, n, r, s=1,2, \ldots)$ be two twice netting partitions of the rectangle $A \times B$, where $\left\{A_{i} \times B_{j}\right\}$ $(i, j=1,2, \ldots)$ and $\left\{C_{m} \times D_{n}\right\}(m, n=1,2, \ldots)$ are the netting partitions of the rectangle $A \times B$, and $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(k, l=1,2, \ldots)$ is the netting partition of the rectangle $A_{i} \times B_{j}$, and $\left\{C_{m}^{r} \times D_{n}^{s}\right\}(r, s=1,2, \ldots)$ is the netting partition of the rectangle $C_{m} \times D_{n}$.

Indeed, we have

$$
\begin{aligned}
& \left\{\left(A_{i}^{k} \times B_{j}^{l}\right) \cap\left(C_{m}^{r} \times D_{n}^{s}\right)\right\}(i, j, k, l, m, n, r, s=1,2, \ldots)= \\
& \quad=\left\{\left(A_{i}^{k} \cap C_{m}^{r}\right) \times\left(B_{j}^{l} \cap D_{n}^{s}\right)\right\}(i, j, k, l, m, n, r, s=1,2, \ldots)
\end{aligned}
$$

and

$$
\left\{\left(A_{i} \cap C_{m}\right) \times\left(B_{j} \cap D_{n}\right)\right\} \quad(i, m, j, n=1,2, \ldots)
$$

is the netting partition of the rectangle $A \times B$, since $\left\{A_{i} \times B_{j}\right\}(i, j=$ $1,2, \ldots)$ and $\left\{C_{m} \times D_{n}\right\}(m, n=1,2, \ldots)$ are the netting partitions of the rectangle $A \times B$. From its side,

$$
\left\{\left(A_{i}^{k} \cap C_{m}^{r}\right) \times\left(B_{j}^{l} \cap D_{n}^{s}\right)\right\} \quad(k, l, r, s=1,2, \ldots)
$$

is the netting partition of the rectangle $\left(A_{i} \cap C_{m}\right) \times\left(B_{j} \cap D_{n}\right)$, since $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(k, l=1,2, \ldots)$ is the netting partition of the rectangle $A_{i} \times B_{j}$, and $\left\{C_{m}^{r} \times D_{n}^{s}\right\}(r, s=1,2, \ldots)$ is the netting partition of the rectangle $C_{m} \times D_{n}$.

Thus the set of all twice netting partitions of the rectangle $A \times B \in \mathfrak{N}$ is the directed relation of the continuation, and hence its mappings into the set of real numbers is the directedness, and to them can be applied the generalized theory of limits.
Proposition 2. The partition $D(A \times B)$ of the rectangle $A \times B$ is twice netting if and only if it is a product of the left and of the right generalizednetting partitions of the rectangle $A \times B$.
Proof. The necessity. Let $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(i, j, k, l=1,2, \ldots)$ be the twice netting partition of the rectangle $A \times B$. Then $\left\{A_{i} \times B_{j}\right\}(i, j=1,2, \ldots)$ is the netting partition of the rectangle $A \times B$, and $\left\{A_{i}^{k} \times B_{j}^{l}\right\}(k, l=1,2, \ldots)$ is the netting partition of the rectangle $A_{i} \times B_{j}$.

But $\left\{A_{i} \times B_{j}^{l}\right\}(i, j, l=1,2, \ldots)$ is the right generalized-netting partition of the rectangle $A \times B$.

Analogously, $\left\{A_{i}^{k} \times B_{j}\right\}(i, k, j=1,2, \ldots)$ is the left generalized-netting partition of the rectyangle $A \times B$.

Constructing the product of the partitions $\left\{A_{i} \times B_{j}^{l}\right\}(i, j, l=1,2, \ldots)$ and $\left\{A_{i}^{k} \times B_{j}\right\}(i, k, j=1,2, \ldots)$, we obtain an unknown partition

$$
\begin{aligned}
& \left\{\left(A_{i} \times B_{j}^{l}\right) \cap\left(A_{i}^{k} \times B_{j}\right)\right\}(i, k, j, l=1,2, \ldots)= \\
& \quad=\left\{\left(A_{i} \cap A_{i}^{k}\right) \times\left(B_{j} \cap B_{j}^{l}\right)\right\}(i, k, j, l=1,2, \ldots)= \\
& \quad=\left\{A_{i}^{k} \times B_{j}^{l}\right\}(i, k, j, l=1,2, \ldots) .
\end{aligned}
$$

The sufficiency. Let $D_{1}(A \times B)=\left\{A_{i} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$ be the right generalized-netting partition of the rectangle $A \times B$, and $D_{2}(A \times B)=$ $\left\{A_{l}^{j} \times B_{j}\right\}(j, l=1,2, \ldots)$ be the left generalized-netting partition of the rectangle $A \times B$. Then by the definition of the partition product, we obtain

$$
\begin{aligned}
\left(D_{1} \cdot D_{2}\right)(A \times B) & =\left\{\left(A_{i} \times B_{k}^{i}\right) \cap\left(A_{l}^{j} \times B_{j}\right)\right\}(i, k, j, l=1,2, \ldots)= \\
& =\left\{\left(A_{i} \cap A_{l}^{j}\right) \times\left(B_{j} \cap B_{k}^{i}\right)\right\}(i, k, j=1,2, \ldots)
\end{aligned}
$$

But

$$
\left\{\left(A_{i} \cap A_{l}^{j}\right) \times\left(B_{j} \cap B_{k}^{i}\right)\right\}(k, l=1,2, \ldots)
$$

is the netting partition of the rectangle $A_{i} \times B_{j}$, and $\left\{A_{i} \times B_{j}\right\} i, j=1,2, \ldots$) is the netting partition of the rectangle $A \times B$. Consequently,

$$
\left\{\left(A_{i} \cap A_{l}^{j}\right) \times\left(B_{j} \cap B_{k}^{i}\right)\right\}(k, l=1,2, \ldots)
$$

is the twice netting partition of the rectangle $A \times B$.
Proposition 3. If A_{1}, \ldots, A_{m} is an arbitrary finite class from the semiring P, then their union can be represented as

$$
A_{1} \cup \ldots \cup A_{m}=A_{1}^{1} \cup \ldots \cup A_{1}^{k_{1}} \cup \ldots \cup A_{m}^{1} \cup \ldots \cup A_{m}^{k_{m}}
$$

where $A_{i}^{1}, \ldots, A_{i}^{k_{i}}$ are contained in the set $A_{i}(i=1, \ldots, m)$, and all sets the right belong to the semi-ring P and do not intersect pairwise.

For the proof, see [1].
This proposition is, as is erroneously mentioned in [3], p.132, invalid for the countable classes. As a counterexample we can mention the countable class

$$
\left\{\left[\frac{m-1}{2^{n}}, \frac{m}{2^{n}}\right]\right\}\left(n=1,2, \ldots ; m=1,2, \ldots, 2^{n}\right)
$$

in a semi-ring P of all semi-segments from the semi-segment $[0,1)$.
Proposition 4. Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be the normal classes of the sets, $\mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$ be their product, the rectangle $A \times B \in \mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$, and $D(A \times B)=\left\{A_{k} \times B_{k}\right\}$ $(k=1,2, \ldots)$ be the partition of the rectangle $A \times B$. For the countable continuation of the partition $D(A \times B)$ to exist, it is necessary and sufficient that there exist the partition $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots\right\} \subset \mathfrak{N}_{1}$ of the set A and the partition $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\} \subset \mathfrak{N}_{2}$ of the set B, such that every $A_{k}(k=1,2, \ldots)$ (respectively, $\left.B_{k}(k=1,2, \ldots)\right)$ is the union of a finite or a countable number of sets from $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots\right\}$ (respectively, from $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\}$).
Proof. The necessity. Let there exist a countable continuation

$$
\left\{\widetilde{A}_{i} \times \widetilde{B}_{j}\right\}(i, j=1,2, \ldots)
$$

of the partition $D(A \times B)$. Then $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots\right\}$ is the partition of the set A, and $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\}$ is that of the set B. According to the definition of the continuation of partition, every $A_{k} \times B_{k}$ is a finite or countable union of the rectangles from $\left\{\widetilde{A}_{i} \times \widetilde{B}_{j}\right\}(i, j=1,2, \ldots)$,

$$
A \times B=\cup_{i} \cup_{j}\left(\widetilde{A}_{i} \times \widetilde{B}_{j}\right)
$$

But then

$$
A=\bigcup_{i} \widetilde{A}_{i}, \quad B=\bigcup_{j} \widetilde{B}_{j}
$$

The sufficiency. Let there exist the partitions $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots\right\} \subset \mathfrak{N}_{1}$ of the set A and $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\} \subset \mathfrak{N}_{2}$ those of the set B, such that every A_{k} $(k=1,2, \ldots)$ (respectively, every $\left.B_{k}(k=1,2, \ldots)\right)$ is the union of a finite or a countable number of sets from $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots\right\}$ (respectively, from $\left.\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\}\right)$.

Let us show that the netting partition $\left\{\widetilde{A}_{i} \times \widetilde{B}_{j}\right\}$ is unknown. Indeed, let $A_{k_{0}} \times B_{k_{0}}$ be an arbitrary rectangle from $\left\{A_{k} \times B_{k}\right\}(k=1,2, \ldots)$. Then by the assumption,

$$
A_{k_{0}}=\cup_{i} \widetilde{A}_{i}, \quad B_{k_{0}}=\cup_{j} \widetilde{B}_{j},
$$

and hence

$$
A_{k_{0}} \times B_{k_{0}}=\left(\underset{i}{\cup} \widetilde{A}_{i}\right) \times\left(\underset{j}{\cup} \widetilde{B}_{j}\right)=\cup_{i} \cup_{j}\left(\widetilde{A}_{i} \times \widetilde{B}_{j}\right)
$$

Corollary 1. Let P_{1} and P_{2} be the semi-rings, and $P_{1} \otimes P_{2}$ be their product. Then for every finite partition $\left\{A_{k} \times B_{k}\right\}(k=1, \ldots, n)$ of the rectangle $A \times B \in P_{1} \otimes P_{2}$ there exists its netting continuation.

Proof. From the equality

$$
A \times B=\bigcup_{k=1}^{n}\left(A_{k} \times B_{k}\right)
$$

it follows that

$$
A=\bigcup_{k=1}^{n} A_{k}, \quad B=\bigcup_{k=1}^{n} B_{k} .
$$

Then by Proposition 2 , there exist the finite partitions $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots, \widetilde{A}_{r}\right\} \subset$ P_{1} and $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}, \ldots\right\} \subset \mathfrak{N}_{2}$ of the sets A and B, such that every A_{k} $(k=1,2, \ldots)$ (respectively, every $\left.\underset{\sim}{\mathcal{A}_{k}}(k=1,2, \ldots)\right)$ is the union of a finite number of some sets from $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots, \widetilde{A}_{r}\right\}$ (respectively, from $\left\{\widetilde{B}_{1}, \widetilde{B}_{2}\right.$, $\left.\ldots, \widetilde{B}_{s}\right\}$).

By Proposition 4, the netting partition $\left\{A_{i} \times B_{j}\right\}(i=1, \ldots, r ; j=$ $1, \ldots, s$) is unknown.

Corollary 1 does not extend to the countable partitions. Indeed, let P_{1} be the semi-ring of all semi-segments $[a, b)$ contained in $[0,1)$, and let P_{2} be the semi-ring of all semi-segments contained in $[a, b)$ contained in $[0,+\infty)$ and $P=P_{1} \otimes P_{2}$. Consider the countable partition

$$
\left\{\left[\frac{m-1}{2^{n}}, \frac{m}{2^{n}}\right] \times[n-1, n)\right\}\left(n=1,2, \ldots ; m=1,2, \ldots, 2^{n}\right)
$$

of the rectangle $[0,1) \times[0,+\infty)$. This partition is the right generalizednetting, however it fails to have a countable continuation.

They say that to the class \mathfrak{N} is assigned the multi-valued function of the set μ if to every set $E \in \mathfrak{N}$ there corresponds the uniquely defined set $\mu(E)$ of real numbers, and $\mu(\varnothing)=0$.

Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be the normal classes of the sets, $\mathfrak{N}=\mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$ be their product, and on the rectangle $A \times B \in \mathfrak{N}$ be assigned an arbitrary multi-valued function of the rectangle μ.

The real number I is called a netting double integral of the multi-valued real function of the rectangle μ, denote by

$$
(\mathfrak{N}) \iint_{A \times B} \mu(d A, d B)
$$

if for every number $\varepsilon>0$ there exists the netting partition $D_{\varepsilon}(A \times B)$ of the rectangle $A \times B$, such that for any its netting continuation $\left\{A_{i} \times B_{j}\right\}$ $(i, j=1,2, \ldots)$ for every choice of the value $\mu\left(A_{i}, B_{j}\right)(i, j=1,2, \ldots)$ the
inequality

$$
\left|1-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{i}, B_{j}\right)\right|<\varepsilon
$$

holds.
The real number I is called the right (the left) generalized-netting double integral of the multi-valued real function of the rectangle μ denoted by

$$
\left(\mathfrak{N}^{r}\right) \iint_{A \times B} \mu(d A, d B) \quad\left(\left(\mathfrak{N}^{l}\right) \iint_{A \times B} \mu(d A, d B)\right)
$$

if for every number $\varepsilon>0$ there exists the right (the left) generalized netting partition $D_{\varepsilon}(A \times B)$ of the rectangle $A \times B$, such that for any its right (left) generalized-netting continuation $\left\{A_{i} \times B_{j}^{i}\right\}(i, j=1,2, \ldots)\left(\left\{A_{j}^{i} \times B_{i}\right\}\right.$ $(i, j=1,2, \ldots))$ for every choice of the value $\mu\left(A_{i}, B_{j}^{i}\right)(i, j=1,2, \ldots)$ $\left(\mu\left(A_{j}^{i}, B_{i}\right)(i, j=1,2, \ldots)\right)$ the inequality

$$
\left|1-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{i}, B_{j}^{i}\right)\right|<\varepsilon \quad\left(\left|1-\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mu\left(A_{j}^{i}, B_{i}\right)\right|<\varepsilon\right)
$$

holds.
Definition of the double upper and lower and of the repeated double upper and lower integrals for multiplicative classes can be found in [4].

Theorem 2. Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be the normal classes of the sets, $\mathfrak{N}=$ $\mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$ be their product, and let on the rectangle $A \times B \in \mathfrak{N}$ be assigned an arbitrary real multi-valued function of the rectangle μ. Then the inequalities

$$
\begin{align*}
& \left(\mathfrak{N}^{r}\right) \iint_{A \times B} \mu(d A, d B) \leq\left(\mathfrak{N}_{1}\right) \frac{\int_{A}}{A}\left(\left(\mathfrak{N}_{2}\right) \frac{\int_{B}}{} \mu(d A, d B)\right) \leq \\
& \leq\left(\mathfrak{N}_{1}\right) \overline{\int_{A}}\left(\left(\mathfrak{N}_{2}\right) \overline{\int_{B}} \mu(d A, d B)\right) \leq\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B), \\
& \left(\mathfrak{N}^{l}\right) \iint_{\bar{A}} \mu(d A, d B) \leq\left(\mathfrak{N}_{2}\right) \frac{\int_{B}^{B}}{A \times B}\left(\left(\mathfrak{N}_{1}\right) \frac{\int_{A}}{} \mu(d A, d B)\right) \leq \tag{1}\\
& \left.\left(\mathfrak{N}_{2}\right) \int_{B}\left(\left(\mathfrak{N}_{1}\right) \int_{A} \mu(d A, d B)\right) \leq\left(\mathfrak{N}^{l}\right)\right] \int_{A \times B} \mu(d A, d B)
\end{align*}
$$

hold.
Proof. We prove the inequality

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right) \leq\left(\mathfrak{N}^{r}\right){\overline{\iint_{A \times B}} \mu(d A, d B) ~}_{\text {. }} \mu(d)
$$

The rest inequalities can be proved analogously.
If

$$
\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)=+\infty
$$

then we have nothing to prove.
Thus we first assume that

$$
-\infty<\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)<+\infty
$$

Then for every number $\varepsilon>0$ there is the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}(i, j=1,2, \ldots)$ of the rectangle $A \times B$, such that for any choice of its from the right generalized-netting continuation $\left\{A_{i} \times B_{j}^{i}\right\}(i, j=$ $1,2, \ldots)$, for any choice of values $\mu\left\{A_{i} \times B_{j}^{i}\right\}(i, j=1,2, \ldots)$ the inequality

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{i}, B_{j}^{i}\right)<\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)+\varepsilon \tag{2}
\end{equation*}
$$

holds.
Let us now show that for every set $\underline{A} \in \mathfrak{N}_{1} \bar{A}_{i}(i=1,2, \ldots)$ and for any choice of values of the multi-valued function μ

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(\underline{A}, d B)<+\infty
$$

Assume to the contrary that for some set $\underline{A} \in \mathfrak{N}_{1} \bar{A}_{1}$ and for any choice of values of the multi-valued function μ

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(\underline{A}, d B)=+\infty
$$

Since $\underline{A} \in \mathfrak{N}_{1} \bar{A}_{1} i$, there exists the partition of the set \bar{A}_{1}, having the form $\left\{\underline{A}, A_{11}, A_{12}, \ldots\right\}$. Then for the number

$$
\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)+\varepsilon-\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i} \times \bar{B}_{j}^{i}\right)-\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 k} \times \widetilde{B}_{j}^{1}\right)
$$

where $\mu\left(\bar{A}_{i}, \bar{B}_{k}^{i}\right)(i=2,3, \ldots ; k=1,2, \ldots)$ and $\mu\left(A_{1 j}, \widetilde{B}_{k}^{1}\right)(j, k=1,2, \ldots)$ is one of the values of the multi-valued function μ, there exists the continuation $\left\{B_{1}^{1}, B_{2}^{1}, \ldots\right\}$ of the partition $\left\{\bar{B}_{j}^{1}\right\}$ of the set B, such that for any choice of values $\mu\left(\underline{A} \times B_{k}^{1}\right)(k=1,2, \ldots)$ the inequality
$\sum_{j=1}^{\infty} \mu\left(\underline{A}, B_{j}^{1}\right)>\left(\mathfrak{N}^{r}\right) \bar{\int}_{A \times B} \mu(d A, d B)+\varepsilon-\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i}, \bar{B}_{j}^{i}\right)-\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 j}, \bar{B}_{k}^{1}\right)$
holds, whence
$\sum_{j=1}^{\infty} \mu\left(\underline{A}, B_{j}^{1}\right)+\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i}, \bar{B}_{j}^{i}\right)+\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 j}, \bar{B}_{k}^{1}\right\rangle\left(\mathfrak{N}^{r}\right) \bar{\int}_{A \times B} \mu(d A, d B)+\varepsilon$,
which contradicts inequality (2) because the right generalized-netting partition

$$
\begin{gathered}
\left\{\left\{\underline{A} \times B_{j}^{1}\right\}(j=1,2, \ldots),\left\{A_{1 j} \times \bar{B}_{k}^{1}\right\}(j, k=1,2, \ldots),\right. \\
\left.\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}(i=2,3, \ldots ; j=1,2, \ldots)\right\}
\end{gathered}
$$

of the rectangle $A \times B$ is the continuation of the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}(i, j=1,2, \ldots)$.

Let us now prove that

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<+\infty .
$$

Suppose to the contrary that

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)=+\infty .
$$

Then for the number

$$
\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)+2 \varepsilon
$$

there exists the continuation $\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots\right\}$ of the partition $\left\{\bar{A}_{1}, \bar{A}_{2}, \ldots\right\}$ of the set A, such that for some choice of values of the integrals

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)(i=1,2, \ldots),
$$

the inequality

$$
\begin{equation*}
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)>\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)+2 \varepsilon \tag{3}
\end{equation*}
$$

holds.
On the other hand, according to the above-proven, for every $A_{i}^{\prime}(i=$ $1,2, \ldots)$ and any choice of values of the multi-valued function μ,

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)<+\infty
$$

Thus for the number $\frac{\varepsilon}{2^{i}}$ there exists the continuation $\left\{B_{1}^{\prime}, B_{2}^{\prime}, \ldots\right\}$ of the partition $\left\{\bar{B}_{1}^{\prime}, \bar{B}_{2}^{\prime}, \ldots\right\}$, such that for any choice of values $\mu\left(A_{i}^{\prime}, B_{k}^{\prime}\right) \quad(k=$ $1,2, \ldots)$ the inequality

$$
\begin{equation*}
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)<\sum_{k=1}^{\infty} \mu\left(A_{i}^{\prime}, B_{k}^{i}\right)+\frac{\varepsilon}{2^{i}} \tag{4}
\end{equation*}
$$

holds.
From inequalities (3) and (4) we find that for some choice of values $\mu\left(A_{i}^{\prime}, \widetilde{B}_{k}^{i}\right)(k=1,2, \ldots)$,

$$
\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(A_{i}^{\prime}, B_{k}^{i}\right)>\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)+\varepsilon
$$

which contradicts inequality (2), since the right generalized-netting partition $\left\{A_{i}^{\prime} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$ is the continuation of the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{k}^{i}\right\}(i, k=1,2, \ldots)$.

Now for the chosen number $\varepsilon>0$ there exists the continuation $\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots\right\}$ of the partition $\left\{\bar{A}_{1}, \bar{A}_{2}, \ldots\right\}$, such that the inequality

$$
\begin{equation*}
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<\sum_{i=1}^{\infty}\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)+\frac{\varepsilon}{2} \tag{5}
\end{equation*}
$$

holds.
On the other hand, for the number $\frac{\varepsilon}{2^{2+1}}$ there exists the continuation $\left\{B_{1}^{i}, B_{2}^{i}, \ldots\right\}$ of the partition $\left\{\bar{B}_{1}^{i}, \bar{B}_{2}^{i}, \ldots\right\}$, such that for some choice of values $\mu\left(A_{i}^{\prime}, B_{k}^{i}\right)(k=1,2, \ldots)$ the inequality

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)<\sum_{k=1}^{\infty} \mu\left(A_{i}^{\prime}, B_{k}^{i}\right)+\frac{\varepsilon}{2^{i+1}}
$$

holds.
From inequalities (2) and (5) we find that for some choice of values $\mu\left(A_{i}^{\prime}, B_{k}^{i}\right)(k=1,2, \ldots)$,

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(A_{i}^{\prime}, B_{k}^{i}\right)+\varepsilon
$$

From the obtained inequality, since the right generalized-netting partition $\left\{A_{i}^{\prime} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$ is the continuation of the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{k}^{i}\right\}(i, k=1,2, \ldots)$, in view of inequalities (2) we obtain

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right) \leq\left(\mathfrak{N}^{r}\right){\overline{\iint_{A \times B}} \mu(d A, d B)+2 \varepsilon, ~}_{\text {a }} \mu(d)
$$

whence, owing to the fact that the number $\varepsilon>0$ is arbitrary, we obtain

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right) \leq\left(\mathfrak{N}^{r}\right){\overline{\iint_{A \times B}} \mu(d A, d B) ~}_{\text {. }} \mu(d)
$$

Let us now prove that

$$
\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)=-\infty
$$

and

$$
-\infty<\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)
$$

are incompatible.
We first assume that

$$
\left.\left(\mathfrak{N}^{r}\right)\right] \int_{A \times B} \mu(d A, d B)=-\infty
$$

and

$$
-\infty<\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<+\infty .
$$

Then on the one hand, for the number

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)-\varepsilon
$$

there exists the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{k}^{i}\right\}(i, k=1,2, \ldots)$ of the rectangle $A \times B$, such that for any its right generalized-netting continuation $\left\{A_{i} \times B_{k}^{i}\right\}(i, k=1,2, \ldots)$, for any choice of values $\mu\left(A_{i} \times B_{k}^{i}\right)$ $(i, k=1,2, \ldots)$ the inequality

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(A_{i}, B_{k}^{i}\right)<\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)-\varepsilon \tag{6}
\end{equation*}
$$

holds.
On the other hand, for the number $\frac{\varepsilon}{2}$ there exists the continuation $\left\{A_{i}^{\prime}, A_{2}^{\prime}, \ldots\right\}$ of the partition $\left\{\bar{A}_{1}, \bar{A}_{2}, \ldots\right\}$, such that for some choice of values of the integrals

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)(i=1,2, \ldots)
$$

the inequality

$$
\begin{equation*}
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<\sum_{i=1}^{\infty}\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)+\frac{\varepsilon}{2} \tag{7}
\end{equation*}
$$

holds.
Let us now show that for any $\underline{A} \in \mathfrak{N}_{1} \bar{A}_{i}(i=1,2, \ldots)$ and for every choice of values of the multi-valued function μ,

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(\underline{A}, d B)<+\infty
$$

Assume to the contrary that for some $\underline{A} \in \mathfrak{N}_{1} \bar{A}_{1}$ and for some choice of values of the multi-valued function μ,

$$
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(\underline{A}, d B)=+\infty
$$

Since $\underline{A} \in \mathfrak{N} \bar{A}_{1}$, there exists the partition of the set \bar{A}_{1} having the form $\left\{\underline{A}, A_{11}, A_{12}, \ldots\right\}$. Then for the numbers

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)-\varepsilon-\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i}, \bar{B}_{j}^{i}\right)-\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 k}, \bar{B}_{j}^{1}\right)
$$

where $\mu\left(\bar{A}_{i}, \bar{B}_{k}^{i}\right)(i=2,3, \ldots ; k=1,2, \ldots)$ and $\mu\left(A_{1 k}, \bar{B}_{j}^{1}\right)(j, k=1,2, \ldots)$ are the values of the multi-valued function μ, there exists the continuation $\left\{B_{1}^{\prime}, B_{2}^{\prime}, \ldots\right\}$ of the partition $\left\{\bar{B}_{j}^{1}\right\}$ of the set B, such that for some choice of values $\mu\left(\underline{A}, B_{j}^{\prime}\right)(j=1,2, \ldots)$ the inequality

$$
\begin{aligned}
\sum_{j=1}^{\infty} \mu\left(\underline{A}, B_{j}^{\prime}\right) & >\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)-\varepsilon- \\
& -\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i}, \bar{B}_{j}^{i}\right)-\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 i}, B_{j}^{\prime}\right)
\end{aligned}
$$

holds, whence

$$
\begin{aligned}
\sum_{j=1}^{\infty} \mu\left(\underline{A}, B_{j}^{\prime}\right) & +\sum_{i=2}^{\infty} \sum_{j=1}^{\infty} \mu\left(\bar{A}_{i}, \bar{B}_{j}^{i}\right)+\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{1 i}, B_{j}^{\prime}\right)> \\
& \left.>\left(\mathfrak{N}_{1}\right)\right]_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)-\varepsilon
\end{aligned}
$$

But this contradicts inequality (6), since the right generalized-netting partition $\left\{\left\{\underline{A} \times B_{j}^{\prime}\right\}(j=1,2, \ldots),\left\{A_{1 j} \times \bar{B}_{k}^{1 j}\right\}(j, k=1,2, \ldots),\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}\right.$
$(i=2,3, \ldots ; j=1,2, \ldots)\}$ of the rectangle $A \times B$ is the continuation of the right generalized-netting partition $\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}(i, j=1,2, \ldots)$.

Therefore for the number $\frac{\varepsilon}{2^{i}}$ there exists the continuation $\left\{B_{1}^{i}, B_{2}^{i}, \ldots\right\}$ of the partition $\left\{\bar{B}_{1}^{i}, \bar{B}_{2}^{i}, \ldots\right\}$, such that for some choice of values $\mu\left(A_{i}^{\prime}, B_{k}^{i}\right)$ $(k=1,2, \ldots)$ the inequality

$$
\begin{equation*}
\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu\left(A_{i}^{\prime}, d B\right)<\sum_{j=1}^{\infty} \mu\left(A_{i}^{\prime}, B_{j}^{i}\right)+\frac{\varepsilon}{2^{i+1}} \tag{8}
\end{equation*}
$$

holds.
It follows from inequalities (7) and (8) that for some choice of values $\mu\left(A_{j}^{\prime}, B_{k}^{j}\right)(j, k=1,2, \ldots)$,

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right)<\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(\widetilde{A}_{1 j} \times \widetilde{B}_{k}^{1 j}\right)+\varepsilon
$$

which contradicts inequality (6), since the right generalized-netting partition $\left\{A_{i}^{\prime} \times B_{j}^{i}\right\}(i, j=1,2, \ldots)$ is the continuation of the right generalized $=$ netting partition $\left\{\bar{A}_{i} \times \bar{B}_{j}^{i}\right\}(i, j=1,2, \ldots)$.

It is also proved that the equalities

$$
\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B)=-\infty
$$

and

$$
\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(\widetilde{A}, d B)\right)=+\infty
$$

are incompatible.
Since the inequalities

$$
\begin{aligned}
(\mathfrak{N}) \iint_{\overline{A \times B}} \mu(d A, d B) & \leq\left(\mathfrak{N}^{r}\right) \iint_{\overline{A \times B}} \mu(d A, d B) \leq\left(\mathfrak{N}^{r}\right) \overline{\iint_{A \times B}} \mu(d A, d B) \leq \\
& \leq(\mathfrak{N}) \underset{A \int_{A \times B}}{ } \mu(d A, d B), \\
(\mathfrak{N}) \iint \mu(d A, d B) & \leq\left(\mathfrak{N}^{l}\right) \iint_{\overline{\frac{J}{A \times B}}} \mu(d A, d B) \leq\left(\mathfrak{N}^{l}\right) \overline{\int_{A \times B}} \mu(d A, d B) \leq \\
& \leq(\mathfrak{N}) \int_{A \times B} \mu(d A, d B)
\end{aligned}
$$

hold, the above-proven theorem immediately results in

Corollary 2. Let \mathfrak{N}_{1} and \mathfrak{N}_{2} be the normal classes of the sets, $\mathfrak{N}=$ $\mathfrak{N}_{1} \otimes \mathfrak{N}_{2}$ be their product, and let on the rectangle $A \times B \in \mathfrak{N}$ be assigned an arbitrary multi-valued function of the rectangle μ. Then the inequalities

$$
\begin{aligned}
& (\mathfrak{N}) \frac{\iint_{A \times B}}{} \mu(d A, d B) \leq\left(\mathfrak{N}_{1}\right) \frac{\int_{A}}{}\left(\left(\mathfrak{N}_{2}\right) \frac{\int_{B}}{} \mu(d A, d B)\right) \leq \\
& \leq\left(\mathfrak{N}_{1}\right) \bar{\int}_{A}\left(\left(\mathfrak{N}_{2}\right) \bar{\int}_{B} \mu(d A, d B)\right) \leq(\mathfrak{N}) \overline{\iint_{A \times B}} \mu(d A, d B), \\
& (\mathfrak{N}) \frac{\iint_{A \times B}}{} \mu(d A, d B) \leq\left(\mathfrak{N}_{2}\right) \frac{\int_{B}}{}\left(\left(\mathfrak{N}_{1}\right) \frac{\int_{A}}{} \mu(d A, d B)\right) \leq \\
& \leq\left(\mathfrak{N}_{2}\right) \bar{\int}_{B}\left(\left(\mathfrak{N}_{1}\right) \bar{\int}_{A} \mu(d A, d B)\right) \leq(\mathfrak{N}) \overline{\iint_{A \times B}} \mu(d A, d B)
\end{aligned}
$$

hold.
Theorem 3. Let $\mathfrak{N}_{1}, \ldots, \mathfrak{N}_{n}$ be the normal classes of the sets, $\mathfrak{N}=$ $\mathfrak{N}_{1} \otimes \cdots \otimes \mathfrak{N}_{n}$ be their product, and let on the rectangle $A_{1} \times \cdots \times A_{n} \in \mathfrak{N}$ be assigned an arbitrary multi-valued function of the rectangle μ. Then there take place the n ! inequalities

$$
\begin{aligned}
& \text { (} \mathfrak{N) ~} \underset{A_{1} \times \cdots \times A_{n}}{\iint^{\times \times}} \mu\left(d A_{1}, \ldots, d A_{n}\right) \leq \\
& \leq\left(\mathfrak{N}_{n}\right) \frac{\int_{\overline{A_{n}}}}{}\left(\cdots\left(\left(\mathfrak{N}_{1}\right) \frac{\int_{A_{1}}}{} \mu\left(d A_{1}, \ldots, d A_{n}\right)\right) \cdots\right) \leq \\
& \leq\left(\mathfrak{N}_{n}\right) \bar{\int}_{A_{n}}\left(\cdots\left(\left(\mathfrak{N}_{1}\right) \bar{\int}_{A_{1}} \mu\left(d A_{1}, \ldots, d A_{n}\right)\right) \cdots\right) \leq \\
& \leq(\mathfrak{N}) \int_{A_{1} \times \cdots \times A_{n}} \mu\left(d A_{1}, \ldots, d A_{n}\right),
\end{aligned}
$$

$(\mathfrak{N}) \underset{A_{1} \times \cdots \times A_{n}}{\iint} \mu\left(d A_{1}, \ldots, d A_{n}\right) \leq$

$$
\leq\left(\mathfrak{N}_{1}\right) \frac{\int}{\overline{A_{n}}}\left(\cdots\left(\left(\mathfrak{N}_{n}\right) \frac{\int}{A_{n}} \mu\left(d A_{1}, \ldots, d A_{n}\right)\right) \cdots\right) \leq
$$

$$
\begin{aligned}
& \leq\left(\mathfrak{N}_{1}\right) \bar{\int}_{A_{1}}\left(\cdots\left(\left(\mathfrak{N}_{n}\right) \bar{\int}_{A_{n}} \mu\left(d A_{1}, \ldots, d A_{n}\right)\right) \cdots\right) \leq \\
& \leq(\mathfrak{N}) \bar{\iint}_{A_{1} \times \cdots \times A_{n}} \mu\left(d A_{1}, \ldots, d A_{n}\right)
\end{aligned}
$$

which can, respectively, be obtained from inequalities (*) by means of all possible permutations of the sets A_{1}, \ldots, A_{n}.

The proof of the above theorem follows directly from Corollary 2 by using the method of mathematical induction.

References

1. D. F. Goguadze, About the notion of semiring of sets. (English. Russian original) Math. Notes $\mathbf{7 4}(2003)$, No. 3, 346-351; translation from Mat. Zametki $\mathbf{7 4}(2003)$, No. 3, 362-368.
2. J. P. Kelly, General Topology. Moscow, Nauka, 1981.
3. G. E. Shilov and B. L. Gurevich, The integral, measure and derivative. Moscow, Nauka, 1967.
4. D. F. Goguadze, Kolmogorov integrals and some of their applications. (Russian) Metsniereba, Tbilisi, 1979.
(Received 07.04.2008)
Authors' address:
Iv. Javakhishvili Tbilisi State University

2, Javakhishvili Str. Tbilisi
Georgia

[^0]: 2000 Mathematics Subject Classification. 28A350, 28B20, 28B20.
 Key words and phrases. Normal class, netting partition, from the right (from the left) generalized netting partition, netting double integral, from the right (from the left) generalized netting double integral.

