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EXISTENCE RESULTS FOR FRACTIONAL ORDER

SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

M. BELMEKKI AND M. BENCHOHRA

Abstract. In this paper, we establish sufficient conditions for the
existence and uniqueness of mild solutions for some densely defined
semilinear functional differential equations involving the Riemann-
Liouville derivative.

îâäæñéâ. ê�öîëéöæ á�áàâêæèæ� æê ê�ýâãî�áûîòæãæ òñêóùæëê�-

èñî-áæòâîâêùæ�èñîæ à�êðëèâ�æï ïñïðæ �éëê�ýïêâ�æï �îïâ�ë�æ-

ï� á� âîå�áâîåë�æï ï�çé�îæïæ ìæîë�â�æ, îëéâèæù öâæù�ãï îæé�ê-

èæñãæèæï û�îéëâ�ñèï.

1. Introduction

This paper is concerned with existence of mild solutions defined on a
compact real interval for fractional order semilinear functional differential
equations of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b] (1)

y(t) = φ(t), t ∈ [−r, 0], (2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J ×
C([−r, 0], E) → E is a given function, A : D(A) ⊂ E → E is the infinitesi-
mal generator of a strongly continuous semigroup {T (t)}t≥0, φ : [−r, 0] → E

a given continuous function with φ(0) = 0 and (E, | · |) a real Banach space.
For any function y defined on [−r, b] and any t ∈ J we denote by yt the
element of C([−r, 0], E) defined by

yt(θ) = y(t + θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t − r, up to the
present time t. Functional differential and partial differential equations
arise in many areas of applied mathematics and such equations have received
much attention in recent years. A good guide to the literature for functional
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differential equations is the books by Hale [19] and Hale and Verduyn Lunel
[20], Kolmanovskii and Myshkis [27] and Wu [41] and the references therein.

Differential equations of fractional order have recently proved to be valu-
able tools in the modeling of many phenomena in various fields of science
and engineering. Indeed we can find numerous applications in viscoelas-
ticity, electrochemistry, electromagnetism, etc. For details, see the mono-
graphs of Kilbas et al [25], Kiryakova [26], Miller and Ross [33], Podlubny
[37] and Samko et al [40], and the papers of Diethelm et al [8, 9, 10], El-
Sayed [13, 14, 15], Gaul et al [16], Glockle and Nonnenmacher [17], Mainardi
[31], Metzler et al [32], Momani and Hadid [34], Momani et al [35], Pod-
lubny et al [39], Yu and Gao [42] and the references therein. Some classes of
evolution equations have been considered by El- Borai [11, 12], Jaradat et

al [23] studied the existence and uniqueness of mild solutions for a class of
initial value problem for a semilinear integrodifferential equation involving
the Caputo’s fractional derivative. Very recently some basic theory for the
initial value problems of ordinary fractional differential equations involving
Riemann-Liouville differential operator of order 0 < α ≤ 1 has been dis-
cussed by Lakshmikantham and Vatsala [28, 29, 30]. In a series of papers
(see [1, 2, 3]) the authors considered some classes of initial value problems
for functional differential equations involving the Riemann-Liouville and
Caputo fractional derivatives of order 0 < α ≤ 1. For more details on the
geometric and physical interpretation for fractional derivatives of both the
Riemann-Liouville and Caputo types see [22, 38]. This paper is organized
as follows: in Section 2, we will recall briefly some basic definitions and
preliminary facts which will be used throughout the following sections. In
Section 3, we give two existence results of mild solutions for problem (1)–
(2). In Section 4 we indicate some generalizations to nonlocal functional
differential equations. The results of the present paper can be considered
as a contribution to this emerging field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper.

By C(J, E) we denote the Banach space of all continuous functions from
J into E with the norm

‖y‖∞ =: sup{|y(t)| : t ∈ J}.

C([−r, 0], E) is endowed with norm defined by

‖φ‖C =: sup{|φ(θ)| : −r ≤ θ ≤ 0}.

B(E) denotes the Banach space of bounded linear operators from E into
E, with norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.
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L1(J, E) denotes the Banach space of measurable functions y : J −→ E

which are Bochner integrable normed by

‖y‖L1 =

b
∫

0

|y(t)|dt.

Definition 2.1. ([37, 40]). The Riemann-Liouville fractional primitive
of order α of a function h : (0, b] → E of order α ∈ IR

+ is defined by

Iα
0 h(t) =

1

Γ(α)

t
∫

0

(t − s)α−1h(s)ds,

provided the right side is pointwise defined on (0, b], and where Γ is the
gamma function.

Definition 2.2. ([37, 40]). The Riemann-Liouville fractional derivative
of order α > 0 of a continuous function h : (0, b] → E is defined by

dαh(t)

dtα
=

1

Γ(1 − α)

d

dt

t
∫

0

(t − s)−αh(s)ds =
d

dt
I1−α
0 h(t).

3. Existence of Mild Solutions

In this section we give our main existence result for problem (1)–(2).
Before stating and proving this result, we give the definition of its mild
solution.

Definition 3.1. We say that a continuous function y : [−r, b] → E is a
mild solution of problem (1)–(2) if y(t) = φ(t), t ∈ [−r, 0], and

y(t) =
1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)f(s, ys)ds, t ∈ J.

Our first existence result for problem (1)–(2) is based on the Banach’s
contraction principle.

Theorem 3.1. Let f : J × C([−r, 0], E) → E. Assume:

(H) There exists a nonnegative constant k such that

|f(t, u) − f(t, v)| ≤ k‖u − v‖C , for t ∈ J and every u, v ∈ C([−r, 0], E).

If
Mkbα

Γ(α + 1)
< 1, (3)

where

M = sup{‖T (t)‖B(E) : t ∈ J}.

Then there exists a unique mild solution of problem (1)–(2) on [−r, b].
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Proof. Transform the IVP (1)–(2) into a fixed point problem. Consider the
operator F : C([−r, b], E) → C([−r, b], E) defined by

F (y)(t) =















φ(t), t ∈ [−r, 0],

1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)f(s, ys)ds, t ∈ [0, b].

Let y, z ∈ C([−r, b], E), then for each t ∈ [−r, b],

|F (y)(t) − F (z)(t)| ≤
M

Γ(α)

t
∫

0

(t − s)α−1|f(s, ys) − f(s, zs)|ds ≤

≤
Mk

Γ(α)

t
∫

0

(t − s)α−1‖ys − zs‖Cds ≤

≤
Mk

Γ(α)
‖y − z‖∞

t
∫

0

(t − s)α−1ds ≤

≤
Mkbα

αΓ(α)
‖y − z‖∞.

Taking the supremum over t,

‖F (y) − F (z)‖∞ ≤
Mkbα

Γ(α + 1)
‖y − z‖∞,

which implies by (3) that F is a contraction and hence F has a unique fixed
point by the Banach’s contraction principle, which gives rise to a unique
mild solution to the problem (1)–(2). �

Next we give an existence result based upon the following nonlinear alter-
native of Leray-Schauder applied to completely continuous operators [18].

Theorem 3.2. Let X a Banach space, and C ⊂ X convex with 0 ∈ C.

Let F : C → C be a completely continuous operator. Then either

(a) F has a fixed point, or

(b) the set E = {x ∈ C : x = λF (x), 0 < λ < 1} is unbounded.

Essential for the main results of this section, we state a generalization of
Gronwall’s lemma for singular kernels ([21], Lemma 7.1.1).

Lemma 3.1. Let v, w : [0, b] → [0,∞) be continuous functions. If w(·)
is nondecreasing and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

t
∫

0

v(s)

(t − s)α
ds,
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then there exists a constant k = k(α) such that

v(t) ≤ ω(t) + ka

t
∫

0

ω(s)

(t − s)α
ds,

for every t ∈ [0, b].

Our main result reads

Theorem 3.3. Assume that the following hypotheses hold:

(H1) The semigroup {T (t)}t∈J is compact for t > 0;
(H2) f : J × C([−r, 0], E) → E is a continuous function;

(H3) There exist functions p, q ∈ C(J, IR+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C , for a.e. t ∈ J, and each u ∈ C([−r, 0], E).

Then the problem (1)–(2) has at least one mild solution on [−r, b].

Proof. Transform the IVP (1)–(2) into a fixed point problem. Consider the
operator F defined in the proof of Theorem 3.1. We shall show that the
operator F is continuous and completely continuous.

Step 1: F is continuous.
Let {yn} be a sequence such that yn → y in C([−r, b], E). Then

|F (yn)(t) − F (y)(t)| ≤

≤

∣

∣

∣

∣

1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)[f(s, yns
) − f(s, ys)]ds

∣

∣

∣

∣

≤

≤
Mbα

αΓ(α)
‖f(., yn.

) − f(., y.)‖∞.

Since f is a continuous function, then we have

‖F (yn) − F (y)‖∞ ≤
Mbα

Γ(α + 1)
‖f(., yn.

) − f(., y.)‖∞ → 0 as n 7→ ∞.

Thus F is continuous. �

Step 2: F maps bounded sets into bounded sets in C([−r, b], E).
It is enough to show that for any ρ > 0 there exists a positive constant

δ such that for each y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖∞ ≤ ρ} we have
F (y) ∈ Bδ.

Then we have for each t ∈ J

|F (y)(t)| =

∣

∣

∣

∣

1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)f(s, ys)ds

∣

∣

∣

∣

≤
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≤
M‖p‖∞

Γ(α)

t
∫

0

(t − s)α−1ds +
Mρ‖q‖∞

Γ(α)

t
∫

0

(t − s)α−1ds ≤

≤
Mbα

Γ(α + 1)
(‖p‖∞ + ρ‖q‖∞) =: δ.

Step 3: F maps bounded sets into equicontinuous sets of C([−r, b], E).
We consider Bq as in Step 2 . Let τ1, τ2 ∈ J , τ2 > τ1. thus if ǫ > 0 and

ǫ ≤ τ1 ≤ τ2 we have

|F (y)(τ2)−F (y)(τ1)| ≤
1

Γ(α)

∣

∣

∣

∣

τ1−ǫ
∫

0

[

(τ2 − s)α−1T (τ2 − s)−

− (τ1 − s)α−1T (τ1 − s)
]

f(s, ys)ds

∣

∣

∣

∣

+

+
1

Γ(α)

∣

∣

∣

∣

τ1
∫

τ1−ǫ

[

(τ2 − s)α−1T (τ2 − s)−

− (τ1 − s)α−1T (τ1 − s)
]

f(s, ys)ds

∣

∣

∣

∣

+

+
1

Γ(α)

∣

∣

∣

∣

τ2
∫

τ1

(τ2 − s)α−1T (τ2 − s)f(s, ys)ds

∣

∣

∣

∣

≤

≤M
‖p‖∞ + ρ‖q‖∞

Γ(α)

(∣

∣

∣

∣

τ1−ǫ
∫

0

[

(τ2 − s)α−1−

− (τ1 − s)α−1
]

T (τ1 − s)ds

∣

∣

∣

∣

+

+

∣

∣

∣

∣

τ1−ǫ
∫

0

(τ2 − s)α−1T (τ1 − ǫ − s) (T (τ2 − τ1 − ǫ) − T (ǫ)) ds

∣

∣

∣

∣

+

+

τ1
∫

τ1−ǫ

(

(τ2 − s)α−1 − (τ1 − s)α−1
)

ds+

+

τ2
∫

τ1

(τ2 − s)α−1ds

)

≤

≤M
‖p‖∞ + ρ‖q‖∞

Γ(α)

(

τ1−ǫ
∫

0

[

(τ2 − s)α−1 − (τ1 − s)α−1
]

ds+
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+‖T (τ2 − τ1 − ǫ) − T (ǫ)‖B(E)

τ1−ǫ
∫

0

(τ2 − s)α−1ds+

+

τ1
∫

τ1−ǫ

(

(τ2 − s)α−1 − (τ1 − s)α−1
)

ds+

+

τ2
∫

τ1

(τ2 − s)α−1ds

)

.

As τ1 → τ2 and ǫ sufficiently small, the right-hand side of the above in-
equality tends to zero, since T (t) is a strongly continuous operator and the
compactness of T (t) for t > 0 implies the continuity in the uniform operator
topology ([36]). As a consequence of steps 1 to 3 together with Arzelá-Ascoli
theorem it suffices to show that F maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ǫ be a real number satisfying 0 < ǫ < t.
For y ∈ Bρ we define

Fǫ(y)(t) =
T (ǫ)

Γ(α)

t−ǫ
∫

0

(t − s − ǫ)α−1T (t − s − ǫ)f(s, ys)ds.

Since T (t) is a compact operator for t > 0, the set

Yǫ(t) = {Fǫ(y)(t) : y ∈ Bρ}

is precompact in E for every ǫ, 0 < ǫ < t. Moreover

|F (y)(t) − Fǫ(y)(t)| ≤ M
‖p‖∞ + ρ‖q‖∞

Γ(α)
×

×

(

t−ǫ
∫

0

[

(t − s)α−1 − (t − s − ǫ)α−1

]

ds +

+

t
∫

t−ǫ

(t − s)α−1ds

)

≤ M
‖p‖∞ + ρ‖q‖∞

Γ(α)

(

tα − (t − ǫ)α
)

.

Therefore, the set Y (t) = {F (y)(t) : y ∈ Bρ} is precompact in E. Hence
the operator F is completely continuous.

Step 5: A priori bounds on solutions.
Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF (y) for some 0 < λ < 1}

is bounded.
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Let y ∈ E be any element. Then, for each t ∈ J ,

y(t) = λ
1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)f(s, ys)ds.

Then

|y(t)| ≤ M‖Iαp‖∞ +
M‖q‖∞

Γ(α)

t
∫

0

(t − s)α−1‖ys‖ds. (4)

We consider the function defined by

µ(t) = max{|y(s)| : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] such that µ(t) = |y(t∗)|, If t∗ ∈ [0, b] then by (4) we have,
for t ∈ J, (note t∗ ≤ t)

µ(t) ≤ M‖Iαp‖∞ +
M‖q‖∞

Γ(α)

t
∫

0

(t − s)α−1µ(s)ds.

If t∗ ∈ [−r, 0] then µ(t) = ‖φ‖C and the previous inequality holds.
By the Lemma 3.1 we have

µ(t) ≤ M‖Iαp‖∞ + k
M‖q‖∞

Γ(α)

t
∫

0

(t − s)α−1M‖Iαp‖∞ds ≤

≤ M‖Iαp‖∞ +
kM2bα‖q‖∞‖Iαp‖∞

Γ(α + 1)
=: Λ

Hence

‖y‖∞ ≤ max{‖φ‖C , Λ} for all y ∈ E .

This shows that the set E is bounded. As a consequence of the Lemma 3.2,
we deduce that the operator F has a fixed point which is a mild solution of
the problem (1)–(2). �

4. Nonlocal Problems

In this section we shall prove existence results for the following class of
nonlocal problem

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b] (5)

y(t) + ht(y) = φ(t), t ∈ [−r, 0], (6)

where ht : C([−r, b], E) → E is given function. The non-local condition can
be applied in physics with better effect than the classical initial condition
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y(0) = y0. For example, ht (y) may be given by

ht (y) =

p
∑

i=1

ciy(ti + t), t ∈ [−r, 0]

where ci, i = 1, . . . , p, are given constants and 0 < t1 < · · · < tp ≤ b. At
time t = 0, we have

h0 (y) =

p
∑

i=1

ciy (ti) .

Non-local conditions were initiated by Byszewski [4] (see also [5, 6, 7]) in
which we refer for motivation and other references. Nonlocal conditions were
initiated by Byszewski [4] when he proved the existence and uniqueness of
mild and classical solutions of non-local Cauchy problems. As remarked by
Byszewski [5], the nonlocal condition can be more useful than the standard
initial condition to describe some physical phenomena.

Definition 4.1. We say that a continuous function y : [−r, b] → E is a
mild solution of problem (5)–(6) if y(t) = φ(t), t ∈ [−r, 0], and

y(t) = T (t)(φ(0) − h0(y)) +
1

Γ(α)

t
∫

0

(t − s)α−1T (t − s)f(s, ys)ds, t ∈ J.

Theorem 4.1. Assume that (H) holds and, moreover there exists a

nonnegative constant k∗ such that

‖h0(u) − h0(v)‖ ≤ k∗‖u − v‖C , for every u, v ∈ C([−r, 0], E).

If

Mk∗ +
Mkbα

Γ(α + 1)
< 1,

then the problem (5)–(6) has a unique mild solution on [−r, b].

Theorem 4.2. Assume that hypotheses (H1)–(H3) hold and, moreover

the function h is continuous with respect to t, and there exists a constant

β > 0 such that

|ht(u)| ≤ β, for each u ∈ C([−r, b], E)

and for each k > 0 the set

{φ(0) − h0(y), y ∈ C([−r, b], E), ‖y‖∞ ≤ k}

is precompact in E, then the problem (5)–(6) has at least one mild solution

on [−r, b].



18 M. BELMEKKI AND M. BENCHOHRA

References

1. A. Belarbi, M. Benchohra, S. Hamani and S. K. Ntouyas, Perturbed functional dif-
ferential equations with fractional order. Commun. Appl. Anal. 11(2007), No. 3-4,
429–440.

2. A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional
differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85(2006), No.
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