EXISTENCE RESULTS FOR FRACTIONAL ORDER SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

M. BELMEKKI AND M. BENCHOHRA

Abstract

In this paper, we establish sufficient conditions for the existence and uniqueness of mild solutions for some densely defined semilinear functional differential equations involving the RiemannLiouville derivative.

1. Introduction

This paper is concerned with existence of mild solutions defined on a compact real interval for fractional order semilinear functional differential equations of the form

$$
\begin{gather*}
D^{\alpha} y(t)=A y(t)+f\left(t, y_{t}\right), \quad t \in J:=[0, b] \tag{1}\\
y(t)=\phi(t), \quad t \in[-r, 0], \tag{2}
\end{gather*}
$$

where D^{α} is the standard Riemann-Liouville fractional derivative, $f: J \times$ $C([-r, 0], E) \rightarrow E$ is a given function, $A: D(A) \subset E \rightarrow E$ is the infinitesimal generator of a strongly continuous semigroup $\{T(t)\}_{t \geq 0}, \phi:[-r, 0] \rightarrow E$ a given continuous function with $\phi(0)=0$ and $(E,|\cdot|)$ a real Banach space. For any function y defined on $[-r, b]$ and any $t \in J$ we denote by y_{t} the element of $C([-r, 0], E)$ defined by

$$
y_{t}(\theta)=y(t+\theta), \quad \theta \in[-r, 0] .
$$

Here $y_{t}(\cdot)$ represents the history of the state from time $t-r$, up to the present time t. Functional differential and partial differential equations arise in many areas of applied mathematics and such equations have received much attention in recent years. A good guide to the literature for functional

[^0]differential equations is the books by Hale [19] and Hale and Verduyn Lunel [20], Kolmanovskii and Myshkis [27] and Wu [41] and the references therein.

Differential equations of fractional order have recently proved to be valuable tools in the modeling of many phenomena in various fields of science and engineering. Indeed we can find numerous applications in viscoelasticity, electrochemistry, electromagnetism, etc. For details, see the monographs of Kilbas et al [25], Kiryakova [26], Miller and Ross [33], Podlubny [37] and Samko et al [40], and the papers of Diethelm et al [8, 9, 10], ElSayed [13, 14, 15], Gaul et al [16], Glockle and Nonnenmacher [17], Mainardi [31], Metzler et al [32], Momani and Hadid [34], Momani et al [35], Podlubny et al [39], Yu and Gao [42] and the references therein. Some classes of evolution equations have been considered by El- Borai [11, 12], Jaradat et al [23] studied the existence and uniqueness of mild solutions for a class of initial value problem for a semilinear integrodifferential equation involving the Caputo's fractional derivative. Very recently some basic theory for the initial value problems of ordinary fractional differential equations involving Riemann-Liouville differential operator of order $0<\alpha \leq 1$ has been discussed by Lakshmikantham and Vatsala [28, 29, 30]. In a series of papers (see $[1,2,3]$) the authors considered some classes of initial value problems for functional differential equations involving the Riemann-Liouville and Caputo fractional derivatives of order $0<\alpha \leq 1$. For more details on the geometric and physical interpretation for fractional derivatives of both the Riemann-Liouville and Caputo types see [22, 38]. This paper is organized as follows: in Section 2, we will recall briefly some basic definitions and preliminary facts which will be used throughout the following sections. In Section 3, we give two existence results of mild solutions for problem (1)(2). In Section 4 we indicate some generalizations to nonlocal functional differential equations. The results of the present paper can be considered as a contribution to this emerging field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.

By $C(J, E)$ we denote the Banach space of all continuous functions from J into E with the norm

$$
\|y\|_{\infty}=: \sup \{|y(t)|: t \in J\} .
$$

$C([-r, 0], E)$ is endowed with norm defined by

$$
\|\phi\|_{C}=: \sup \{|\phi(\theta)|:-r \leq \theta \leq 0\}
$$

$B(E)$ denotes the Banach space of bounded linear operators from E into E, with norm

$$
\|N\|_{B(E)}=\sup \{|N(y)|:|y|=1\} .
$$

$L^{1}(J, E)$ denotes the Banach space of measurable functions $y: J \longrightarrow E$ which are Bochner integrable normed by

$$
\|y\|_{L^{1}}=\int_{0}^{b}|y(t)| d t
$$

Definition 2.1. ([37, 40]). The Riemann-Liouville fractional primitive of order α of a function $h:(0, b] \rightarrow E$ of order $\alpha \in \mathbb{R}^{+}$is defined by

$$
I_{0}^{\alpha} h(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} h(s) d s
$$

provided the right side is pointwise defined on $(0, b]$, and where Γ is the gamma function.

Definition 2.2. ([37, 40]). The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $h:(0, b] \rightarrow E$ is defined by

$$
\frac{d^{\alpha} h(t)}{d t^{\alpha}}=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d t} \int_{0}^{t}(t-s)^{-\alpha} h(s) d s=\frac{d}{d t} I_{0}^{1-\alpha} h(t)
$$

3. Existence of Mild Solutions

In this section we give our main existence result for problem (1)-(2). Before stating and proving this result, we give the definition of its mild solution.

Definition 3.1. We say that a continuous function $y:[-r, b] \rightarrow E$ is a mild solution of problem (1)-(2) if $y(t)=\phi(t), t \in[-r, 0]$, and

$$
y(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s) f\left(s, y_{s}\right) d s, \quad t \in J
$$

Our first existence result for problem (1)-(2) is based on the Banach's contraction principle.

Theorem 3.1. Let $f: J \times C([-r, 0], E) \rightarrow E$. Assume:
(H) There exists a nonnegative constant k such that
$|f(t, u)-f(t, v)| \leq k\|u-v\|_{C}$, for $t \in J \quad$ and every $u, v \in C([-r, 0], E)$.
If

$$
\begin{equation*}
\frac{M k b^{\alpha}}{\Gamma(\alpha+1)}<1 \tag{3}
\end{equation*}
$$

where

$$
M=\sup \left\{\|T(t)\|_{B(E)}: t \in J\right\}
$$

Then there exists a unique mild solution of problem (1)-(2) on $[-r, b]$.

Proof. Transform the IVP (1)-(2) into a fixed point problem. Consider the operator $F: C([-r, b], E) \rightarrow C([-r, b], E)$ defined by

$$
F(y)(t)= \begin{cases}\phi(t), & t \in[-r, 0] \\ \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s) f\left(s, y_{s}\right) d s, & t \in[0, b]\end{cases}
$$

Let $y, z \in C([-r, b], E)$, then for each $t \in[-r, b]$,

$$
\begin{aligned}
|F(y)(t)-F(z)(t)| & \leq \frac{M}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left|f\left(s, y_{s}\right)-f\left(s, z_{s}\right)\right| d s \leq \\
& \leq \frac{M k}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left\|y_{s}-z_{s}\right\|_{C} d s \leq \\
& \leq \frac{M k}{\Gamma(\alpha)}\|y-z\|_{\infty} \int_{0}^{t}(t-s)^{\alpha-1} d s \leq \\
& \leq \frac{M k b^{\alpha}}{\alpha \Gamma(\alpha)}\|y-z\|_{\infty}
\end{aligned}
$$

Taking the supremum over t,

$$
\|F(y)-F(z)\|_{\infty} \leq \frac{M k b^{\alpha}}{\Gamma(\alpha+1)}\|y-z\|_{\infty}
$$

which implies by (3) that F is a contraction and hence F has a unique fixed point by the Banach's contraction principle, which gives rise to a unique mild solution to the problem (1)-(2).

Next we give an existence result based upon the following nonlinear alternative of Leray-Schauder applied to completely continuous operators [18].

Theorem 3.2. Let X a Banach space, and $C \subset X$ convex with $0 \in C$. Let $F: C \rightarrow C$ be a completely continuous operator. Then either
(a) F has a fixed point, or
(b) the set $\mathcal{E}=\{x \in C: x=\lambda F(x), \quad 0<\lambda<1\}$ is unbounded.

Essential for the main results of this section, we state a generalization of Gronwall's lemma for singular kernels ([21], Lemma 7.1.1).

Lemma 3.1. Let $v, w:[0, b] \rightarrow[0, \infty)$ be continuous functions. If $w(\cdot)$ is nondecreasing and there are constants $a>0$ and $0<\alpha<1$ such that

$$
v(t) \leq w(t)+a \int_{0}^{t} \frac{v(s)}{(t-s)^{\alpha}} d s
$$

then there exists a constant $k=k(\alpha)$ such that

$$
v(t) \leq \omega(t)+k a \int_{0}^{t} \frac{\omega(s)}{(t-s)^{\alpha}} d s
$$

for every $t \in[0, b]$.
Our main result reads
Theorem 3.3. Assume that the following hypotheses hold:
(H1) The semigroup $\{T(t)\}_{t \in J}$ is compact for $t>0$;
(H2) $f: J \times C([-r, 0], E) \rightarrow E$ is a continuous function;
(H3) There exist functions $p, q \in C\left(J, \mathbb{R}_{+}\right)$such that
$|f(t, u)| \leq p(t)+q(t)\|u\|_{C}, \quad$ for a.e. $t \in J$, and each $u \in C([-r, 0], E)$.
Then the problem (1)-(2) has at least one mild solution on $[-r, b]$.
Proof. Transform the IVP (1)-(2) into a fixed point problem. Consider the operator F defined in the proof of Theorem 3.1. We shall show that the operator F is continuous and completely continuous.

Step 1: F is continuous.
Let $\left\{y_{n}\right\}$ be a sequence such that $y_{n} \rightarrow y$ in $C([-r, b], E)$. Then

$$
\begin{aligned}
\mid F\left(y_{n}\right)(t) & -F(y)(t) \mid \leq \\
& \leq\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s)\left[f\left(s, y_{n_{s}}\right)-f\left(s, y_{s}\right)\right] d s\right| \leq \\
& \leq \frac{M b^{\alpha}}{\alpha \Gamma(\alpha)}\left\|f\left(., y_{n .}\right)-f(., y .)\right\|_{\infty} .
\end{aligned}
$$

Since f is a continuous function, then we have

$$
\left\|F\left(y_{n}\right)-F(y)\right\|_{\infty} \leq \frac{M b^{\alpha}}{\Gamma(\alpha+1)}\left\|f\left(., y_{n .}\right)-f(., y .)\right\|_{\infty} \rightarrow 0 \text { as } n \mapsto \infty
$$

Thus F is continuous.
Step 2: F maps bounded sets into bounded sets in $C([-r, b], E)$.
It is enough to show that for any $\rho>0$ there exists a positive constant δ such that for each $y \in B_{\rho}=\left\{y \in C([-r, b], E):\|y\|_{\infty} \leq \rho\right\}$ we have $F(y) \in B_{\delta}$.

Then we have for each $t \in J$

$$
|F(y)(t)|=\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s) f\left(s, y_{s}\right) d s\right| \leq
$$

$$
\begin{aligned}
& \leq \frac{M\|p\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} d s+\frac{M \rho\|q\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} d s \leq \\
& \leq \frac{M b^{\alpha}}{\Gamma(\alpha+1)}\left(\|p\|_{\infty}+\rho\|q\|_{\infty}\right)=: \delta
\end{aligned}
$$

Step 3: F maps bounded sets into equicontinuous sets of $C([-r, b], E)$. We consider B_{q} as in Step 2. Let $\tau_{1}, \tau_{2} \in J, \tau_{2}>\tau_{1}$. thus if $\epsilon>0$ and $\epsilon \leq \tau_{1} \leq \tau_{2}$ we have

$$
\begin{aligned}
& \mid F(y)\left(\tau_{2}\right)-F(y)\left(\tau_{1}\right)\left|\leq \frac{1}{\Gamma(\alpha)}\right| \int_{0}^{\tau_{1}-\epsilon}\left[\left(\tau_{2}-s\right)^{\alpha-1} T\left(\tau_{2}-s\right)-\right. \\
&\left.-\left(\tau_{1}-s\right)^{\alpha-1} T\left(\tau_{1}-s\right)\right] f\left(s, y_{s}\right) d s \mid+ \\
&+\left.\frac{1}{\Gamma(\alpha)}\right|_{\tau_{1}-\epsilon} ^{\tau_{1}}\left[\left(\tau_{2}-s\right)^{\alpha-1} T\left(\tau_{2}-s\right)-\right. \\
&\left.-\left(\tau_{1}-s\right)^{\alpha-1} T\left(\tau_{1}-s\right)\right] f\left(s, y_{s}\right) d s \mid+ \\
& \left.+\left.\frac{1}{\Gamma(\alpha)}\right|_{\tau_{1}} ^{\tau_{2}}\left(\tau_{2}-s\right)^{\alpha-1} T\left(\tau_{2}-s\right) f\left(s, y_{s}\right) d s \right\rvert\, \leq \\
& \leq M \frac{\|p\|_{\infty}+\rho\|q\|_{\infty}}{\Gamma(\alpha)}\left(| _ { 0 } ^ { \tau _ { 1 } - \epsilon } \left[\left(\tau_{2}-s\right)^{\alpha-1}-\right.\right. \\
& \quad+\left|\tau_{1}^{\left.\left.\tau_{1}-s\right)^{\alpha-1}\right] T\left(\tau_{1}-s\right) d s \mid+}\left(\tau_{2}-s\right)^{\alpha-1} T\left(\tau_{1}-\epsilon-s\right)\left(T\left(\tau_{2}-\tau_{1}-\epsilon\right)-T(\epsilon)\right) d s\right|+ \\
& \quad+\int_{\tau_{1}-\epsilon}^{\tau_{1}}\left(\left(\tau_{2}-s\right)^{\alpha-1}-\left(\tau_{1}-s\right)^{\alpha-1}\right) d s+ \\
&\left.\quad+\int_{\tau_{1}}^{\tau_{2}}\left(\tau_{2}-s\right)^{\alpha-1} d s\right) \leq \\
& \quad \leq M \frac{\|p\|_{\infty}+\rho\|q\|_{\infty}}{\Gamma(\alpha)}\left(\int_{0}^{\tau_{1}-\epsilon}\left[\left(\tau_{2}-s\right)^{\alpha-1}-\left(\tau_{1}-s\right)^{\alpha-1}\right] d s+\right. \\
& \quad
\end{aligned}
$$

$$
\begin{aligned}
& +\left\|T\left(\tau_{2}-\tau_{1}-\epsilon\right)-T(\epsilon)\right\|_{B(E)} \int_{0}^{\tau_{1}-\epsilon}\left(\tau_{2}-s\right)^{\alpha-1} d s+ \\
& +\int_{\tau_{1}-\epsilon}^{\tau_{1}}\left(\left(\tau_{2}-s\right)^{\alpha-1}-\left(\tau_{1}-s\right)^{\alpha-1}\right) d s+ \\
& \left.+\int_{\tau_{1}}^{\tau_{2}}\left(\tau_{2}-s\right)^{\alpha-1} d s\right)
\end{aligned}
$$

As $\tau_{1} \rightarrow \tau_{2}$ and ϵ sufficiently small, the right-hand side of the above inequality tends to zero, since $T(t)$ is a strongly continuous operator and the compactness of $T(t)$ for $t>0$ implies the continuity in the uniform operator topology ([36]). As a consequence of steps 1 to 3 together with Arzelá-Ascoli theorem it suffices to show that F maps B_{ρ} into a precompact set in E.

Let $0<t<b$ be fixed and let ϵ be a real number satisfying $0<\epsilon<t$. For $y \in B_{\rho}$ we define

$$
F_{\epsilon}(y)(t)=\frac{T(\epsilon)}{\Gamma(\alpha)} \int_{0}^{t-\epsilon}(t-s-\epsilon)^{\alpha-1} T(t-s-\epsilon) f\left(s, y_{s}\right) d s
$$

Since $T(t)$ is a compact operator for $t>0$, the set

$$
Y_{\epsilon}(t)=\left\{F_{\epsilon}(y)(t): \quad y \in B_{\rho}\right\}
$$

is precompact in E for every $\epsilon, 0<\epsilon<t$. Moreover

$$
\begin{aligned}
\mid F(y)(t) & -F_{\epsilon}(y)(t) \left\lvert\, \leq M \frac{\|p\|_{\infty}+\rho\|q\|_{\infty}}{\Gamma(\alpha)} \times\right. \\
& \times\left(\int_{0}^{t-\epsilon}\left[(t-s)^{\alpha-1}-(t-s-\epsilon)^{\alpha-1}\right] d s+\right. \\
& \left.+\int_{t-\epsilon}^{t}(t-s)^{\alpha-1} d s\right) \leq M \frac{\|p\|_{\infty}+\rho\|q\|_{\infty}}{\Gamma(\alpha)}\left(t^{\alpha}-(t-\epsilon)^{\alpha}\right)
\end{aligned}
$$

Therefore, the set $Y(t)=\left\{F(y)(t): y \in B_{\rho}\right\}$ is precompact in E. Hence the operator F is completely continuous.

Step 5: A priori bounds on solutions.
Now, it remains to show that the set

$$
\mathcal{E}=\{y \in C([-r, b], E): y=\lambda F(y) \text { for some } 0<\lambda<1\}
$$

is bounded.

Let $y \in \mathcal{E}$ be any element. Then, for each $t \in J$,

$$
y(t)=\lambda \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s) f\left(s, y_{s}\right) d s
$$

Then

$$
\begin{equation*}
|y(t)| \leq M\left\|I^{\alpha} p\right\|_{\infty}+\frac{M\|q\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left\|y_{s}\right\| d s \tag{4}
\end{equation*}
$$

We consider the function defined by

$$
\mu(t)=\max \{|y(s)|: \quad-r \leq s \leq t\}, \quad t \in J .
$$

Let $t^{*} \in[-r, t]$ such that $\mu(t)=\left|y\left(t^{*}\right)\right|$, If $t^{*} \in[0, b]$ then by (4) we have, for $t \in J$, (note $\left.t^{*} \leq t\right)$

$$
\mu(t) \leq M\left\|I^{\alpha} p\right\|_{\infty}+\frac{M\|q\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \mu(s) d s
$$

If $t^{*} \in[-r, 0]$ then $\mu(t)=\|\phi\|_{C}$ and the previous inequality holds. By the Lemma 3.1 we have

$$
\begin{aligned}
\mu(t) & \leq M\left\|I^{\alpha} p\right\|_{\infty}+k \frac{M\|q\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} M\left\|I^{\alpha} p\right\|_{\infty} d s \leq \\
& \leq M\left\|I^{\alpha} p\right\|_{\infty}+\frac{k M^{2} b^{\alpha}\|q\|_{\infty}\left\|I^{\alpha} p\right\|_{\infty}}{\Gamma(\alpha+1)}=: \Lambda
\end{aligned}
$$

Hence

$$
\|y\|_{\infty} \leq \max \left\{\|\phi\|_{C}, \Lambda\right\} \quad \text { for all } y \in \mathcal{E}
$$

This shows that the set \mathcal{E} is bounded. As a consequence of the Lemma 3.2, we deduce that the operator F has a fixed point which is a mild solution of the problem (1)-(2).

4. Nonlocal Problems

In this section we shall prove existence results for the following class of nonlocal problem

$$
\begin{gather*}
D^{\alpha} y(t)=A y(t)+f\left(t, y_{t}\right), \quad t \in J:=[0, b] \tag{5}\\
y(t)+h_{t}(y)=\phi(t), t \in[-r, 0] \tag{6}
\end{gather*}
$$

where $h_{t}: C([-r, b], E) \rightarrow E$ is given function. The non-local condition can be applied in physics with better effect than the classical initial condition
$y(0)=y_{0}$. For example, $h_{t}(y)$ may be given by

$$
h_{t}(y)=\sum_{i=1}^{p} c_{i} y\left(t_{i}+t\right), \quad t \in[-r, 0]
$$

where $c_{i}, i=1, \ldots, p$, are given constants and $0<t_{1}<\cdots<t_{p} \leq b$. At time $t=0$, we have

$$
h_{0}(y)=\sum_{i=1}^{p} c_{i} y\left(t_{i}\right) .
$$

Non-local conditions were initiated by Byszewski [4] (see also [5, 6, 7]) in which we refer for motivation and other references. Nonlocal conditions were initiated by Byszewski [4] when he proved the existence and uniqueness of mild and classical solutions of non-local Cauchy problems. As remarked by Byszewski [5], the nonlocal condition can be more useful than the standard initial condition to describe some physical phenomena.

Definition 4.1. We say that a continuous function $y:[-r, b] \rightarrow E$ is a mild solution of problem (5)-(6) if $y(t)=\phi(t), t \in[-r, 0]$, and

$$
y(t)=T(t)\left(\phi(0)-h_{0}(y)\right)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} T(t-s) f\left(s, y_{s}\right) d s, \quad t \in J
$$

Theorem 4.1. Assume that (H) holds and, moreover there exists a nonnegative constant k^{*} such that

$$
\left\|h_{0}(u)-h_{0}(v)\right\| \leq k^{*}\|u-v\|_{C}, \text { for every } u, v \in C([-r, 0], E)
$$

If

$$
M k^{*}+\frac{M k b^{\alpha}}{\Gamma(\alpha+1)}<1
$$

then the problem (5)-(6) has a unique mild solution on $[-r, b]$.
Theorem 4.2. Assume that hypotheses (H1)-(H3) hold and, moreover the function h is continuous with respect to t, and there exists a constant $\beta>0$ such that

$$
\left|h_{t}(u)\right| \leq \beta, \text { for each } u \in C([-r, b], E)
$$

and for each $k>0$ the set

$$
\left\{\phi(0)-h_{0}(y), y \in C([-r, b], E),\|y\|_{\infty} \leq k\right\}
$$

is precompact in E, then the problem (5)-(6) has at least one mild solution on $[-r, b]$.

References

1. A. Belarbi, M. Benchohra, S. Hamani and S. K. Ntouyas, Perturbed functional differential equations with fractional order. Commun. Appl. Anal. 11(2007), No. 3-4, 429-440.
2. A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85(2006), No. 12, 1459-1470.
3. M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338(2) (2008), 1340-1350.
4. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162(1991), No. 2, 494-505.
5. L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. Selected problems of mathematics, 25-33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Kraków, 1995.
6. L. Byszewski and H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stochastic Anal. 10(1997), No. 3, 265271.
7. L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40(1991), No. 1, 11-19.
8. K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), 217-224, Springer-Verlag, Heidelberg, 1999.
9. K. Diethelm and N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2002), No. 2, 229-248.
10. K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16(1997), 231-253.
11. M. M. El-Borai, On some fractional evolution equations with nonlocal conditions. Int. J. Pure Appl. Math. 24(2005), No. 3, 405-413.
12. M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 2004, No. 3, 197-211.
13. A. M. A. El-Sayed, Fractional order evolution equations. J. Fract. Calc. 7(1995), 89-100.
14. A. M. A. El-Sayed, Fractional-order diffusion-wave equation. Internat. J. Theoret. Phys. 35(1996), No. 2, 311-322.
15. A. M. A. El-Sayed, Nonlinear functional-differential equations of arbitrary orders. Nonlinear Anal. 33(1998), No. 2, 181-186.
16. L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5(1991), 81-88.
17. W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
18. A. Granas and J. Dugundji, Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.
19. J. K. Hale, Theory of functional differential equations. Second edition. Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.
20. J. K. Hale and S. Verduyn Lunel, Introduction to functional-differential equations. Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
21. D. Henry, Geometric theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin/New York, 1989.
22. N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45(5) (2006), 765-772.
23. O. K. Jaradat, A. Al-Omari and S. Momani, Existence of mild solution for fractional semilinear intial value problems, Nonlinear Anal. (to appear).
24. F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations. J. Differential Equations 37(1980), No. 2, 141-183.
25. A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.
26. V. Kiryakova, Generalized fractional calculus and applications. Pitman Research Notes in Mathematics Series, 301. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley E Sons, Inc., New York, 1994.
27. V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional-differential equations. Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999
28. V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theory, Methods (to appear).
29. V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11(2007), No. 3-4, 395-402.
30. V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Letters (to appear).
31. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291-348, CISM Courses and Lectures, 378, Springer, Vienna, 1997.
32. F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103(1995), 7180-7186.
33. K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication. John Wiley \mathcal{G} Sons, Inc., New York, 1993.
34. S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24(2003), 37-44
35. S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004, No. 13-16, 697-701.
36. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
37. I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
38. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc. Appl. Anal. 5(2002), No. 4, 367-386.
39. I. Podlubny, I. Petraš, B. M. Vinagre, P. O'Leary and L. Dorčk, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam. 29 (2002), No. 1-4, 281-296.
40. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications. Edited and with a foreword by S. M. Nikol'skiu. Translated
from the 1987 Russian original. Revised by the authors. Gordon and Breach Science Publishers, Yverdon, 1993.
41. J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996.
42. C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310(2005), 26-29.
(Received 09.11.2007)
Authors' address:
Laboratoire de Mathématiques
Université de Sidi Belb Abbès
BP 89, 22000 Sidi Bel Abbès, Algérie
E-mail: m.belmekki@caramail.com, benchohra@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 26A33, 26A42, 34G25.
 Key words and phrases. Semilinear functional differential equation, fractional derivative, fractional integral, fixed point, semigroups, mild solutions.

