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ON THE APPLICATION OF THE METHOD OF A SMALL

PARAMETER IN THE THEORY OF NON-SHALLOW

I. N. VEKUA’S SHELLS

T. MEUNARGIA

Abstract. In the present paper we suggest the method of a small
parameter for the solution of some basic boundary value problems of
non-shallow shells applying the methods developed by N. I. Muskhel-
ishvili and his pupils, by means of the theory of functions of a complex
variable and integral equations.

îâäæñéâ. ûæê�éáâ��îâ ïð�ðæ�öæ öâéëå�ã�äâ�ñèæ� éùæîâ ì�î�éâ-

ðîæï éâåëáæ �î�á�éîâùæ à�îïâ�æï äëàæâîåæ úæîæå�áæ ï�ï�ä�ã-

îë �éëù�êæï �éëï�ýïêâè�á çëéìèâóïñîæ ùãè�áæï òñóùæ�å� åâ-

ëîææï� á� æêðâàî�èñî à�êðëèâ��å� �ì�î�ðæï à�éëõâêâ�æå, îë-

éâèæù à�áéëùâéñèæ� ê. éñïýâèæöãæèæï� á� éæïæ éëû�òââ�æï öîë-

éâ�öæ [3℄.

1. The Coordinate System Connected Normally with the

Surface. Shallow and Non-Shallow Shells

Let Ω denote a shell and a domain of the space occupied by this shell.
Inside the shell we consider a smooth surface S with respect to which the
shell Ω lies symmetrically. The surface S is called a midsurface of the shell
Ω. To construct the theory of shells we use the more convenient coordinate
system which is normally connected with the midsurface S. This means
that the radius-vector R of any point of the domain Ω can be represented
in the form [1]

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2),

where r and n are the radius-vector and the basis vector of the normal of the
midsurface S(x3 = 0), respectively. (x1, x2) are the Gaussian parameters of
the surface S, and x3 (or x3) is the thickness coordinate, where

−h ≤ x3 ≤ h,
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2h is the shell thickness (generally speaking, variable).

Covariant and contravariant basis vectors Ri and Ri of the surface Ŝ(x3 =
const) and the corresponding basis vectors rj and rj of the midsurface

Ŝ(x3 = const) are connected by the following relations [1]:

Ri = A.j
i.rj = Aijr

j, Ri = Ai.
.jr

j = Aijrj, (i, j = 1, 2, 3),

where

A
.j
i. =

{
aβ

α − x3b
β
α, i = α, j = β, (α, β = 1, 2)

δ3i , j = 3,

Ai.
.j =






(1 − 2Hx3)a
α
β + x3b

α
β

1 − 2Hx3 +Kx2
3

, i = α, j = β, (α, β = 1, 2)

δi
3, j = 3,

(1.1)

ri =

{
rα, i = α,

n, i = 3.
(1.2)

Here (aαβ , a
αβ , aα

β) and (bαβ , b
αβ , bαβ) are the components (co, contra,

mixed) of the metric tensor and curvarure tensor of the midsurface S. By H
and K we denote a middle and Gaussian curvature of the surface S, where

2H = b11 + b22, K = b11b
2
2 − b21b

1
2.

The main quadratic forms of the midsurface S have the form

I = ds2 = aαβdx
αdxβ , (1.3)

II = ksds
2 = bαβdx

αdxβ , (1.4)

where ks is the normal curvature of the surface S, and

aαβ = rαrβ , bαβ = −nαrβ , ∂α =
∂

∂xα
.

Here and in the sequel, under a repeated indices we mean summation;
note that the Greek indices range over 1, 2, while Latin indices range over
1, 2, 3.

It is important to note that under the thin and shallow I. N. Vekua’s
shells we mean three-dimensional shell-like bodies, satisfying the following
geometric conditions:

aβ
α − x3b

β
α
∼= aα

β , (α, β = 1, 2). (∗)
These conditions are always fulfilled if the interval [−h, h] is sufficiently

small (thin shells), or if bβα are small values (shallow shells).
For thin and shallow shells the relation of the type (∗)

Rα
∼= rα, Rα ∼= rα, Aα.

.β
∼= aα

β , 1 − 2Hx3 +Kx3
∼= 1

are valid. In other words, for thin and shallow shells, the interior geometry
of the shell does not change in thickness and coincides with that of the
midsurface S. Therefore thin and shallow shells are also called the shells
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with notvarying geometry in thickness. I.N. Vekua has constructed a refined
theory for thin and shallow shells [1].

Further we omit the assumption of the type (∗) requiring only for the
conditions ∣∣bβαh

∣∣ ≤ q < 1, (α, β = 1, 2), ((**))

be fulfilled, which denote the shell-like three-dimensional elastic body.
By analogy with the previous case, such kind of shells will be called non-

shallow and non-thin shells, or shells with changeable in thickness geometry
[5,6].

To construct the theory of non-shallow shells, it is necessary to obtain

formulas for a family of surfaces Ŝ(x3 = const), analogous to (1.3)-(1.4) of
the midsurface S(x3 = 0) which have the form [1]

I = dŝ2 = gαβdx
αdxβ , (1.5)

II = kŝdŝ
2 = b̂αβdx

αdxβ , (1.6)

where
gαβ = RαRβ = aαβ − 2x3bαβ + x2

3(2Hbαβ −Kαβ),

b̂αβ = (1 − 2Hx3)bαβ + x3Kaαβ ,

and kŝ the normal curvature of the surface Ŝ.
It is not now difficult to get the expressions for the unit tangent vector ŝ

and for the tangential normal of the surface l̂ directed to ŝ [5]:

ŝ =
dR

dŝ
= [(1 − x3ks)s + x3τsl]

ds

dŝ
,

l̂ = ŝ× n = [(1 − x3ks)l − x3τss]
ds

dŝ
,

dŝ =
√

1 − 2x3ks + x2
3(k

2
s + τ2

s )ds.

(̂l × ŝ = n),

where dŝ and ds are the linear elements of the surfaces Ŝ and S, and τs is
the geodesic torsion of the surface S.

Note that in deducing these formulas we use the well-known expressions
of Rodrige’s vector

dn

ds
= −kss + τsl, (l × s = n),

where s and l are the unit vectors of the tangent and tangential normal on
S.

The formula [5]

l̂Rα = (1 − 2Hx3 +Kx2
3)(lrα)

ds

dŝ
, (α = 1, 2), (1.7)

necessary in writing the refuced basic boundary value problem in stresses,
is also valid.
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2. A System of Equations of Equilibrium, and Hook’s Law for

Non-Shallow Shells

We write the equation of equilibrium of an elastic medium Ω in a vector
form which is convenient for the reduction to the two-dimensional equations:

1√
a

∂
√
a
(√

g
a
σ

α
)

∂xα
+
∂
√

g
a
σ

3

∂x3
+
g

a
Φ = 0, (2.1)

where g and a are discriminants of metric quadratic forms of the tree-
dimensional domain Ω and midsurface S; Φ is the body force per unit
of volume, σ

i will be called, following to I. N. Vekua, the contravariant
components (pseudovector) of the stress vector σ

(
∗

l)
acting on the area with

the normal
∗
l and representable as the Cauchy formula as follows:

σ
(
∗

l)
= σ

i
∗
l i,

(
∗
l i =

∗
l Ri, i = 1, 2, 3

)
.

Using the relation (1.7), for the stress vector acting on the area with the

normal l̂, we obtain

σ(̂l) = σ
α(̂lRα) =

√
g

a
σ

α(lrα)
ds

dŝ
(2.2)

where √
g

a
= 1 − 2Hx3 +Kx2

3.

For the face surfaces
(±)

S (x3 = ±h) with the normal (±n) we have

σ(±n) = ±σ
3(x1, x2,±h). (2.21)

Using the relations (1.1) and (1.2), for the Hook’s law we obtain the follow-
ing vector notation [6]:

σ
i = Ai

i1
A

j
j1
Ci1j1∂jU, (i, j = 1, 2, 3), (2.3)

where U is the displacement vector, Ci1j1 are dyadic operators, and

Ci1j1 = λ(ri1 ⊗ rj1) + µ(rj1 ⊗ ri1) + µai1j1E, (ai1j1 = ri1 · rj1) (2.31)

here ⊗ is the symbol of dyadic vector products, E is the unit dyad,

E = rα ⊗ rα + n ⊗ n,

λ and µ are the elastic Lamé constants.
In an expanded form the relation (2.3) can be represented as

σ
i = Ai

i1
A

j
j1

[
λ(rj1∂jU)ri1 + µ(ri1∂jU)rj1 + µai1j1∂jU

]
. (2.32)
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Substituting now (2.3) into (2.1), we obtain the equation of equilibrium
with respect to the displacement vector U:

∇α

(√
g

a
Aα

α1
A

j
j1
Cα1j1∂jU

)
+

∂

∂x3

(√
g

a
A3

3A
j
j1
C3j1∂jU

)
+

√
g

a
Φ=0, (2.4)

where ∇α is the symbol of a covariant derivative on the surface S.
The equilibrium equation (2.1) and the Hook’s law in a tensor notation

takes the form





∇α

(√
g

a
σαβ

)
−bβα

(√
g

a
σα3

)
+
∂
(√

g
a
σ3β
)

∂x3
+

√
g

a
φβ =0, (α, β=1, 2),

∇α

(√
g

a
σα3

)
− bβα

(√
g

a
σα.

.β

)
+
∂
(√

g
a
σ3

3

)

∂x3
+

√
g

a
φ3 = 0,

(2.5)

where 




σαβ = σ
αrβ = Aα

α1
A

j
j1

(
Cα1j1∂jU

)
rβ ,

σα3 = σ
αn = Aα

α1
A

j
j1

(
Cα1j1∂jU

)
n,

σ3β = σ
3rβ = A3

3A
j
j1

(
C3j1∂jU

)
rβ ,

σ33 = σ
3n = A3

3A
j
j1

(
C3j1∂jU

)
n.

(2.6)

It is not difficult to represent them in expanded form, for example, for
σαβ and σα3 we have






σαβ = Aα
α1

{
Aγ

γ1

[
λ(rγ1∂γU)aα1β + µ(rα1∂γU)aγ1β+

+ µaα1γ1(rβ∂γU)
]
+A3

3λ(n∂3U)aα,β
}
,

σα3 = µAα
α1

{
Aγ

γ1
(n∂γU)aα1γ1 +A3

3(r
α1∂3U)

}
,

(Ai
3 = a3

i = a3i = δ3i).

(2.7)

Note that the derivative of the vector U with respect to xα can be rep-
resented as

∂αU = ∇αU = (∇αUβ − bαβU3)r
β + (∇αU3 − bαβU

β)n

= (∇αU
β − bβαU3)rβ + (∇αU3 + bβαUβ)n

i.e.,

rβ∂αU = ∇αUβ − bαβU3, rβ∂αU = ∇αU
β − bβαU3,

n∂αU = ∇αU3 + bαβU
β = ∇αU3 + bβαUβ , (∇αU3 = ∂αU3).

(2.8)

To the system of equations (2.1) and (2.3), or (2.5) and (2.6) we have to

add the boundary conditions on the face
(±)

S (x3 = ±h) and on the side Σ
surfaces of the shell Ω. If the shell is closed, then Σ is absent. It is assumed
that Σ are the ruled surfaces and their generators are the normals to S. As
usual, in the theory of shells it is assumed that stresses are given on the

face surfaces
(±)

S (x3 = ±h), i.e.

(+)
σ

3 = σ
3(x1, x2 h),

(−)
σ

3 = σ
3(x1, x2 − h)



92 T. MEUNARGIA

is the given vector field. Suppose that the stresses or displacements are
given on the side surfaces Σ, or the stresses are known on one part Σ

′

and
the displacements Σ

′′

on the remaining part Σ
′ ∪ Σ

′′

= Σ, Σ
′ ∩ Σ

′′

= ⊘.

Let l̂ be a unit vector of the normal of the boundary area dΣ = dŝdx3,

where dŝ is the linear element of the boundary curve Γ̂ of the surface Ŝ(x3 =
const).

Then the stress vector σ(l̂) is expressed by the formula(2.2),

σ(l̂) = σ
α(̂lRα) =

√
g

a
σ

α(lrα)
ds

dŝ
=

√
g

a
σ(l)

ds

dŝ
, (2.9)

where l = lαrα is the tangential normal of the boundary area dS = dsdx3,
and ds is the linear element of the boundart curve Γ of the midsuface S.

For the system (2.5) and (2.6) we consider the following basic boundary
value problems.

Problem I. Find a solution of the system (2.5) and (2,6), consistent
with the physical condition of the type

σ(l̂) = σ(l̂l̂)̂l + σ(l̂ŝ)ŝ + σ(l̂n)n = f̂(l̂) on Γ̂ (2.10)

where f̂(l̂) is the given vector function on the contour Γ̂. By σ(l̂l̂), σ(l̂ŝ), σ(l̂n)

we denote respectively the normal, longitudinal and transversal tangential

stresses acting on the area with the normal l̂.

This condition can likewise be written as

σ(l̂l̂) = f̂(l̂), σ(l̂ŝ) = f̂(ŝ), σ(l̂n) = f̂(n) on Γ̂, (2.101)

where f̂(l̂), f̂(ŝ), f̂(n) are the given functions of the points Γ̂.

By formula (2.9), the condition (2.10) can be represented by means of
the unit vectors l, s and n (l × s = n) as follows:

σ(l) = σ(ll)l + σ(ls)s + σ(ln)n = f(l) on Γ̂

or

σ(ll) = f(l), σ(ls) = f(s), σ(ln) = f(n) on Γ̂,

where

f(l) =

√
a

g

[
(1 − x3ks)f̂(l̂) + x3τsf̂(ŝ)

]
,

f(s) =

√
a

g

[
(1 − x3ks)f̂(ŝ) − x3τsf̂(l̂)

]
,

f(n) =

√
a

g
f̂n

dŝ

ds
,

(2.102)

are the given functions of the points on the contour Γ̂.
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Problem II. Find a solution of the system (2.5) and (2.6) consistent
with the kinematic boundary condition of the type

U = U(l̂)̂l + U(ŝ)ŝ + U3n = ĝ on Γ̂, (2.11)

where ĝ is the given vector function on Γ̂, and by U(l̂), U(ŝ), U3 are denoted

respectively the normal, tangential and transversal displacements of the
vector U.

The condition (2.11) can likewise be written as

U(l̂) = ĝ(l̂), U(ŝ) = ĝ(ŝ), U3 = ĝ3 on Γ̂, (2.111)

where U(l̂), U(ŝ), U3 are the given functions of the points on the contour Γ̂.

By virtue of the identity

U = U(l̂)̂l + U(ŝ)ŝ + U3n = U(l)l + U(s)s + U3n,

for (2.111) we obtain the equivalent conditions of the type

U(l) = g(l), U(s) = g(s), U3 = g3, (2.112)

where g(l), g(s), g3 are the given functions on Γ̂, and

g(l) =
[
(1 − x3ks)ĝ(l̂) + x3τsĝ(ŝ)

] ds
dŝ
,

g(s) =
[
(1 − x3ks)ĝ(ŝ) − x3τsĝ(l̂)

] ds
dŝ
, g3 = ĝ3,

Problem III. Find a solution of the system (2.5) and (2.6) satisfying

on one part of the contour Γ̂ the physical boundary conditions of the type
(2.10) and the kinematic conditions of the type (2.11) on the remaining part
of the boundary.

It should be noted that in the present paper we do not consider the
theorems on the existence and uniqueness of these problems, we indicate
only the way for obtaining a formal solution of the basic boundary value
problems by the method of a small parameter.

3. Some Special Coordinate Systems on the Midsurface of a

Shell

3.1. The Coordinate System in Lines of Curvature. For this system
[4] we have

Rα = (1 − kαx3)rα, Rα =
rα

1 − kαx3
, (α = 1, 2),
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where k1 and k2 is the principal curvature of the midsurface S, and
√
g

a
= (1 − k1x3)(1 − k2x3), 2H = k1 + k2, K = k1k2

The basic quadratic forms are of the type

I = ds2 = a11(dx
1)2 + a22(dx

2)2,
II = ksds

2 = a11k1(dx
1)2 + a22k2(dx

2)2,

i.e. a12 = 0, b11 = k1, b
2
2 = k2, b

1
2 = b21 = 0.

The system of equations of equilibrium in the lines of curvature can be
written as follows:





∇α

(√
g

a
σα1

)
− k1

(√
g

a
σ13

)
+
∂
(√

g
a
σ31
)

∂x3
+

√
g

a
Φ1 = 0,

∇α

(√
g

a
σα2

)
− k2

(√
g

a
σ23

)
+
∂
(√

g
a
σ31
)

∂x3
+

√
g

a
Φ2 = 0,

(3.1)

where

σαβ =
1

1 − kαx3

[
λ
( rγ∂γU

1 − kγx3
+ n∂3U

)
aαβ+

+
(rα∂γU)aβγ + (rβ∂γU)aαγ

1 − kγx3

]
,

σα3 =
µ

1 − kαx3

[
rα∂3U +

(n∂γU)aαγ

1 − kγx3

]
, (3.2)

σ3α =µ
[
rα∂3U +

(n∂γU)aαγ

1 − kγx3

]
,

σ33 =λ
rγ∂γU

1 − kγx3
+ (λ+ 2µ)(n∂3U)

The summation with respect to α is not allowed.
For A.j

i. and Ai.
.j we have

A.1
1. = 1 − k1x3, A.2

2. = 1 − k2x3, A.2
1. = A.1

2. = 0,
A1.

.1 = 1
1−k1x3

, A2.
.2 = 1

1−k2x3
, A1.

.2 = A2.
.1 = 0.

(3.3)

Moreover, the relations (2.8) take the form

r1∇1U = ∇1U1 − a11k1U3, r2∇2U = ∇2U2 − a22k2U3,

r1∇2U = ∇2U1, r2∇1U = ∇1U2,

r1∇1U = ∇1U
1 − k1U3, r2∇2U = ∇2U

2 − k2U3,

r1∇2U = ∇2U
1, r2∇1U = ∇1U

2,

n∇1U = ∇1U3 + k1U1, n∇2U = ∇2U3 + k2U2,

(∇αU3 = ∂αU3, ∇αU = ∂αU).

Next, the external form for the expressions σ(l) and U remains invariable.
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Isometric System of Coordinates. The isometric system of coordinates
on the surface S is of special interest, because in this system we can obtain
basic equations of the theory of shells in a complex form which in turn allows
one to construct for a rather wide class of problems complex representations
of general solutions by means of analytic functions of one variable z = x1 +
ix2. This circumstance makes it possible to apply the methods, developed
by N. I. Muskhelishvili and his pupils, by means of the theory of functions
of a complex variable and integral equations.

The main quadratic forms in this system of coordinates are of the type

I = ds2 = Λ(x1, x2)
[
(dx1)2 + (dx2)2

]
= Λ(z, z̄)dzdz̄, (Λ > 0),

II = ksds
2 = bαβdx

αdxβ =
1

2
Λ
[
Qdz2 + 2Hdzdz̄ +Qdz̄2

]
,

where

Q =
1

2
(b11 − b22 + 2ib12), H =

1

2
(b11 + b22), z = x1 + ix2.

Introducing the well-known differential operators

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,

and the notation

τ i.
.j =

√
g

a
σi.

.j , X =

√
g

a
Φ, (3.4)

from systems (2,5) and (2.6) we obtain the following complex writing both
for the system of equations of equilibrium and for the Hook’s law:





1

Λ

∂

∂z

[
Λ(τ1

1 − τ2
2 + iτ1

2 + iτ2
1 )
]
+

∂

∂z̄
(τ1

1 + τ2
2 + iτ1

2 − iτ2
1 )−

−Λ(Hτ+ +Qτ̄+) +
∂τ(+)

∂x3
+X+ = 0,

1

Λ

(
∂Λτ+

∂z
+
∂Λτ̄+

∂z̄

)
+H(τ1

1 + τ2
2 )+

+Re
[
Q̄(τ1

1 −τ2
2 + iτ1

2 +iτ2
1 )
]
+

∂τ3
3

∂x3
+X3 =0,

(3.5)

(X+ = X1 + iX2),

where

τ1
.1−τ2

.2 + iτ1
.2+iτ2

.1=4µr+∂z̄U+2

√
a

g

{
x3Q(1−Hx3)

[
(λ+ µ)Θ+2µr+∂zU

]
+

+ x2
3Q
[
(λ+ µ)r+∂zU + (λ + 3µ)Qr+∂z̄U

]}
+ 2λx3Q∂3U3,

τ1
.1 + τ2

.2 + iτ1
.2 − iτ2

.1 = 2(λ+ µ)Θ + 2

√
a

g

{
x3(1 −Hx3)

[
(λ+ µ)Qr+∂zU+

+ (λ+ 3µ)Qr+∂z̄U
]
+ x2

3QQ
[
(λ+ µ)Θ + 2µr+∂zU

]}
+ 2λ(1 −Hx3)∂3U3,
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τ+ =

√
g

a
(σ13+ (3.6)

+σ23) =
2µ

Λ

{
(n∂z̄U)+2

√
a

g

[
x2
3QQn∂z̄U+x3Q(1−Hx3)(n∂zU)

]

+ (1 −Hx3)∂3U+ + x3Q∂3U+

}
,

τ(+) =

√
g

a
(σ3

1 + σ3
2) = 2µ

[
(1 −Hx3)n∂z̄U + x3Q(n∂zU) +

1

2

√
g

a
∂3U+

]
,

τ3
3 =

√
g

a
σ33 =λ

[
(1 −Hx3)Θ+x3(Qr+∂zU + Qr+∂z̄U)

]
+(λ+ 2µ)

√
g

a
∂3U3,

Here,

Θ = r+∂zU + r+∂z̄U =
1

Λ

(
∂U+

∂z
+
∂U+

∂z̄

)
− 2Hu3,

r+∂zU =
1

Λ

∂U+

∂z
− HU3, r+∂z̄U =

1

Λ

∂U+

∂z̄
− QU3,

n∂zU=∂zU3 +
1

2
(QU+ +HU+), n∂z̄U=∂z̄U3+

1

2
(QU+ +HU+), (3.61)

r+ = r1 + ir2, r+ = r1 + ir2, U+ = U1 + iU2, U+ = U1 + iU2,

√
a = Λ,

√
g = Λ(1 − 2Hx3 +K2

3 ),

(
∂z =

∂

∂z

)
,

τ1
1 −τ2

2 + i(τ1
2 + τ2

1 )=

√
g

a
[σ1

1−σ2
2+i(σ1

2+σ2
1)], . . . , τ+ =

√
g

a
(σ13+iσ23).

The displacement vector U, representable in the form

U = Uαrα + U3n = Uαrα + U3n = u(l)l + u(s)s + u3n, (u3 = u3),

can be rewritten as follows:

U =
1

2

(
U+r̄+ + U

+
r+

)
+ U3n =

1

2

(
U+r̄+ + U+r+

)
+ U3n =

= − i

2

[
(U(l) + iU(s))

dz

ds
r̄+ − (U(l) − iU(s))

dz̄

ds
r+

]
+ U3n,

(3.7)

where U+ = U · r+, U+ = U · r+, U(l) = U · l, U(s) = U · s..
Let us consider the complex writing of formula (2.9) of the type

σ(l)
dŝ

ds
=

√
g

a

{
Im

[
(σ(ll) + iσ(ls))

dz

ds
r̄+

]
+ σ(ln)n

}
,

where




σ(ll)+iσ(ls)=
1

2

[
σ1.

.1+σ2.
.2 + iσ1.

.2−iσ2.
.1−(σ1.

.1−σ2.
.2+iσ1.

.2+iσ2.
.1)
dz̄

dz

]
,

σ(ln)=−Im
(

Λσ+ dz̄

ds

)
,

(3.8)
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Below, in solving the boundary value problems in displacements (3.7)
and stresses (3.8) the use will be made of the complex representations.

For the spherical shell of radius R we have

H = − 1

R
, K =

1

R2
, Q = 0, Λ =

4R2

(1 + zz̄)2
. z = tg

θ

2
eiϕ,

where θ and ϕ are the geographic coordinates on the sphere.
The system of equations of equilibrium and the Hook’s law for the spher-

ical shell take the form





1

Λ

∂

∂z
[Λ(τ1

1 − τ2
2 +iτ1

2 +iτ2
1 )]+

∂

∂z̄
(τ1

1+τ
2
2 +iτ1

2 −iτ2
1 )+

Λ

R
τ++

∂τ(+)

∂x3
+X+=0,

1

Λ

(
∂Λτ+

∂z
+
∂Λτ̄+

∂z̄

)
− 1

R
(τ1

1 + τ2
2 ) +

∂τ3
3

∂x3
+X3 = 0,

where





τ1
1 − τ2

2 + i(τ1
2 + τ2

1 ) = 4µr+∂z̄U,

τ1
1 + τ2

2 + i(τ1
2 − τ2

1 ) = 2(λ+ µ)Θ + 2λ
(
1 +

x3

R

)
∂3U3,

τ+ =
2µ

Λ

[
n∂z̄U +

1

2

(
1 +

x3

R

)
∂3U+

]
,

τ(+) = 2µ

[(
1 +

x3

R

)
n∂z̄U+ +

(
1 +

x3

R

)2

∂3U+

]
,

τ3
3 =

[
λ
(
1 +

x3

R

)
Θ + (λ+ 2µ)

(
1 +

x3

R

)2

∂3U3

]
,

Here

Θ = rα∂αU = r+∂zU + r+∂z̄U =
1

Λ

(
∂U+

∂z
+
∂U+

∂z̄

)
+

2

R
U3,

r+∂zU =
1

Λ

∂U+

∂z
+

1

R
U3, r+∂z̄U = ∂z̄U

+,

n∂zU = ∂z̄U3 −
1

2R
U+,

√
g = Λ

(
1 +

x3

R

)2

,

τ i
j =

(
1 + x3

R

)2
σi

j .

For the circular cylindrical shell of radius R we have

H = Q = − 1

2R
= b11, b22 = b12 = b21 = 0, K = 0, Λ = 1

z = x1 + ix2,
√
g = 1 + x3

R
, a = 1,

where x1 = Rϕ, and ϕ is the polar angle, x2 is the coordinate along the
generatrix.
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Now we write out the system of equations and the Hook’s law which are
obtained from (3.5) and (3.6):





∂

∂z
(τ1

1 − τ2
2 + iτ2

1 + iτ1
2 ) +

∂

∂z̄
(τ1

1 + τ2
2 + iτ1

2 − iτ2
1 )+

+
1

2R
(τ+ + τ̄+) +

∂τ(+)

∂x3
+X+ = 0,

∂τ+

∂z
+
∂τ̄+

∂z̄
− 1

2R

[
τ1
1 + τ2

2 +Re(τ1
1 − τ2

2 + iτ1
2 + iτ2

1 )
]
+
∂τ3

3

∂x3
+X3 = 0,

where





τ1
1 − τ2

2 + iτ1
2 + iτ2

1 = 4µr+∂z̄U+

+
x3

R+ x3

{
−
(
1 +

x3

2R

) [
(λ+ µ)Θ + µr+∂zU

]
+

+
x3

2R

[
(λ+ µ)r+∂zU + (λ+ 3µ)r+∂z̄U

]}
− λ

x3

R
λ∂3U3,

τ1
1 + τ2

2 + iτ1
2 − iτ2

1 = 2(λ+µ)Θ+
x3

R+ x3

{
−
(
1+

x3

2R

) [
(λ+µ)r+∂zU +

+(λ+ 3µ)r+∂z̄U
]
+
x3

2R

[
(λ+µ)Θ+2µr+∂zU

]}
+2λ

(
1+

x3

2R

)
∂3U3,

τ+ = µ

{
2n∂z̄U +

2x3

R+ x3

[ x3

2R
n∂z̄U −

(
1 +

x3

R

)
n∂zU

]
+

+
(
1 + x3

2R

)
∂3U+ − x3

2R
∂3Ū+

}
,

τ(+) = µ
[(

1 +
x3

2R

)
n∂z̄U − x3

2R
n∂zU +

(
1 +

x3

R

)
∂3U+

]
,

τ3
3 = λ

[(
1 +

x3

2R

)
Θ − x3

2R
[r+∂U + r+∂z̄U]

]
+ (λ+ 2µ)

(
1 +

x3

R

)
∂3U3,

Note that

Θ = ∂zU+ + ∂z̄U+ +
1

R
U3, r+∂zU = ∂U+ +

1

2R
U3,

r+∂z̄U = ∂z̄U
+ + 1

2RU3, n∂zU = ∂z̄U3 − 1
4R (U3 + U3),

τ i
j =

(
1 + x3

R

)2
σi

j , (U+ = U+).

4. I. N. Vekua’s Method of Reduction

There are many different methods of passage (reduction) from three-
dimensional problems of elasticity to two-dimensional problems of the the-
ory of shells (Kirchgoff-Love, E. Reissner, A. Green, A. I. Lur’e, V. Z.
Vlasov, W. Koiter, R. Naghdi, A. L. Goldenveiser, I. I. Vorovich, I. N.
Vekua, etc.).

In the present paper we realize reduction of three-dimensional problems of
the theory of elasticity to the two-dimensional ones by the method suggested
by I. N. Vekua the essence of which consists, without going into details, in
the following [1]. Since the system of Legendre polynomials

{
Pm

(
x3

h

)}
is

complete in the interval [−h, h],for equation (2.1) we obtain the equivalent
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infinite system of two-dimensional equations

h∫

−h

[
1√
a

∂
√
a
(√

g
a
σα
)

∂xα
+
∂
√

g
a
σ3

∂x3
+

√
g

a
Φ

]
Pm

(x3

h

)
dx3 =0, (m=0, 1, . . .)

or in a finite form

∇α

(m)
σ

α − 2m+ 1

h

(
(m−1)

σ
α +

(m−3)
σ

α + · · ·
)

+
(m)

F = 0, (4.1)

where
(

(m)
σ

i,
(m)

Φ

)
=

2m+ 1

2h

h∫

−h

(√
g

a
σ

i,

√
g

a
Φ

)
Pm

(x3

h

)
dx3, (i = 1, 2, 3)

(m)

F =
(m)

Φ +
2m+ 1

2h

[√
g+

a

(+)
σ

3 − (−1)m

√
g−
a

(−)
σ

3

]
,

√
g±
a

= 1 ∓ 2H +Kh2.

Thus we have obtained the infinite system of two dimensional equation
of the theory of shells for which the boundary conditions on the face surface

(x3 = ±h) are satisfied, i.e.
(±)
σ3 = σ

3(x1, x2,±) is the preassigned vector
field.

For the Hook’s law we have [6]





(m)α
σ =

∞∑
s=0

[
(m,s)

I αγ
α1γ1

(
(m,s)

C α1γ1∂γ

(s)

U

)
+ 1

h

(m,s)

I α3
α13

(m,s)

C α13
(s)

U
′

]
,

(m)
σ3=

∞∑
s=0

[
(m,s)

I
3γ
3γ1

(m,s)

C 3γ1∂γ

(s)

U+1
h

(m,s)

I 33
33

(m,s)

C 33
(s)

U
′

]
,

(4.2)

where

(s)

U
′

=
2s+ 1

2h

h∫

−h

UPm

(x3

h

)
dx3,

(s)

U
′

=(2s+ 1)

(
(s+1)

U +
(s+3)

U +· · ·
)
, (4.3)

(m,s)

I
ij
i1j1

=
2s+ 1

2h

h∫

−h

√
g

a
Ai.

.i1
A

j.
.j1
Pm

(x3

h

)
Ps

(x3

h

)
dx3, (4.4)

(i, i1, j, j1 = 1, 2, 3).

By the relations (2.10) and (2.11) we have

2m+ 1

2h

h∫

−h

σ(l̂)

dŝ

ds
Pm

(x3

h

)
dx3 =

(m)
σ

αlα =
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=
(m)
σ (ll)l +

(m)
σ (ls)s +

(m)
σ (ln)n =

(m)
σ (l). (4.5)

(m)

U =
(m)

Uαrα +
(m)

U 3n =
(m)

U
αrα +

(m)

U 3n =

=
(m)

U (l)l +
(m)

U (s)s +
(m)

U 3n, (m = 0, 1, 2, . . .). (4.6)

Thus we have constructed an infinite system of two-dimensional equations
of non-shallow shells (4.1), (4.2) which is consistent with the boundary

conditions on the face surfaces x3 = ±h, where the stresses
(+)
σ

3 and
(−)
σ

3

are, as usual, assumed to be given. As for the boundary conditions on
the side surfaces, they can be satisfied by means of the relations (4.5) and
(4.6). This system is more preferable, because it involves two independent
variables, Gaussian parameters x1, and x2 on the surface S. But decrease
of a number of independent variables by unity is achieved by increasing a
number of equations ad infinitum, but this is surely connected with great
difficulties. The passage to the finite Vekua’s system can be realized by
various methods one of which consists in considering of a finite segment in
the Fourier-Legendre series, i.e.

(√
g

a
σ

i, U,

√
g

a
Φ

)
=

N∑

m=0

(√
g

a

(m)
σ

i,
(m)

U ,
(m)

Φ

)
Pm

(x3

h

)
, (4.7)

where N is a fixed nonnegative number. In other words, in the previous
equations it is assumed that

(k)

U = 0,
(k)
σ

i = 0, k > N.

In what follows, approximation of such a type will be called approxima-
tions of order N .

The second difficulty (not less important) consists in that integrals of the
type (4.4) should be calculated explicitly:

(m,s)

I
αγ
α1γ1

=
2s+ 1

2h

h∫

−h

[
aα

α1
+ x3(b

α
α1

− 2Haα
α1

)
] [
aγ

γ1
+ x3(b

γ
γ1

− 2Haγ
γ1

)
]

1 − 2Hx3 +Kx2
3

×

×Pm

(x3

h

)
Ps

(x3

h

)
dx3,

(m,s)

I
α3
α13 =

2s+ 1

2h

h∫

−h

[
aα

α1
+ x3(b

α
α1

− 2Haα
α1

)
]
Pm

(x3

h

)
Ps

(x3

h

)
dx3,

(m,s)

I
33
33 =

2s+ 1

2h

h∫

−h

(1 − 2Hx3 +Kx2
3)Pm

(x3

h

)
Ps

(x3

h

)
dx3.
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By F. Neumann’s [5] and J. Adams [6] formulas

1∫

−1

Pm(y)dy

x− y
= 2Qm(x), |x| > 1,

and

Pm(x)Ps(x) =

min(m,s)∑

r=0

αmsrPm+s−2r(x),

respectively, where

αmsr =
Am−rArAs−r

Am+s−r

2m+ 2s− 4r + 1

2m+ 2s− 2r + 1
, Am =

1 · 3 · · · (2m− 1)

m!
,

it is not difficult to obtain expressions of these integrals explicitly [6]:

(m,s)

I
αγ
α1γ1

=






(bα

α1
−2Haα

α1
)(bγ

γ1
−2Haγ

γ1
)

K
δms+

+ 2m+1
2h

√
E

[
Bα

α1
(y)Bγ

γ1
(y)

(
Pm(y)Qs(y), m ≤ s

Ps(y)Qm(y), m > s

)]y2

y1

,

(E = H2 −K 6= 0, K 6= 0)

aαγ
α1γ1

δms, E = H2 −K = 0, K 6= 0,

(4.8)

(m,s)

I
α3
α13 = aα

α1
δms+

+h(bαα1
− 2Haα

α1
)

(
m

2m− 1
δs+1
m +

m+ 1

2m+ 3
δs−1
m

)
=

(m,s)

I
3α
3α1

, (4.81)

(m,s)

I
33
33 = δms − 2Hh

(
m

2m− 1
δs+1
m +

m+ 1

2m+ 3
δs−1
m

)
+

+K

[
m(m− 1)

(2m− 1)(2m− 3)
δs+2
m +

1

2m+ 1

(
(m+ 1)2

2m+ 3
+ (4.82)

+
m2

2m− 1

)
δms +

(m+ 1)(m+ 2)

(2m+ 3)(2m+ 5)
δs−2
m

]
h2.

where δms = δm
s is the Kronecker symbol, E = H2 −K is the Euler differ-

ence, Qs is the Legender function of second order, Bα
α1

(y) = (aα
α1

+hy(bαα1
−

2Haα
α1

). The essence of the square brackets consists in the following:

[f(y)]y2
y1

= f(y2) − f(y1), y1,2 = [(H ∓
√
E)h]−1.

These integrals take more simple form in the coordinate system in lines
of curvature. Taking into account that in this case

Aα
α1

=

{
0, α 6= α1,

1
1−kαx3

, α = α1,
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we have

(m,s)

I
αγ
α1γ1

=
2m+ 1

2h

h∫

−h

√
g

a
Aα

α1
Aγ

γ1
PmPsdx3 =

=






0, α 6= α1, γ 6= γ1,

δms, α = α1 6= γ = γ1,
k3−α

kα

δms +
2m+ 1

hkα

kα − k3−α

kα

[
Pm

(
1

hkα

)
Qs

(
1

hkα

)]
,

α = α1 = γ = γ1, kα 6= 0.

If the Gaussian curvature is equal to zero, i.e. K = k1k2 = 0 (plates,
cylindrical and conical shells) then the above integrals take the form

(m,s)

I
αγ
α1γ1

=






0, α 6= α1, γ 6= γ1,

δms, α = α1 6= γ = γ1,
2m+1
hkα

kα−k3−α

kα

[
Pm

(
1

hkα

)
Qs

(
1

hkα

)]
,

α = α1 = γ = γ1, kα 6= 0, k3−α = 0.

An explicit expression for the product Pm(y)Qs(y) has the form [6]

Pm(y)Qs(y) =

[m

2 ]∑

r=0

∞∑

p=0

(m,s)

Mrp

1

ys−m+2(r+p)+1
,

where

(m,s)

Mrp = 2s−m (−1)r

r!

(2m− 2r)!

(m− r)!(m − 2r)!

(s+ p)!(s+ 2p)!

p!(2s+ 2p+ 1)!
(4.83)

Therefore the integrals of the type
(m,s)

I αγ
α1γ1

can be likewise represented as

(m,s)

I
αγ
α1γ1

=
2m+ 1

2h
√
E

[m

2 ]∑

r=0

∞∑

p=0

(m,s)

Mrp×

×
[(
aα

α1
+

(bαα1
− 2Haα

α1
)

H +
√
E

)(
aγ

γ1
+

(bγγ1
− 2Haγ

γ1
)

H +
√
E

)
×

×((H +
√
E)h)s−m+2(r+p)+1− (4.84)

−
(
aα

α1
+

(bαα1
− 2Haα

α1
)

H −
√
E

)(
aγ

γ1
+

(bγγ1
− 2Haγ

γ1
)

H −
√
E

)
×

×((H −
√
E)h)s−m+2(r+p)+1

]
+

(bαα1
− 2Haα

α1
)(bγγ1

− 2Haγ
γ1

)

K
δms.

Thus for the non-shallow elastic shells we have obtained a finite system
of two-dimensional equations (approximation of order N) which by virtue



ON THE APPLICATION OF THE METHOD OF A SMALL PARAMETER 103

of (4.1) and (4.2) looks in a tensor form as





∇α

(m)
σ αβ−bβα− 2m+1

h

(
(m−1)
σ 3β+

(m−3)
σ 3β+· · ·

)
+

(m)

F β=0, (β=1, 2)

∇α

(m)
σ α3+bβα− 2m+1

h

((m−1)
σ 33+

(m−3)
σ 33+· · ·

)
+

(m)

F 3=0,

(4.9)

(m = 0, 1, . . . , N)

where

(m)
σ αβ=

N∑

s=0

[
(m,s)

I
αγ

α1γ1

(
(m,s)

C
α1γ1∇γ

(s)

U

)
rβ+

1

h

(m,s)

I
α3
α13

(
(m,s)

C
α13

(s)

U
′

)
rβ

]
,

(m)
σ α3=

N∑

s=0

[
(m,s)

I
αγ
α1γ1

(
(m,s)

C
α1γ1∇γ

(s)

U

)
n+

1

h

(m,s)

I
α3
α13

(
(m,s)

C
α13

(s)

U
′

)
n

]
,

(m)
σ 3β=

N∑

s=0

[
(m,s)

I
3γ
3γ1

(
(m,s)

C
3γ1∇γ

(s)

U

)
rβ+

1

h

(m,s)

I
33
33

(
(m,s)

C
33

(s)

U
′

)
rβ

]
,

(m)
σ 33=

N∑

s=0

[
(m,s)

I
3γ
3γ1

(
(m,s)

C
3γ1∇γ

(s)

U

)
n+

1

h

(m,s)

I
33
33

(
(m,s)

C
33

(s)

U
′

)
n

]
,

(4.10)

Here,

(m)

F
i =

(m)

Φ
i +

2m+ 1

2h

[√
g+

a

(+)
σ 3i − (−1)m

√
g−
a

(−)
σ 3i

]
,

∇α

(s)

U = ∂α

(s)

U =
(
∇α

(s)

U
β − bβα∇α

(s)

U3

)
rβ +

(
∇α

(s)

U3 − bβα∇α

(s)

Uβ

)
n, (4.11)

(s)

U
′

= (2s+ 1)
( (s+1)

U +
(s+3)

U + · · ·
)
, (s = 0, 1, 2, . . . , N).

The boundary conditions which should be added to the system of equa-
tions (4.9), (4.10) can be obtained from the relations (4.5) and (4.6) as
follows.

Let D be the domain belonging to the plane Ox1x2 onto which we topo-
logically map the midsurface S with the boundary contour Γ. Let L be
the boundary of the domain D. It is assumed that between the points of
Γ and L there exists the one-to-one continuous correspondence. Then the
boundary conditions in stresses take the form

(m)
σ (ll) =

(m)
σ αβlαlβ =

(m)

f (ll),
(m)
σ (ls) =

(m)
σ αβlαsβ =

(m)

f (ls),

(m)
σ (ln) =

(m)
σ α3lα =

(m)

f 3, (L)

(4.12)

where
(m)

f (ll),
(m)

f (ls),
(m)

f 3 are the given functions of points of the curve L.
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Similarly, for the displacement we have

(m)

U (l) =
(m)

U
αlα =

(m)
g (l),

(m)

U (s) =
(m)

U
αsα =

(m)
g (s),

(m)

U 3 =
(m)
g 3, (L) (4.13)

where
(m)
g (l),

(m)
g (s),

(m)
g 3 are the given functions on L.

5. Introduction of a Small Parameter

Three-dimensional shell-like bodies are characterized by the inequalities
of the type

|hbαβ | ≤ q < 1, (α, β = 1, 2).

Therefore they can be represented as follows:

|εhbαβR| ≤ q < 1, (α, β = 1).

where ε is a small parameter which is expressed in the form

ε =
h

R
.

Here h is semi-thickness of the shell, R is an arbitrary characteristic
radius of curvature of the midsurface S.

Having introduced a small parameter, we represent the system of equa-
tions (4.9), (4.10) of approximation of order N in a complex form:

h

Λ

∂

∂z

(
(m)
σ 11 −

(m)
σ 22 + i

(m)
σ 12 + i

(m)
σ 21

)
+

+h
∂

∂z̄

(
(m)
σ 1

1 +
(m)
σ 2

2 + i
(m)
σ 1

2 − i
(m)
σ 2

1

)
−

−ε(H (m)
σ+ +Q

(m)
σ+)R− (2m+ 1)

(
(m−1)
σ (+) +

(m−3)
σ (+) + · · ·

)
+ h

(m)

F+ = 0,

h

Λ

(∂
(m)
σ+

∂z
+
∂

(m)
σ+

∂z̄

)
+ (5.1)

+ε
[
H

(m)
σ α

α +Re
(
Q
(

(m)
σ 1

1 −
(m)
σ 2

2 + i
(m)
σ 2

1 + i
(m)
σ 1

2

))]
R−

−(2m+ 1)
(

(m−1)
σ 3

3 +
(m−3)
σ 3

3 + · · ·
)

+ h
(m)

F 3 = 0,

(
m = 0, 1, . . . , N,

(m)

F+ =
(m)

F 1 + i
(m)

F 2

)

where

h
( (m)
σ 11 −

(m)
σ 22 + i

(m)
σ 12 + i

(m)
σ 21

)
= 4µΛ

(
h
∂

(m)

U+

∂z̄
− εQR

(m)

U 3

)
+

+2Λ

∞∑

s=0

{( (m,s)

I1 −H
(m,s)

I 2

)
Q
[
(λ+ µ)(h

(s)

Θ −2Hε
(s)

U3R)+
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+2µ
( h

Λ

∂
(s)

U+

∂z
− εH

(s)

U3R
)]

+
(m,s)

I2Q
[
(λ+ µ)Q

(
h
∂

(s)

U+

∂z
− εQ

(s)

U3R
)
+

+(λ+ 3µ)Q
(
h
∂

(s)

U
+

∂z̄
− εQ

(s)

U3

)]
+ 2λ

(m,s)

I3Q
(s)

U
′

3

}
,

h
(

(m)
σ 1

1 +
(m)
σ 2

2 + i
(m)
σ 2

1 − i
(m)
σ 1

2

)
= 2(λ+ µ)(h

(m)

Θ −2Hε
(m)

U 3R)+

(5.2)

+2

∞∑

s=0

{ (m,s)

I 1 −H
(m,s)

I 2

[
(λ + 3µ)Q

(
h
∂

(s)

U
+

∂z̄
− εQ

(s)

U3R
)
+

+(λ+ µ)Q
(
h
∂

(s)

U +

∂z
− εQ

(s)

U3R
)]

+

+
(m,s)

I 2QQ
[
(λ + µ)(h

(s)

Θ −2Hε
(s)

U3R)+

+2µ
( h

Λ

∂
(s)

U
+

∂z̄
− εH

(s)

U3R
)]

+ 2λ(δms −H
(m,s)

I 3)
(s)

U
′

3

}
,

h
(m)
σ+ = 2µ

(
h
∂

(m)

U 3

∂z̄
+ ε

H
(m)

U+ +Q
(m)

U+

2
R
)
+

+µ

∞∑

s=0

{ (m,s)

I 2QQ
[
2h
∂

(s)

U3

∂z̄
+ ε(H

(s)

U+ +Q
(s)

U+)R
]
+

+(
(m,s)

I 1 −H
(m,s)

I 2)Q
[
2h
∂

(s)

U3+

∂z
+ ε(Q

(s)

U+ +H
(s)

U+)R
]
+

+
(m)

U
′

+ δ
ms − (H

(s)

U
′

+ +Q
(s)

U
′

+ )
(m,s)

I 3

}
,

h
(m)
σ (+) = 2µ

(
h
∂

(m)

U 3

∂z̄
+ ε

H
(m)

U+ +Q
(m)

U+

2
R
)
+

+µ

∞∑

s=0

{ (m,s)

I 3

[
Q
(
h
∂

(s)

U3

∂z̄
+ ε

Q
(s)

U+ +H
(s)

U+

2
R
)
−

−H
(
h
∂

(s)

U3

∂z̄
+ ε

H
(s)

U+ +Q
(s)

U+

2
R
)]

+
(m,s)

I 4

(s)

U
′

+

}
,

h
(m)
σ 3

3 = λ(h
(m)

Θ −2Hε
(m)

U 3R) +

∞∑

s=0

{
λ
[
Q
(
h
∂

(s)

U +

∂z
− εQR

(s)

U3

)
+
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+Q
(
h
∂

(s)

U +

∂z̄
− εQR

(s)

U3

)
−H(h

(s)

Θ −2Hε
(s)

U3R)
] (m,s)

I 3+

+(λ+ 2µ)
(m,s)

I 4

(s)

U
′

3

}
, (m = 0, 1, . . . , N).

Here we have introduced the notation

(n)

Θ =
1

Λ




∂

(n)

U +

∂z

∂
(n)

U +

∂z̄



 ,
(s)

U
′

i = (2s+ 1)(
(s+1)

U i +
(s+3)

U i + · · · ),

(m,s)

I 1 =
2m+ 1

2h

h∫

−h

x3Pm

(
x3

h

)
Ps

(
x3

h

)
dx3

1 − 2Hx3 +Kx2
3

,

(m,s)

I 2 =
2m+ 1

2h

h∫

−h

x2
3Pm

(
x3

h

)
Ps

(
x3

h

)
dx3

1 − 2Hx3 +Kx2
3

,

(m,s)

I 3 =
2m+ 1

2h

h∫

−h

x3Pm

(x3

h

)
Ps

(x3

h

)
dx3,

(m,s)

I 4 =
2m+ 1

2h

h∫

−h

(1 − 2Hx3 +Kx2
3)PmPsdx3.

(5.3)

The above integrals can be calculated explicitly (see [4.83]), and their
expressions are represented as

(m,s)

I 1 =
2m+ 1

2
√
E

[m

2 ]∑

r=0

∞∑

p=0

(m,s)

Mrpε
s−m+2(r+p)×

×
[
((H +

√
E)h)s−m+2(r+p) − ((H −

√
E)h)s−m+2(r+p)

]
,

(m,s)

I 2 =
2m+ 1

2
√
E

h

[m

2 ]∑

r=0

∞∑

p=0

(m,s)

Mrpε
s−m+2(r+p)−1×

×
[
((H +

√
E)h)s−m+2(r+p)−1 − ((H −

√
E)h)s−m+2(r+p)−1

]
+

1

K
δms,

(m,s)

I 3 =h

(
m

2m− 1
δs+1
m +

m+ 1

2m+ 3
δs−1
m

)
,

(m,s)

I 4 =δms − 2HRε

(
m

2m− 1
δs+1
m +

m+ 1

2m+ 3
δs−1
m

)
+
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+ε2KR2

[
m(m− 1)

(2m− 1)(2m− 3)
δs+2
m +

+
1

2m+ 1

(
(m+ 1)2

2m+ 3
+

m2

2m− 1

)
δms +

(m+ 1)(m+ 2)

(2m+ 3)(2m+ 5)
δs−2
m

]
.

Note that we can obtain the system of equations (5.1), (5.2) directly from
the three-dimensional relations (3.5) and (3.6) using I. N. Vekua’ s method
of reduction and notation (3.4).

The boundary conditions written in a complex form can also be obtained
directly from the relations (3.7) and (3.8). For the first boundary value
problem (in stresses) we have






(m)
σ (ll) + i

(m)
σ (ls) =

1

2

[
(m)
σ 1

1 +
(m)
σ 2

2 + i
(m)
σ 1

2 − i
(m)
σ 2

1−

− (
(m)
σ 1

a −
(m)
σ 2

2 + i
(m)
σ 1

2 + i
(m)
σ 2

1)
dz̄

dz

]
=

(m)

f (ll) + i
(m)

f (ls),

(m)
σ (ln) = −Im

(
(m)
σ+

dz̄

ds

)
=

(m)

f 3, on L

where
(m)

f (ll),
(m)

f (ls),
(m)

f 3 are the given functions of points of the contour L.
For the second boundary value problem (in displacements) on the contour

Γ of the domain D we have





(m)

U (l) + i
(m)

U (s) = i
(m)

U+
dz̄

ds
=

(m)
g (l) + i

(m)
g (s),

(m)

U 3 =
(m)
g 3, (L), (U+ = U · r1 + iU · r2 = U1 + iU2)

where
(m)
g (l),

(m)
g (s),

(m)
g 3 (m = 0, 1, 2, . . . , N) are the given functions on L.

It is obvious that the larger is the number N , the more exact approxi-
mations we obtain, in general. But it is clear that with the growth of N ,
practical difficulties of solution of the corresponding system of equations
considerably increase. However, in many cases it is practically sufficient
to restrict ourselves to the approximations of order N = 0, or N = 1.
Therefore we will consider these cases separately below.

6. Approximation of Order N = 0

Approximation of order N = 0 corresponds to the case in which the pic-
ture of stressed and strained states of the shell are practically negligibly
vary along the midsurface normal. This case represents actually the mem-
brane theory supplemented in such a way that the corresponding system
of equations is consistent with three physical boundary conditions of the
problem.



108 T. MEUNARGIA

Introduce the notation

(0)

U = U,
(0)
σ i = Ti,

(0)

F i = Xi, (i = 1, 2, 3),

and
(0,0)

I j = Ij , (j = 1, 2, 3, 4),

Now the systems (5.1) and (5.2) take the form





h

Λ

∂

∂z
(T11 − T22 + iT12 + iT21) + h

∂

∂z̄
(T 1

1 + T 2
2 + iT 1

2 − iT 2
1 )

−ε(HT+ +QT̄+)R + hX+ = 0,

h

Λ

(
∂T+

∂z
+
∂T̄+

∂z̄

)
+ ε[HTα

α +

+Re(Q(T 1
1 − T 2

2 + iT 1
2 + iT 2

1 ))] + hX3 = 0,

(6.1)

where

h(T11 − T22 + iT12 + iT21) = 4µΛ

(
h
∂u+

∂z̄
− εQRu3

)
+

+2Λ

{
(I1 −HI2)Q

[
(λ+ µ)(hΘ − 2Hεu3R) + 2µ

(
h

Λ

∂u+

∂z
− εHu3R

)]
+

+ I2Q

[
(λ+ µ)Q

(
h
∂u+

∂z
− εQu3R

)
+ (λ + 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)]}
,

h(T 1
1 + T 2

2 + iT 2
1 − iT 1

2 ) = 2(λ+ µ)(hΘ − 2Hεu3R)+

+2

{
(I1 −HI2)

[
(λ+ 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)
+

+ (λ+ µ)Q

(
h
∂u+

∂z
− εQu3R

)]
+

+ I2QQ

[
(λ+ µ)(hΘ − 2Hεu3R) + 2µ

(
h

Λ

∂u+

∂z̄
− εHu3R

)]}
, (6.2)

hT+ =2µ

{(
h
∂u3

∂z̄
+ε

Hu+ +Qu+

2
R

)
+I2QQ

(
h
∂u3

∂z̄
+ε

Hu+ +Qu+

2
R

)
+

+ (I1 −HI2)Q

(
h
∂u3

∂z
+ ε

Qu+ +Hu+

2
R

)}
,

hT(+) = µ

[
h
∂u3

∂z̄
+ ε

Hu+ +Qu+

2
R

]
,

hT33 = λ(hΘ − 2Hεu3R),

Θ =
1

Λ

(
∂u+

∂z
+
∂ū+

∂z̄

)
.
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It follows from formulas (5.3) that

I1 −HI2 = h

∞∑

p=1

(εR)2p−1

2p+ 1

p−1∑

q=0

C
2q
2p−1H

2p−2q−1Eq,

I2 = h2
∞∑

p=1

(εR)2p−1

2p+ 1

p−1∑

q=0

C
2q+1
2p−1H

2p−2q−2Eq,

I3 = 0, I4 = 1 +
1

3
ε2KR2, (E = QQ = H2 −K)

To find components of the displacement vector and stress tensor we take
advantage of following series expansions with respect to the small parameter
εn [2]:

(Ui, Ti, Xi) =

∞∑

n=0

(
(n)

U i,
(n)

T i,
(n)

Xi

)
εn, (i = 1, 2, 3).

Substituting the above expansions into the relations (6.1) and (6.2) and
then equalizing the coefficients of expansion for εn, we obtain the following
system of equations:






h

Λ

∂

∂z

( (n)

T 11 −
(n)

T 22 + i
(n)

T 12 + i
(n)

T 21

)
+

+h ∂
∂z̄

(
(n)

T 1
1 +

(n)

T 2
2 + i

(n)

T 1
2 − i

(n)

T 2
1)

= −h
(n)

X+ + (H
(n−1)

T + +Q
(n−1)

T +)R,

h

Λ

(∂
(n)

T +

∂z
+
∂

(n)

T +

∂z̄

)
= −h

(n)

X3 − [H
(n−1)

T
α
α

+Re(Q(
(n−1)

T 1
1 −

(n−1)

T 2
2 + i

(n−1)

T 1
2 + i

(n−1)

T 2
1))]R,

(6.3)

where

h(
(n)

T 11 −
(n)

T 22 +n−i
(n)

T 12 + i
(n)

T 21) = 4µΛ
(
h
∂

(n)

U +

∂z̄
−QR

(n−1)

U 3

)
+

+2Λ

[n

2 ]∑

p=1

p−1∑

q=0

R2p

2p+ 1

{
C

2q
2p−1H

2p−2q−1EqQ
[
(λ+µ)(h

(n−2p)

Θ −2H
(n−2p−1)

U 3R)+

+2µ
( h

Λ

∂
(n−2p)

U +

∂z
−H

(n−2p−1)

U 3R
)]

+ C
2q+1
2p−1H

2p−2q−2Eq×

×
[
(λ+ µ)Q2

(
h
∂

(n−2p)

U +

∂z
−Q

(n−2p−1)

U 3R
)
+
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+(λ+ 3µ)QQ
(
h
∂

(n−2p)

U +

∂z̄
−Q

(n−2p−1)

U 3R
)]}

,

h
( (n)

T
1
1 +

(n)

T
2
2 + i

(n)

T
2
1 − i

(n)

T
1
2

)
= 2(λ+µ)(h

(n)

Θ −2H
(n−1)

U 3R)+

(6.4)

+2

[ n

2 ]∑

p=1

p−1∑

q=0

R2p

2p+ 1

{
C

2q
2p−1H

2p−2q−1Eq
[
(λ+3µ)Q

(
h
∂

(n−2p)

U +

∂z̄
−Q

(n−2p−1)

U 3R
)
+

+(λ+ µ)Q
(
h
∂

(n−2p)

U +

∂z
−Q

(n−2p−1)

U 3R
)]

+ C
2q+1
2p−1H

2p−2q−2EqQQ×

×
[
(λ+ µ)(h

(n−2p)

Θ −2H
(n−2p−1)

U 3R) + 2µ
( h

Λ

∂
(n−2p)

U +

∂z
−H

(n−2p−1)

U 3R
)]}

,

h
(n)

T + = 2µ
{
h
∂

(n)

U3

∂z̄
− H

(n−1)

U+ +Q
(n−1)

U +

2
R+

+

[ n

2 ]∑

p=1

p−1∑

q=0

R2p

2p+ 1

[
C

2q
2p−1H

2p−2q−1EqQ×

×
(
h
∂

(n−2p)

U 3

∂z
+
Q

(n−2p−1)

U + +H
(n−2p−1)

U +

2
R
)
+

+C2q+1
2p−1H

2p−2q−1EqQQ
(
h
∂

(n−2p)

U 3

dz̄
+
H

(n−2p−1)

U+ +Q
(n−2p−1)

U+

2
R
)]}

,

h
(n)

T (+) = µ
[
h
∂

(n)

U3

∂z̄
+
H

(n−1)

U+ +Q
(n−1)

U+

2
R
]
,

h
(n)

T 33 = λ(h
(n)

Θ −2H
(n−1)

U3R).

Now we write the system of equations in terms of components of the
displacement vector

(m)

U =
1

2

(
(m)

U +r+ +
(m)

U 3n

)
=

1

2

(
(m)

U
+r+ +

(m)

U 3n

)
,

We have

4µh2 ∂

∂z̄



 1

Λ

∂
(n)

U+

∂z̄



+ 2(λ+ µ)h2 ∂
(n)

Θ

∂z̄
=

(n)
χ+

(
(0)

Ui, . . . ,
(n−1)

Ui

)
, (6.51)

µh2∇2
(n)

U3 =
(n)
χ3

(
(0)

Ui, . . . ,
(n−1)

Ui

)
,

(
∇2 =

4

Λ

∂2

∂z∂z̄

)
, (6.52)
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(n)

Θ =
1

Λ




∂

(n)

U+

∂z
+
∂

(n)

U+

∂z̄



 , (i = 1, 2, 3)

where
(n)
χ+ and

(n)
χ3 are expressed by

(0)

U+,
(0)

U3, . . . ,
(n−1)

U+,
(n−1)

U3 and assuming
that they are already found. When deducing the system (6.5) we used the
formula [1]

4h2

Λ

∂

∂z
Λ
∂

∂z̄
U + = 4h2 ∂

∂z̄



 1

Λ

∂
(n)

U+

∂z



+ 2Kε2U+, (6.53)

where K is the Gaussian curvature of the midsurface of the shell.
The above writing of the type (6.51), (6.52) brings the suggested version

of the theory of shells (N = 0) closer to the equations of the classical
plane problem of elasticity, and for Λ = 1 (plates, cylindrical and conical
shells) coincide with them. This circumstance plays an important role in
practical realization of calculations of a shell on the basis of the obtained
equations, since in passing from the n-th step to the (n+1) we always have
to solve the ”plane” problem and the Poisson equation on the midsurface
S of the shell Ω. We can see that in passing from the given step to the
subsequent one only the right-hand sides of equations undergo variations.
The problem of converges of the process requires special investigation. To
ensure the convergence the right-hand sides should be subjected to certain
general restrictions.

Now simple calculations show that a general solution of the system (6.51)
and (6.52) can be represented by means of three analytic functions of z in
the form [7]

(n)

U+ =−æ

π

∫

D

∫
Λ(ζ, ζ)ϕ1(ζ)dξdη

ζ̄ − z̄
+



 1

π

∫

D

∫
Λ(ζ, ζ)dξdη

ζ̄ − z̄



ϕ
′(z) − ψ(z)

+
1

8µh2

λ+ µ

λ+ 2µ

1

π

∫

D

∫ (n)

F+(ζ, ζ)dξdη

ζ̄ − z̄
, (6.61)

(n)

U3 = f(z) + f(z) − 2

π

∫

D

∫
(n)

X3(ζ, ζ)ln|ζ − z|dξdη, (6.62)
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where ϕ
′

(z), f(z) and ψ(z), are analytic functions of z = x1 + ix2 ∈ D, and
ζ = ξ + iη. Further,

(n)

F+(z, z̄) = − 1

π

∫

D

∫



(n)

X+

ζ̄ − z̄
− æ

(n)

X+

ζ − z



 dξdη,

(
æ =

λ+ 3µ

λ+ µ

)
.

D is the domain of the plane Ox1x2 onto which the midsurface S of the
shell Ω is mapped topologically.

Note that for Λ = 1 the expression for
(0)

U+ coincides with the well-known
representation of Kolosov-Muskhelishvili [3]

U+ = æϕ(z) − zϕ
′(z) − ψ(z),

(
(0)
χ = 0

)

in the plane theory of elasticity.

7. The Basic Boundary Value Problems

The boundary conditions (5.4) and (5.5) for the approximation of order
N = 0 for any n have the form

(a) for the first basic boundary problem (in stresses)





(n)

T (ll) + i
(n)

T (ls) = 1
2

[(
(n)

T 1
1 −

(n)

T 2
2 + i

(n)

T 1
2 − i

(n)

T 2
1

)

−
(

(n)

T 11 −
(n)

T 22 + i
(n)

T 12 + i
(n)

T 21

)(
dz̄
ds

)2
]

=

=
(n)

d 1 + i
(n)

d 2, (L)
(n)

T (ln) = −Im
(

(n)

T +
dz̄
ds

)
=

(n)

d 3, (L)

. (7.1)

(b) for the second boundary problem (in displacements)

(n)
u (l) + i

(n)
u (s) = i

(n)
u+

dz̄

ds
=

(n)
e 1 +

(n)
e 2, (L)

(n)
u 3 =

(n)
e 3, (L).




 (7.2)

Here we have introduced the notation
(0)

f (ll) + i
(0)

f (ls) = d1 + id2,
(0)

f 3 = d3,
(0)
g (l) + i

(0)
g (s) = e1 + ie2,

(0)
g 3 = e3,

note that

(di, ei) =
∑

n=0

(
(n)

d i,
(n)
e i

)
εn, (i = 1, 2, 3),

and L is the contour of the domain D onto which the midsurface S together
with its boundary ∂S = Γ is mapped topologically.
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Here we present a general scheme of solution of boundary problems when
the domain D is a circle of radius r0.

The second boundary problem (in displacements) for any n takes the
form

(n)
u +|r0 =

{
− æ

π

∫

D

∫
Λ(ζ, ζ)ϕ1(ζ)dξdη

ζ̄ − z̄

+
( 1

π

∫

D

∫
Λ(ζ, ζ)dξdη

ζ̄ − z̄

)
ϕ

′(z) − ψ(z)

}

r0

=
(n)

G +, (| z | r0) (7.31)

(n)
u 3|r0 =f(z) + f(z)|r0 =

(n)

G 3. (| z |= r0) (7.32)
(
n =0, 1, . . . , ; z = reiθ, ζ = ξ + iη = ρiθ

)
,

where
(n)

G+ and
(n)

G3 are the known values containing solutions
(0)
u i,

(1)
u i, . . . ,

(n)
u i, (i = 1, 2, 3) of the previous approximations.

Let Λ(z, z̄) depend only on r =| z |; next ϕ
′

(z) and ψ(z) are expanded
in power series of the type

ϕ
′

(z) =
∞∑

k=0

akz
k, ψ(z) =

∞∑

k=0

bkz
k,

and the expression
(n)

G + in the form of a complex Fourier series

(n)

G + =

∞∑

k=−∞
Ake

ikθ.

Assuming that the above-mentioned series for ϕ
′

(z) and ψ(z) converge
not only inside the circle | z |= r0, but also on the circumference | z |=
r0 and then substituting these expansions into (7.31) and comparing the
coefficients for eikθ, we obtain





a1α0 + b0 = −Ā0,

(æa0 − ā0)α0 = A1r0,

................................................

æαk

ak

rk+1
0

= Ak+1,

∪






(a2α0 + b1)r0 = −Ā−1,

................................................

(ak+1α0 + bk)rk
0 = −Ā−k,

This system allows one to find all but a0 coefficients as follows:

ak =
1

æ

rk+1
0

αk(r0)
Ak+1, k ≥ 1,

bk = −
(
Ā−k

rk
0

+
α0

æ

rk+2
0

αk+1
Ak+2

)
, (k ≥ 0).
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where

αk = 2

r0∫

0

ρ2k+1Λ(ρ)dρ.

Coefficient a0 is defined from the equality (æa0 − ā0)α0 = A1r0 and that
obtained by passing to the conjugated values (æā0 − a0)α0 = Ā1r0, whence

a0 =
r0

α0

æA1 + Ā1

æ2 − 1
, æ =

λ+ 3µ

λ+ µ
> 1.

If Λ = 1, then α0 = r20 , and for a0 we obtain

a0 =
æA1 + Ā1

(æ2 − 1)r0
,

which coincides with coefficient Λ = 1 of the second basic problem (in
displacements) of the plane theory of elasticity [3].

Note that for cylindrical and conical shells Λ = 1, and for the spherical
shell

Λ =
4R2

(1 + zz̄)2
, z = tg

θ

2
eiϕ = reiϕ, r0 = tg

θ0

2
.

Hence

αk = 8R2

r0∫

0

ρ2k+1dρ

(1 + ρ2)2
=

1

1 + r20
+ (−1)k+1k

[
ln(1 + r20) −

k∑

s=1

(−1)s r
2s
0

s

]
.

A solution of the boundary problem (7.32) is representable in the form
of the Poisson integral,

(n)
u 3(r, ϕ) =

1

2π

2π∫

0

(n)

G 3(ψ)
r20 − r2

r2 − 2r0rcos(ψ − θ) + r20
dψ.

Thus for any n we can construct formal solutions of the second boundary
problem, when N = 0.

Consider now the first basic problem (7.1) for any fixed number n (n ≥ 0).
Substituting the relations (6.4) into (7.1), we obtain

(λ+ µ)
(n)

θ +2µ
∂

∂z̄

(
1

Λ

(n)
u +

)
dz̄

dz
=

(n)
p+, (| z |= r0), (7.41)

2µ

Λ

(∂
(n)
u 3

∂z
eiϕ +

∂
(n)
u 3

∂z̄
e−iϕ

)
=

(n)
p3, (| z |= r0), (7.42)

( (n)

θ =
1

Λ

(∂
(n)
u +

∂z
+
∂

(n)
u 3

∂z̄

))
,
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where
(n)
p+ and

(n)
p3 are the known values expressed in terms of the solution

(k)
u (k = 0, 1, . . . , n− 1) of the previous approximations.

Consider the case of a spherical shell, whose midsurface is spherical seg-
ment of radius R0sinθ, where R0 is the radius of the sphere. Isometric
coordinates on the sphere can be represented in the form,

z = x1 + ix2 = tg
θ

2
eiϕ ⇒ ds2 = Λ(z, z̄)dzdz̄, Λ =

4R2
0

(1 + zz̄)2
.

In this case a stereographic projection of the spherical segment of radius
R0sinθ

(
0 ≤ θ ≤ π

2

)
from the South pole θ = π to the equatorial plane

θ = π
2 is a circle of radius r0 = tg θ0

2 .
For the components of the displacement vector we have the following

complex representations:

(n)
u + = 4R2




−æ

z∫

0

ϕ
′

(ζ)dζ

(1 + ζζ̄)2
− z

1 + zz̄
ϕ

′(z) − ψ(z)




+ û+,

(n)
u 3 = f(z) + f(z) = û3,

(
æ = λ+3µ

λ+µ

)
,

where ϕ
′

(z) ψ(z) f(z) are analytic functions in the domain D(|z| ≤ r0), and
the values û+ and û 3 are the particular solutions of systems of equations
(6.51) and (6.52). In what follows, the index ”n” will be omitted and the
right-hand sides of the boundary conditions (7.41) and (7.42) will be denoted
by p̂+ and p̂3.

Let the expansions

ϕ
′

(z) =

∞∑

k=0

akz
k, ψ(z) =

∞∑

k=0

bkz
k, f(z) =

∞∑

k=0

ckz
k,

p̂+ =
∞∑

k=0

Ake
ikϕ, p̂ 3 =

∞∑
k=0

Bke
ikϕ, (B−k = B̄k)

be valid. Then the boundary conditions (7.41) and (7.42) take the form

∞∑

k=0

{(
ake

ikϕ + āke
−ikϕ

)
rk
0 + (1 + r20)

[
2ærk+2

0 βk(r0)ake
ikϕ−

− ākr
k
0

(
k +

rk
0

1 + r20

)
e−ikϕ − b̄kr

k−1
0

(
k + (k + 2)r20

)
e−i(k+1)ϕ

]}
=

=
1

2µ

∞∑

k=−∞
Ake

ikϕ,

∞∑

k=0

krk−1
0 (cke

ikϕ + c̄ke
−ikϕ) =

1

2µ

R0

1 + r20

∞∑

k=−∞
Bke

ikϕ,
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where

βk(r)=
1

zk+2

z∫

0

(z − t)tkdt

(1 + tz̄)3
=− 1

2zz̄

{ 1

1 + zz̄
+(−1)k k(k − 1)

(zz̄)k

[
ln(1 + zz̄)

−
k−1∑

s=1

(−1)s (zz̄)s

s

]
+(−1)k+1k(k + 1)

(zz̄)k+1

[
ln(1 + zz̄)−

k−1∑

s=1

(−1)s (zz̄)s

s

]}
⇒

⇒βk(z) =

k−1∑

s=1

(−1)s (s+ 1)(s+ 2)

2

(zz̄)s

(k + s+ 1)(k + s+ 2)
.

Comparing the coefficients for eikθ) and taking into account that the
resultant vector and the principal moment are equal to zero, we obtain

ak =
Ak

2µ

1

[1 + 2H(1 + r20)r
2
0 ]r

k
0

, (k = 0, 1, . . . )

bk =
1

2µ

1

(1 + r20)(k + 2r20)r
k−1
0

[
Ak+1

1 − [k + 1 + (k + 2)r20]

1 + 2H(1 + r20)r
2
0βk+1(r0)

− Ā−k−1

]
,

and for the coefficients ck we will have

ck =
1

µ

R0

1 − r20

Bk

krk−1
0

, (k = 1, 2, . . .)

The condition

1

2π

2π∫

0

p̂ 3(r0, ϕ)dϕ = 0

is that of the existence of the Neumann problem for the harmonic functions.

This implies that for
(n)
u 3 we obtain the well-known Dini’s formula

u3(r, ϕ) = −r0
π

2R0

µ

1

1 + r20

2π∫

0

p̂3(r0, θ)ln|σ − z|dθ + const

(
σ = r0e

iθ, z = reiϕ
)
.

8. Approximation of Order N = 1

The case N = 1 corresponds to the assumption when the picture of the
stressed and strained state of the shell changes along the midsurface normal
by the linear law. This case is close enough to the classical theory of shells,
although does not exactly coincides with the latter. The classical theory is
supplemented here in such a way that the obtained system of differential
equations is consistent with six physical boundary conditions [1].

For the case N = 1 we have

U =
(0)

U +P1

(x3

h

) (1)

U , σ
i =

(0)
σ

i + P1

(x3

h

)
(1)
σ

i, F =
(0)

F +P1

(x3

h

) (1)

F ,
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(0)

U
′

=
(1)

U ,
(1)

U
′

= 0.

Introducing the notation

(0)

U = U,
(1)

U = V,
(0)
σ

i = Ti,
(1)
σ

i = Si,
(0)

F = X,
(1)

F = Y,

from (5.1) we obtain the following system of equations of equilibrium for
N = 1:

h

Λ

∂

∂z
(T11 − T22 + iT12 + iT21) + h

∂

∂z̄
(T 1

1 + T 2
2 + iT 1

2 − iT 2
1 )−

−εR(HT+ +QT̄+) + hX+ = 0, (8.1)

h

Λ

(
∂T+

∂z
+
∂T̄+

∂z̄

)
+ εR[HTα

α +ReQ(T 1
1 − T 2

2 + iT 1
2 + iT 2

1 )] + hX3 = 0,

h

Λ

∂

∂z
(S11 − S22 + iS12 + iS21) + h

∂

∂z̄
(S1

1 + S2
2 − iS1

2 − iS2
1)−

−εR(HS+ +QS̄+) − 3T+ + hY+ = 0, (8.2)

h

Λ

(
∂S+

∂z
+
∂S̄+

∂z̄

)
+εR[HSα

α +ReQ(S1
1 − S2

2 + iS1
2 + iS2

1)] − 3T 3
3 +hY3 = 0,

where

h(T11−T22+iT12+iT21)=4µΛ

(
h
∂u+

∂z̄
−εQRu3

)
+

+2ΛQ

{
(
(0,0)

I 1−H
(0,0)

I 2)

[
(λ+ µ)(hΘ−2Hεu3R)+2µ

(
h

Λ

∂u+

∂z
− εHu3R

)]
+

+
(0,0)

I 2Q

[
(λ + µ)Q

(
h
∂u+

∂z
− εQu3R

)
+ (λ+ 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)]
+

+(
(0,1)

I 1 −H
(0,1)

I 2)

[
(λ+ µ)(hρ− 2Hεv3R) + 2µ

(
h

Λ

∂v+

∂z
− εRHv3

)]
+

+
(0,1)

I 2Q

[
(λ + µ)Q

(
h
∂v+

∂z
− εQv3R

)
+ (λ+ 3µ)Q

(
h
∂v+

∂z̄
− εQv3R

)]}
,

h(T 1
1 + T 2

2 + iT 2
1 − iT 1

2 ) = 2(λ+ µ)(hΘ − 2Hεu3R)+

+2

{
(
(0,0)

I 1 −H
(0,0)

I 2)

[
(λ + 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)
+

+ (λ+ µ)Q

(
h
∂u+

∂z
− εQu3R

)]
+

+
(0,0)

I 2QQ

[
(λ+ µ)(hΘ − 2Hεu3R) + 2µ

(
h

Λ

∂u+

∂z
− εHu3R

)]
+
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+(
(0,1)

I 1 −H
(0,1)

I 2)

[
(λ + 3µ)Q

(
h
∂v+

∂z̄
− εQv3R

)
+

+ (λ+ µ)Q

(
h
∂v+

∂z
− εQv3R

)]
+ (8.3)

+
(0,1)

I 2QQ

[
(λ+ µ)(hρ− 2Hεv3R) + 2µ

(
h

Λ

∂v+

∂z
− εHv3R

)]}
+ 2λv3,

hT+ = 2µ

{(
h
∂u3

∂z̄
+ ε

Hu+ +Qu+

2
R

)
+

+2Q

[
(0,0)

I 2Q

(
h
∂u3

∂z̄
+ εR

Hu+ +Qu+

2

)
+

+(
(0,0)

I 1 −H
(0,0)

I 2)

(
h
∂u3

dz
+ ε

Qu+ +Hu+

2
R

)
+

1

2
v+

+
(0,1)

I 2Q

(
h
∂v3

∂z̄
+ εR

Hv+ +Qv+

2

)
+

+ (
(0,1)

I 1 −H
(0,1)

I 2)

(
h
∂v3

dz
+ ε

Qv+ +Hv+

2
R

)]}
,

hT(+) = 2µ

{(
h
∂u3

∂z̄
+ εR

Hu+ +Qu+

2

)
+

(
1 +

1

3
ε2R2K

)
v+

+
εR

3

[
Q

(
h
∂v3

∂z
+ εR

Hv+ +Qv+

2

)
−H

(
h
∂v3

∂z̄
+ εR

Hv+ +Qv+

2

)]}
,

hT 3
3 = λ(hΘ − 2Hεu3R) + (λ+ 2µ)

(
1 +

1

3
ε2R2K

)
v3

+
λ

3
εR

[
Q

(
h
∂v+

∂z
− εRQv3

)
+Q

(
h
∂v+

∂z̄
+ εRQv3

)
−H(hρ− 2HεRv3)

]
.

h(S11 − S22 + iS12 + iS21) = 4µΛ

(
h
∂v+

∂z̄
− εQRv3

)
+ 2λRQv3+

+2ΛQ

{
(
(1,0)

I 1−H
(1,0)

I 2)

[
(λ+µ)(hΘ−2Hεu3R)+2µ

(
h

Λ

∂u+

∂z
−εHu3R

)]
+

+
(1,0)

I 2

[
(λ+ µ)Q

(
h
∂u+

∂z
− εQu3R

)
+ (λ+ 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)]
+

+(
(1,1)

I 1 −H
(1,1)

I 2)

[
(λ+ µ)(hρ− 2Hεv3R) + 2µ

(
h

Λ

∂v+

∂z
− εRHv3

)]
+

+
(1,1)

I 2Q

[
(λ + µ)Q

(
h
∂v+

∂z
− εQv3R

)
+ (λ+ 3µ)Q

(
h
∂v+

∂z̄
− εQv3R

)]}
,

h(S1
1 + S2

2 + iS2
1 − iS1

2) = 2(λ+ µ)(hρ− 2Hεu3R) − 2λεRHv3+
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+2

{
(
(1,0)

I 1 −H
(1,0)

I 2)

[
(λ + 3µ)Q

(
h
∂u+

∂z̄
− εQu3R

)
+

+ (λ+ µ)Q

(
h
∂u+

∂z
− εQu3R

)]
+

+
(1,0)

I 2QQ

[
(λ+ µ)(hΘ − 2Hεu3R) + 2µ

(
h

Λ

∂u+

∂z
− εHu3R

)]
+

+(
(1,1)

I 1 −H
(1,1)

I 2)

[
(λ + 3µ)Q

(
h
∂v+

∂z̄
− εQv3R

)
+

+ (λ+ µ)Q

(
h
∂v+

∂z
− εQv3R

)]
+ (8.4)

+
(1,1)

I 2QQ

[
(λ+ µ)(hρ− 2Hεv3R) + 2µ

(
h

Λ

∂v+

∂z
− εHv3R

)]}
.

hS+ = 2µ

{(
h
∂v3

∂z̄
+ ε

Hv+ +Quv

2
R

)
+

+2Q

[
(1,0)

I 2Q

(
h
∂u3

∂z̄
+ εR

Hu+ +Qu+

2

)
+

+(
(1,0)

I 1 −H
(1,0)

I 2)

(
h
∂u3

dz
+ ε

Qu+ +Hu+

2
R

)
+

+
(1,1)

I 2Q

(
h
∂v3

∂z̄
+ εR

Hv+ +Qv+

2

)
+

+ (
(1,1)

I 1 −H
(1,1)

I 2)

(
h
∂v3

∂z
+ ε

Qv+ +Hv+

2
R

)]
− εR(Hv+ −Qv+)

}
,

hS(+) = 2µ

{(
h
∂v3

∂z̄
+ εR

Hv+ +Qv+

2

)
− 2HεRv+ +

+ εR

[
Q

(
h
∂u3

∂z
+ εR

Hu+ +Qu+

2

)
−H

(
h
∂u3

∂z̄
+ εR

Hu+ +Qu+

2

)]}
,

hS3
3 = λ(hρ− 2Hεv3R) − λεRH(hθ − 2HεRu3) − 2(λ+ 2µ)HεRv3+

+λεR

[
Q

(
h
∂u+

∂z
− εRQu3

)
+Q

(
h
∂u+

∂z̄
− εRQu3

)]
.

Here

Θ =
1

Λ

(
∂u+

∂z
+
∂ū+

∂z̄

)
, ρ =

1

Λ

(
∂v+

∂z
+
∂v̄+

∂z̄

)
,
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and the integrals of the type
(m,s)

I i (m, s = 0, 1; i = 1, 2) are calculated by
formula (5.3) as follows:

(0,0)

I 1 −H
(0,0)

I 2 = h

∞∑

p=1

(εR)2p−1

2p+ 1

p−1∑

q=0

C
2q
2p−1H

2p−2q−1Eq,

(0,0)

I 2 = h2
∞∑

p=1

(εR)2p−2

2p+ 1

p−1∑

q=0

C
2q+1
2p−1H

2p−2q−2Eq,

(0,1)

I 1 −H
(0,1)

I 2 =
1

3
(
(1,0)

I 1 −H
(1,0)

I 2) = h

∞∑

p=0

(εR)2p

2p+ 3

p∑

q=0

C
2q
2pH

2p−2qEq,

(0,1)

I 2 =
1

3
H

(1,0)

I 2 = h2
∞∑

p=0

(εR)2p−1

2p+ 3

p−1∑

q=0

C
2q
2pH

2p−2q−1Eq,

(1,1)

I 1 −H
(1,1)

I 2 = 3h

∞∑

p=1

(εR)2p−1

2p+ 3

p−1∑

q=0

C
2q
2pH

2p−2q−1Eq,

(1,1)

I 2 = 3h2
∞∑

p=1

(εR)2p−2

2p+ 3

p−1∑

q=0

C
2q+1
2p+1H

2p−2q−2Eq.

Represent now the vectors u and v by means of the series with respect
to the small parameter ε in the form [4]

(u, v) =

∞∑

n=0

(
(n)
u ,

(n)
v

)
εn.

Introducing these expansions in (8.3) and (8.4) and substituting them
into (8.1) and (8.2), we obtain the system of equations of equilibrium in
terms of the components of the displacement vector, which for any n has
the form





4µh2 ∂

∂z̄



 1

Λ

∂
(n)
u+

∂z



+ 2(λ+ µ)h2 ∂
(n)

Θ

∂z̄
+ 2λh

∂
(n)
v+

∂z̄
=

(n)

L+,

µh2∇2 (n)
v3 − 3

[
λh

(n)

Θ +(λ+ 2µ)
(n)
v 3

]
=

(n)

M3,

(8.5)






4µh2 ∂

∂z̄



 1

Λ

∂
(n)
v+

∂z



+ 2(λ+ µ)h2 ∂
(n)
ρ

∂z̄
−

−3µ

(
2h∂

(n)
u3

∂z̄
+

(n)
v +

)
=

(n)

M+,

µh

(
∇2 (n)

u3 +
(n)
ρ

)
=

(n)

L3,

(
∇2 =

4

Λ

∂2

∂z∂z̄

)
,

(8.6)
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where the values
(n)

Li and
(n)

Mi (i = 1, 2, 3) are expressed by means of solutions
of the previous approximations, and hence are assumed to be known.

It should be noted that the left-hand side of the system (8.5) and (8.6)
is analogous to I.N. Vekua’s system of equations which he obtained for
prismatic shells of constant thickness for the case N = 1, i.e. for the shells,
whose midsurface is a plane. In our case the midsurface of shell is any
smooth surface which first quadratic form is representable as

ds2 = Λ(x1, x2)
[
(dx1)2 + (dx2)2

]
, Λ > 0.

The complex representation of a general solution of that system can be
written as follows:

(n)
u+ = − λh

6(λ+ 2µ)

∂ω

∂z̄
− 5λ+ 6µ

3λ+ 2µ

1

π

∫

D

∫
Λ(ζ, ζ)ϕ

′

(ζ)dξdη

ζ̄ − z̄
+

+



 1

π

∫

D

∫
Λ(ζ, ζ)dξdη

ζ̄ − z̄



ϕ
′(ζ) − ψ(z),

(n)
v3 = ω − 2λh

3λ+ 2µ
[ϕ

′

(z) + ϕ
′(z)], (8.7)

(n)
v+ = i

∂χ

∂z̄
− 2hΨ′(z) − 1

π

∫

D

∫
Λ(ζ, ζ)Φ

′

(ζ)dξdη

ζ̄ − z̄
−

−



 1

π

∫

D

∫
Λ(ζ, ζ)dξdη

ζ̄ − z̄



Φ′(z) +
2(λ+ 2µ)h2Ψ′′(z)

3µ
, (8.8)

(n)
v3 = Ψ(z) + Ψ(z) − 1

πh

∫

D

∫
Λ(ζ, ζ)[Φ

′

(ζ) + Φ′(ζ)]ln|ζ − z|dξdη,

where ϕ(z), ψ, Φ(z), Ψ(z) are analytic functions of z = x1 + ix2, and ω and
χ are the solutions of the following analytic equations:

∇2ω − 3(λ+ µ)

λ+ 2µ)h2
ω = 0,

∇2χ− 3

h2
χ = 0.
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