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ON THE ABSOLUTE CONVERGENCE OF SERIES OF

FOURIER-HAAR COEFFICIENTS

R. MESKHIA

Abstract. In the present work the absolute convergence of the series
of Fourier-Haar coefficients is considered in terms of the modulus of
δ-variation of a function, and the sufficient conditions for the abso-
lute convergence are established. We prove that these conditions are
unimprovable in a certain sense.

îâäæñéâ. ê�öîëéöæ öâïû�ãèæèæ� òñîæâ-ÿ��îæï çëâòæùæâêðâ�æ-

ï�à�ê öâáàâêæèæ éûçîæãæï ��ïëèñðñîæ çîâ��áë�æï ï�çé�îæïæ ìæ-

îë�â�æ òñêóùææï δ ùãèæèâ�æï éëáñèæï ðâîéæêâ�öæ. á�áàâêæèæ�,

îëé ��ïëèñðñîæ çîâ��áë�æï�åãæï éæ�â�ñèæ ï�çé�îæïæ ìæîë�â�æ

à�ññéþë�âïâ��áæ� à�îçãâñèæ �äîæå.

Let the Haar system be give as follows: χ1(t) ≡ 1 if n > 1, then

χn(t) =



















√
2p, t ∈

[2k − 2

2p+1
,
2k − 1

2p+1

)

,

−
√

2p, t ∈
[2k − 1

2p+1
,

2k

2p+1

)

,

0, at the remaining points of the segment [0, 1],

where n = 2p + k, p = 0, 1, . . . , k = 1, 2, . . . , 2p.
We denote the Fourier-Haar coefficients of the function f ∈ L(0, 1) by

an(f), i.e.,

an(f) =

1
∫

0

f(t)χ
n
(t) dt.

The present work is devoted to the investigation of convergence of the
series

∞
∑

n=1

∣

∣an(f)
∣

∣

γ
. (1)
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The problems of convergence of the series (1) for various classes of func-
tions have been studied in the works due to V. Orlicz [11], Z. Ciesielski and
J. Musielak [10], P. Ul’yanov [7], V. Golubov [5] and Z. Chanturia [2].

First of all, we cite some notations and definitions.
M(0, 1) is a class of bounded functions on the interval [0, 1].
The modulus of variation of the function f ∈ M(0, 1) is denoted by

v(n, f), a definition of that function has been introduced by Z. Chanturia
([2], p. 26).

Definition 1. υ(0, f) = 0, and for natural n ≥ 1

υ(n, f) = sup
Πn

{ n−1
∑

k=0

∣

∣f(x2k+1) − f(x2k)
∣

∣

}

,

where Πn is an arbitrary division of the interval [0, 1] by n nonintersecting
intervals (t2k, t2k+1), k = 0, 1, . . . , n − 1.

Let υ(n) be a nondecreasing convex function for n ≥ 0 and υ(0) = 0.
V [υ(n)] is a class of those functions f for which

υ(n, f) = O(υ(n)) as n → ∞.

Definition 2. Let f ∈ M(0, 1),

ϕ(n; δ; f) = sup
Πn,δ

n
∑

k=1

ω(f ; Ik),

where Πn,δ is a system consisting of n nonintersecting intervals {Ik} of the
segment [0, 1]. The length of each of the segment is equal to δ, and ω(f ; Ik)
is oscillation of the function f on Ik. ϕ(n; δ; f) is called the modulus of
δ-variation of the function f .

Definition 3. Let ϕ(k; δ) be an arbitrary function of integer k and of
nonnegative δ > 0, satisfying the following conditions:

ϕ(k; 0) = ϕ(0; δ) = 0, k = 0, 1, . . . , δ > 0,

ϕ(k; δ) is continuous and nondecreasing with respect to δ, convex and non-
decreasing with respect to k,

ϕ(k; δ) ≤ Cϕ

(

[

k
δ

η

]

; η

)

, δ ≥ η > 0,

where C is some constant. The function ϕ(k; δ) is called the modulus of
δ-variation.

Definition of ϕ(n; δ; f) and ϕ(k; δ) of functions has been introduced by
T. Karchava ([3], p. 335).
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By M(ϕ) we denote the class of those functions f for which the relation

ϕ(k; δ; f) ≤ C0 ϕ(k; δ),

is fulfilled; here ϕ(k; δ) is the modulus of δ-variation and C0 is some constant.
In the sequel, we will need the following lemmas.

Lemma 1 (I. Wik [8], p. 75). Let bn ≥ 0,
∞
∑

n=1
bn = ∞ and bn ≤ Cnλ,

λ ≥ −1. Then for every 0 < α < 1 and β > 1 there exists the sequence of

natural numbers qν , such that

αqν+1−qν ≤ bqν

bqν+1

≤ βqν+1−qν

and
∞
∑

ν=1

bqν
= +∞.

Lemma 2 (V. Golubov [5], p. 1280). If cn ≥ 0,
∞
∑

n=1
cn < +∞ and

f(t) =

∞
∑

k=1

ck cos 2k+1πt,

then for the Fourier-Haar coefficients of the function f the relation

2p+1
∑

n=2p+1

|an(f)| ≥ 1

π
2

p
2 cp

is valid.

Let us prove the following

Theorem 1. If the modulus of variation of the function f - ϕ(n; δ; f)
satisfies the condition

∞
∑

n=1

n− 3
2γ

( 2n
∑

k=n+1

ϕ
(

k; 1
2n

; f
)

k

)γ

< +∞ (2)

for 0 < γ < 2, then the series (1) is convergent.

Proof. Let 2p + 1 ≤ n < 2p+1.
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It is clear that

an(f) = 2
p
2

2k−1

2p+1
∫

2k−2

2p+1

[

f(t) − f
(

t +
1

2p+1

)

]

dt =

= 2
p
2

1

2p+1
∫

0

[

f
(

t +
2k − 2

2p+1

)

− f
(

t +
2k − 1

2p+1

)

]

dt.

The summation yields

an(f) = 2
p
2

1

2p+1
∫

0

2p+1
∑

k=2p+1

[

f
(

t +
2k − 2

2p+1

)

− f
(

t +
2k − 1

2p+1

)

]

dt. (3)

Using the following T. Karchava’s inequality ([3], p. 335)

2p+1
∑

k=2p+1

∣

∣

∣

∣

f
(

t +
2k − 2

2p+1

)

− f
(

t +
2k − 1

2p+1

)

∣

∣

∣

∣

≤
2p+1
∑

k=2p+1

ϕ
(

k; 1
2p+1 ; f

)

k
,

from the relation (3) we obtain

|an(f)| ≤ 1

2 · 2 3
2p

2p+1
∑

k=2p+1

ϕ
(

k; 1
2p+1 ; f

)

k
.

The latter inequality results in

∞
∑

n=2

|an(f)|γ =

∞
∑

p=0

2p+1
∑

n=2p+1

|an(f)|γ ≤

≤ 2−γ

∞
∑

p=0

2−
3
2 γp

( 2p+1
∑

n=2p+1

ϕ
(

k; 1
2p+1 ; f

)

k

)γ

· 2p, (4)

for γ > 0.
Introduce the notation

Un =

2n
∑

k=n+1

ϕ
(

k; 1
2n

; f
)

k
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and show that the sequence Un

n
is nonincreasing. Indeed, since ϕ(n;δ;f)

n

decreases with respect to n, we obtain

Un+1 =

2n+2
∑

k=n+2

ϕ
(

k; 1
2n+2 ; f

)

k
≤ Un +

ϕ
(

2n + 1; 1
2n+1 ; f

)

2n + 1
≤

≤ Un +
ϕ
(

2n; 1
2n

; f
)

2n
. (5)

Notice that
ϕ
(

2n; 1
2n

; f
)

2n
≤ Un

n
. (6)

Taking into account (6), from inequality (5) it follows that Un

n
is nonin-

creasing. Therefore we can use the Cauchy theorem on the number series
([9], p. 21), and taking into account inequality (4), from the condition (2)
we can conclude that

∞
∑

n=1

∣

∣an(f)
∣

∣

γ
< +∞.

It can be easily verified that from Theorem 1 we obtain Z. Chanturia’s
theorem ([2], p. 27).

If f ∈ M(0, 1) and

∞
∑

n=1

n− 3
2γ υγ(n; f) < +∞, (7)

where 0 < γ < 2, then the series (1) converges.
Let us now construct an example of a function f0 for which the series (7)

diverges and the series (2) converges.

We take the numbers Ck = 1
ln ln k

, nk = 22k

and the intervals

Ek =
[ 1

nk

− 1

4nk

,
1

nk

+
1

4nk

]

,
1

nk+1
+

1

4nk+1
<

1

nk

− 1

4nk

.

Find a sequence of the function

fk(x) =































Ck x =
1

nk

,

0, x =
1

nk

± 1

4nk

,

linearly on Ek,

0, in the remaining x from [0, 1]

and assume

f0(x) =

∞
∑

k=1

fk(x).
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Suppose nk−1 ≤ n < nk. It is not difficult to find that

ϕ
(

i;
1

2n
; f0

)

≤ 2iCk−2 nk−2

n
+ 2Ck−1 (8)

while

υ(n; f0) ≥
n

∑

k=1

Ck > n Cn. (9)

Using inequalities (8) and (9), we can show that if γ > 0, then

∞
∑

n=4

n− 3
2γ

( 2n
∑

i=n+1

ϕ
(

i; 1
2n

; f0

)

i

)γ

< +∞ (10)

and the series
∞
∑

n=1

2−
3
2 γυγ(n; f0) = +∞ (0 < γ ≤ 2).

By Theorem 1, from (10) it follows that
∞
∑

n=1

∣

∣an(f0)
∣

∣

γ
< +∞. �

Let us show that Theorem 1 is unimprovable in a certain sense. In
particular, the following theorem is valid.

Theorem 2. Let the modulus of δ-variation ϕ(k; δ) satisfy the condition

∞
∑

n=1

n− 3
2γ

( 2n
∑

i=n+1

ϕ
(

i; 1
2n

)

i

)γ

= +∞ (11)

when 2
3 ≤ γ < 2, and if 2

3 < γ < 1, then ϕ(k; δ) has additionally the

following property: for an arbitrary number b we can find 0 < d < 1 and a

natural number k0, such that if k > k0, then the inequality

ϕ(k; δ) ≥ b ϕ(dk; δ),

holds.

Then in the class M(ϕ) there exists the function f0 for which

∞
∑

n=1

∣

∣an(f0)
∣

∣

γ
= +∞.

Proof. Without losing generality, we can assume that

ϕ
(

n;
1

n

)

≤ n
3
2−

1
γ (12)

since, otherwise, instead of ϕ we would consider

ϕ1

(

n;
1

n

)

= min

(

ϕ
(

n;
1

n

)

; n
3
2−

1
γ

)

.
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Introduce the notation

Bn =
1

n

2n
∑

i=n+1

ϕ
(

i; 1
2n

)

i
.

Notice that the sequence Bn is nonincreasing and, moreover,

Bn ≤ ϕ
(

n; 1
2n

)

n
. (13)

Consequently, taking into account the condition (11), we obtain
∞
∑

n=1

n− 1
2γBγ

n = +∞. (14)

The sequence Bγ
n n− 1

2γ for γ > 0 is nonincreasing. Using the Cauchy theo-
rem, we can conclude that

∞
∑

n=1

2n
(

1− γ
2

)

B
γ
2n = +∞. (15)

Having fulfilled the conditions (12) and (13), we obtain

2n
(

1− γ
2

)

B
γ
2n ≤ 2n

(

1−γ
2

)

ϕγ
(

2n; 1
2n

)

2nγ
≤ 1. (16)

Using Lemma 1, from the conditions (15) and (16) we find that for any

numbers α and β
(

2
γ
2 −1 < α < 1, 1 < β < 2

3
2γ−1

)

there exists the sequence
qν , such that

∞
∑

ν=1

B
γ
2qν 2qν

(

1−γ
2

)

= ∞ (17)

and

αqν+1−qν ≤ B
γ
2qν 2qν(1− γ

2 )

B2qν+1 2qν+1

(

1− γ
2

) ≤ βqν+1−qν ,

or, what is the same thing,
(

2
1
γ
− 1

2 α
1
γ

)qν+1−qν

≤ B2qν

B2qν+1

≤
(

2
1
γ
− 1

2 β
1
γ

)qν+1−qν

. (18)

Note that θ = 2
1
γ
− 1

2 α
1
γ > 1, 1 < µ = 2

1
γ
− 1

2 β
1
γ < 2, therefore from (18)

we can get

∞
∑

1

B2qν < +∞ and

ν(n)
∑

ν=1

B2qν 2qν ≤ CB2qν (n)2qν(n),

where C is some constant.
Suppose

f0(t) =

∞
∑

ν=1

πB2qν cos 2qν+1πt.
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Let En(f0) denote the best approximation of the function f0 by the n-
power trigonometric polynomials. From the condition (18) we can conclude
that if 2qν−1 ≤ n < 2qν , then the relation

En(f0) ≤ π

∞
∑

j=ν

B2qj ≤ CB2qν (19)

holds.
Assume ν(n) = max{ν; 2qν ≤ n}, q0 = 0. Let ω(δ; f) denote the modulus

of continuity of the function f . Using Stechkin’s inequality ([6], p. 234)

ω
( 1

n
; f

)

≤ C

n

n
∑

k=0

Ek(f).

we obtain

ω
( 1

n
; f0

)

≤ C

n

n
∑

k=1

Ek(f0)=
C

n

{ ν(n)
∑

ν=1

2qν
∑

2qν−1+1

Ek(f0)+

n
∑

k=2ν(n)+1

Ek(f0)

}

≤

≤ C

n

{ ν(n)
∑

ν=1

B2qν · 2qν + B2qν (n)n

}

≤ CB2qν (n) ≤

≤ C
ϕ
(

2qν(n) ; 1
2

qν(n)+1

)

2qν(n)
≤ C

ϕ
(

n; 1
n

)

n
. (20)

It is not difficult to verify that

ϕ(k; δ; f) ≤ k ω(δ; f).

Consequently, from (20) it follows that

ϕ
(

k;
1

n
; f0

)

≤ k ω
( 1

n
; f0

)

≤ k C
ϕ
(

n; 1
n

)

n
≤

≤ k C
ϕ
(

k; 1
n

)

k
= C ϕ

(

k;
1

n

)

(k ≤ n). (21)

Let δ > 0 and 1
n+1 ≤ δ < 1

n
, then taking into account the fact that the

function ϕ(k; δ; f) nondecreasing with respect to δ, with regard for inequal-
ity (21), we have

ϕ(k; δ; f0)≤ϕ
(

k;
1

n
; f0

)

≤ϕ
(

k;
2

n + 1
; f0

)

≤2ϕ
(

k;
1

n + 1
; f0

)

≤C1 ϕ(k; δ),

that is, f0 ∈ M(ϕ).
Using Hölder’s inequality ([10], p. 26), we obtain

( 2p+1
∑

n=2p+1

|an|γ
)

1
γ

≥ 2p
(

1
γ
−1

) 2p+1
∑

n=2p+1

|an|,
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for 1 ≤ γ < 2, or, what is the same thing,

2p+1
∑

n=2p+1

|an|γ ≥ 2p(1−γ)

( 2p+1
∑

n=2p+1

|an|
)γ

. (22)

Using now Lemma 2, inequality (20) yields

2qν+1
∑

n=2qν +1

∣

∣an(f0)
∣

∣

γ ≥ 2qν(1−γ)

( 2qν+1
∑

n=2q+1

∣

∣an(f0)
∣

∣

)γ

≥

≥ 2qν(1−γ)

(

2
qν
2 B2qν

)γ

= B
γ
2qν 2qν

(

1− γ
2

)

.

Taking into account (17), the last inequality results in

∞
∑

n=1

∣

∣an(f0)
∣

∣

γ
= +∞,

for 1 ≤ γ < 2.
Consider the case 2

3 < γ < 1. Note that the condition (11) implies

∞
∑

n=1

n− 3
2γ ϕγ

(

n;
1

n

)

= +∞,

and therefore ϕ
(

n; 1
n

)

6= O(1).
Let E′

ν be the set of those numbers k, 1 ≤ k ≤ 2qν for which the inequality
∣

∣

∣
a2qν +k(f0)

∣

∣

∣
≥ 1

2
2−

qν
2 B2qν

is fulfilled, and let E′
ν be the set of the rest integers from the interval

[2qν + 1, 2qν+1].
On the basis of Lemma 2, we have

2
qν
2 B2qν ≤

2qν+1
∑

n=2qν +1

∣

∣an(f0)
∣

∣ =
∑

k∈E′

ν

∣

∣a2qν +k(f0)
∣

∣ +
∑

k∈E′′
ν

∣

∣a2qν +k(f0)
∣

∣ ≤

≤ 1

2
√

2qν

ϕ

(

|E′
ν |;

1

2qν+1
; f0

)

+
2

qν
2

2
B2qν . (23)

Here we have used the fact that for the Fourier-Haar coefficients the esti-
mate

∑

k∈σ

∣

∣an(f)
∣

∣ ≤ 1

2
√

2qν

ϕ

(

|σ|; 1

2qν+1
; f

)

is valid when 2qν + 1 ≤ n < 2qν+1, and σ is the subset of the set
{2qν + 1, . . . , 2qν+1}; |σ| denotes a number of elements σ. Inequality (23)
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implies that

ϕ

(

|E′
ν |;

1

2qν+1
; f0

)

≥ 2qν B2qν . (24)

It is clear from the expression Bn that

n Bn =

2n
∑

k=n+1

ϕ
(

k; 1
2n

)

k
≥ ϕ

(

2n; 1
2n

)

2n
n.

Thus we obtain

2qν B2qν ≥ 1

2
ϕ

(

2qν+1;
1

2qν+1

)

. (25)

Since f0 ∈ M(ϕ), there exists the number C0, such that for any natural
n and δ > 0 the inequality

ϕ
(

n; δ; f0

)

≤ C0 ϕ(n; δ) (26)

holds.
From the relations (24), (25) and (26) we obtain

ϕ

(

|E′
ν |;

1

2qν+1

)

≥ 1

C0
ϕ

(

|E′
ν |;

1

2qν+1
; f0

)

≥ 1

C0
2qν B2qν ≥

≥ 1

2C0
ϕ

(

2qν+1;
1

2qν+1

)

. (27)

It follows from the condition of the theorem that for any number 2C0

there exist the natural number n0 and 0 < d < 1, such that

ϕ(n; δ) ≥ 2C0 ϕ
(

[dn]; δ
)

, n > n0.

Using the last relation, inequality (27) results in

ϕ

(

|E′
ν |;

1

2qν+1

)

≥ ϕ

(

[

d 2qν+1
]

;
1

2qν+1

)

for ν > ν1.

Thus we can conclude that

|E′
ν | ≥

[

d 2qν+1
]

that is,

|E′
ν | ≥ d · 2qν+1 − 1 > d 2qν , ν > ν1. (28)

Let us now estimate the sum

2qν +1
∑

n=2qν +1

∣

∣an(f0)
∣

∣

γ ≥
∑

k∈E′

ν

∣

∣an(f0)
∣

∣

γ ≥ 2−γ 2−
qν γ
2 B

γ
2qν |E′

ν | ≥

≥ C 2qν

(

1− γ
2

)

B
γ
2qν (ν > ν1).

Here we have used the definition of the set E′
ν and inequality (28).
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If we take into account the condition (15), then we will get

∞
∑

n=1

∣

∣an(f0)
∣

∣

γ ≥
∑

ν≥ν1

2qν+1
∑

n=2qν +1

∣

∣an(f0)
∣

∣

γ ≥
∑

ν≥ν1

C 2qν

(

1− γ
2

)

B
γ
2qν = +∞.

It remains to consider the case γ = 2
3 . As P. L. Ul’ianov ([7], p. 373) has

shown, the function f(t) = 1 − 2t ∈ V , and for this function
∞
∑

n=1

∣

∣an(f)
∣

∣

2
3 = +∞.

But f(t) ∈ M(ϕ) for any modulus of δ-variation. Thus the theorem is
complete. �
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