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ON THE ABSOLUTE CONVERGENCE OF SERIES OF
FOURIER-HAAR COEFFICIENTS

R. MESKHIA

ABSTRACT. In the present work the absolute convergence of the series
of Fourier-Haar coefficients is considered in terms of the modulus of
d-variation of a function, and the sufficient conditions for the abso-
lute convergence are established. We prove that these conditions are
unimprovable in a certain sense.
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Let the Haar system be give as follows: x, (t) =1 if n > 1, then

\/2—1;, ‘e {2k—2 2]<:—1)7

2p+1 7 9ptl
W) =4 = 2k -1 2k
! V¥, te [ op+1 ’2p+1>’
0, at the remaining points of the segment [0, 1],

wheren =27 + k., p=0,1,..., k=1,2,...,2P.
We denote the Fourier-Haar coefficients of the function f € L(0,1) by
an(f), i-e.,

an(f) = [ f(t)x, (t)dt.
/

The present work is devoted to the investigation of convergence of the

series
o0

> lan(]™ (1)

n=1
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The problems of convergence of the series (1) for various classes of func-
tions have been studied in the works due to V. Orlicz [11], Z. Ciesielski and
J. Musielak [10], P. Ul'’yanov [7], V. Golubov [5] and Z. Chanturia [2].

First of all, we cite some notations and definitions.

M(0,1) is a class of bounded functions on the interval [0, 1].

The modulus of variation of the function f € M(0,1) is denoted by
v(n, f), a definition of that function has been introduced by Z. Chanturia

(12], p- 26).

Definition 1. v(0, f) = 0, and for natural n > 1

v(n, f) = Sélp{ Z | f(wors1) — f($2k)|}7
k=0

n

where I, is an arbitrary division of the interval [0, 1] by n nonintersecting
intervals (tog, tor+1), K =0,1,...,n — 1.

Let v(n) be a nondecreasing convex function for n > 0 and v(0) = 0.
V]v(n)] is a class of those functions f for which

v(n, f) = O(v(n)) as n — oo.

Definition 2. Let f € M(0,1),

p(n;8; f) = sup > w(f; Ir),

e

where II,, 5 is a system consisting of n nonintersecting intervals {Ix} of the
segment [0, 1]. The length of each of the segment is equal to ¢, and w(f; Ix)
is oscillation of the function f on Iy. ¢(n;d; f) is called the modulus of
d-variation of the function f.

Definition 3. Let ¢(k;d) be an arbitrary function of integer k and of
nonnegative & > 0, satisfying the following conditions:

o(k;0) = p(0;0) =0, k=0,1,..., §>0,

©(k; d) is continuous and nondecreasing with respect to d, convex and non-
decreasing with respect to k,

o(k; 6) §C¢<[k%];n>, d>n>0,

where C' is some constant. The function @(k;d) is called the modulus of
d-variation.

Definition of ¢(n;d; f) and @(k;d) of functions has been introduced by
T. Karchava ([3], p. 335).
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By M () we denote the class of those functions f for which the relation

(k05 f) < Co p(k; 6),
is fulfilled; here (k; §) is the modulus of §-variation and Cj is some constant.
In the sequel, we will need the following lemmas.
Lemma 1 (I. Wik [8], p. 75). Let b, >0, > b, = 0o and b, < Cn?,

n=1
A > —1. Then for every 0 < a < 1 and B > 1 there exists the sequence of
natural numbers q,, such that

by,

qu+1

aQV+1_QV S S ﬁqV+1—qV

and
Z by, = +oo.
v=1

o0
Lemma 2 (V. Golubov [5], p. 1280). Ifc, >0, > ¢, < +00 and

n=1
oo
fi) = Z c cos 28t
k=1

then for the Fourier-Haar coefficients of the function f the relation

op+1

> Jan(f) 2 22k

n=2rP+41
is valid.
Let us prove the following

Theorem 1. If the modulus of variation of the function f - o(n;d; f)
satisfies the condition

00 2n L1 Y

k7 o)

St 3 A o @
n=1 k=n-+1

for 0 < < 2, then the series (1) is convergent.

Proof. Let 2P +1 < n < 2PT1,
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It is clear that

an(f) = 25 / F(t) - f(t+ %)]dt -

_ 9% / f(t+ %) —f(t+ %)}dt.
0

The summation yields

1
2p+1 op+1

{f(H %) —r(t+ %)]dt. (3)

Using the following T. Karchava’s inequality ([3], p. 335)

k=2r+1

gp+1 gp+1

2k — 2 2k — 1 o(k; 53 f)
> f<t+—2p+1)f<t+—2p+1)‘§ y, TR
k=2p+1 k=2r41
from the relation (3) we obtain
op+1 1
1 o(k; 5013 f)
() € oo D
2-23F k=2r+1 k
The latter inequality results in
0o co  2rtl
DolaaH =30 D lan(HI <
n=2 p=0n=2P+1
oo 2rt? N 2!
ooy ot 3 Almmlya
p=0 n=2P+41
for v > 0.

Introduce the notation
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and show that the sequence [{I is nonincreasing. Indeed, since ‘P(”;f;f )

decreases with respect to n, we obtain

2 ok 5 ) o(2n+1; 555 f)

U= 3 = st T S
k=n-+2
©(2n; 55 f)
S Up =2 ()
Notice that
©(2n; 35 f) _Un ©)
2n -

n

Taking into account (6), from inequality (5) it follows that % is nonin-

creasing. Therefore we can use the Cauchy theorem on the number series

([9], p- 21), and taking into account inequality (4), from the condition (2)
we can conclude that

> an(H)]" < +o0.
n=1

It can be easily verified that from Theorem 1 we obtain Z. Chanturia’s
theorem ([2], p. 27).
If feM(0,1) and

in‘g"yvv(n;f) < +00, (7)
n=1

where 0 < 7y < 2, then the series (1) converges.

Let us now construct an example of a function fo for which the series (7)
diverges and the series (2) converges.

We take the numbers Cy = m, ng = 92° and the intervals

B — [ 1 1 1 n 1 1 n 1 1 1
k= ng 4nk ’ N 4nk ’ Nk+1 4nk+1 ng 4nk '
Find a sequence of the function
1
Ck r=—,
ng
1 1
felw)=q O =T E

linearly on FEj,
0, in the remaining =z from [0,1]

and assume

fo(z) = Z fr(@).
k=1
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Suppose ni_1 < n < ng. It is not difficult to find that

1 2iCr—2 Np—2
L. < vz
90<Za 2’[1’ fO) = n + 20’{771 (8)
while .
v(n; fo) > ZC’k >nCy. 9)
k=1

Using inequalities (8) and (9), we can show that if v > 0, then

in_%’y( i 7¢(¢;%;f0))7<+o® (10)

i=n+1

and the series
o0
3
D 2720 (n; fo) = 400 (0<7y<2).
n=1
By Theorem 1, from (10) it follows that

> Jan(fo)]” < +oo. O
n=1

Let us show that Theorem 1 is unimprovable in a certain sense. In
particular, the following theorem is valid.

Theorem 2. Let the modulus of d-variation o(k;0) satisfy the condition

) ) 2n -1 Y
any< 3 M) = +oo (11)
n=1 i=n+1

when % < v <2 and if% < v < 1, then @(k;0) has additionally the

following property: for an arbitrary number b we can find 0 < d <1 and a
natural number kg, such that if k > kg, then the inequality

©(k;6) > bp(dk;6),

holds.
Then in the class M (p) there exists the function fo for which

Z |an(f0)‘V = +00.
n=1

Proof. Without losing generality, we can assume that

1 3_1
p(ni—) <ni™s (12)

since, otherwise, instead of ¢ we would consider

1 . < 1 3.1
301<n;—):m1n cp(n;—);n2 v
n n
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Introduce the notation

i=n+1
Notice that the sequence B,, is nonincreasing and, moreover
1
n; 5=
B, < p(nias) . (13)
n

Consequently, taking into account the condition (11), we obtain

> 7B = too. (14)
n=1

The sequence B) n~27 for v > 0 is nonincreasing. Using the Cauchy theo-
rem, we can conclude that

ZQn 17% 27L—+OO

(15)
Having fulfilled the Condltlons (12) and (13), we obtain

2 (-3) g, < 0(1-3) £ 2w

<L (16)
Using Lemma 1, from the conditions (15) and (16) we find that for any
J_

numbers a and 6(22 l<a<l, 1<8< 2%7*1) there exists the sequence
qv, such that
Z B, 20(173) = o (17)
and N 1D
Qv+~ < BQ"V 29 2

- Boq, 41 2qv+1 (1_%)

S ﬁqu+1_ql/,
or, what is the same thing,

qu+1—qv Boa,
(2;—% %) < 22 g(ﬁ‘l

quv+1—qu 18
2 ¥ .
BQq;ﬂrl ) ( )
Note that 6 = 277 2a7 > Ll<pu= 2%_%6% < 2, therefore from (18)
we can get
v(n)
ZBQW <4oo and Y By 2% < OBy 2™,
v=1

where C' is some constant.
Suppose

= Z 7 Baa, cos 2% Tt

v=1
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Let E,(fo) denote the best approximation of the function fy by the n-
power trigonometric polynomials. From the condition (18) we can conclude
that if 29»~1 < n < 29, then the relation

En(fo) <7 Bysy < CBaa (19)

j=v

holds.
Assume v(n) = max{v; 2% < n}, go = 0. Let w(; f) denote the modulus
of continuity of the function f. Using Stechkin’s inequality ([6], p. 234)

ET S AT
k=0

we obtain
1 & ol AL "
w(ﬁ§f0>§gZEk(fo)=E{ > Eufo)+ . Ek(fo)}S
k=1 v=12aw-141 k=2v(n) 41
C v(n)
< —{ Z Baa, - 2% + ngum)n} < CByum <
n v=1
P20 prber) el 3)
<C ST <C——= (20)
It is not difficult to verify that
p(k;0; f) < kw(3; f).
Consequently, from (20) it follows that
1 1 %) n;%
@(k;—;fo) < k:w(—;fo) <kC (i) <
n n n
go(k; l) 1
<k n/ _ - <n).
< kO c@(k,n) (k < n) (21)

Let § > 0 and %-H <d< %, then taking into account the fact that the
function ¢(k; d; f) nondecreasing with respect to §, with regard for inequal-
ity (21), we have

1 2 1
k; 65 fo) < (k;—; )< (k;—; )<2 (k;—; )<C ks ),
plks 0 fo) <o\ ks i fo ) Selks =3 fo ) <20(ks =75 fo ) < Crpl(ks )
that is, fo € M(yp).
Using Holder’s inequality ([10], p. 26), we obtain
op+1 op+1

( 3 |an|v)%22p(%—1) S Jaal,

n=2P+1 n=2P+1
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for 1 < < 2, or, what is the same thing,

op+1 op+1 y
Z lan|” > 2p(1—v)( Z |an|) ) (22)
n=2P+1 n=2P+1

Using now Lemma 2, inequality (20) yields

9qv+1 2qv+1 v
>l 220 (Y fualo)]) >
n=29v +1 n=29+1

v x
> 92y (1=7) <2q7”32qy> _ ngu 9y (175)'

Taking into account (17), the last inequality results in

> lan(fo)]” = +oc,
n=1

for1 <y <2.
Consider the case 2 < < 1. Note that the condition (11) implies

o0 1

_3
E n 2’Wp”’(w,;E):Jroo,
n=1

and therefore ¢(n; 1) # O(1).

Let E/, be the set of those numbers k, 1 < k < 2% for which the inequality

1 _a
‘aQun’»k(fO)‘ > 52 E Baa,

is fulfilled, and let E!, be the set of the rest integers from the interval
[29 4 1,2%+1],
On the basis of Lemma 2, we have

QqV+1
2% By < > an(f0)] = Y |azw k()| + D Jasw1k(fo)] <
n ke, wer,
1 1 2%
: 2\/2T(p(|El”|; W?fO) +— Baw. (23)

Here we have used the fact that for the Fourier-Haar coefficients the esti-
mate

1 1
5 lon(h)] < 5=k e )

keo

is valid when 2% +1 < n < 2%%! and o is the subset of the set
{2% +1,...,2%+1}; |o| denotes a number of elements o. Inequality (23)
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implies that

1
@(|Ei|ém;fo) > 2% By, . (24)

It is clear from the expression B,, that

2n o1 .1
an — Z (‘O(k’ Qn) Z (‘0(27% 2n) n.

k 2n

Thus we obtain

1 1
2qv ngu > 5 90< ql/+1; 2qu+1). (25)

Since fo € M(y), there exists the number Cy, such that for any natural
n and § > 0 the inequality

©(n;8; fo) < Cop(n;6) (26)

holds.
From the relations (24), (25) and (26) we obtain

1 1 1 1
80<|E1/,|;W) 2 FOSD<|EL|;W;J”O> 2 0_02% Baa, >

1 1
qv+1.
Z 200 ()0(2 ’ 2(1u+1 ) : (27)

It follows from the condition of the theorem that for any number 2C,
there exist the natural number ng and 0 < d < 1, such that

©(n; 6) > 2Co ¢([dn]; 6), n > ne.

Using the last relation, inequality (27) results in

1 1
. v+17.
80<|E/u|,2qu+1>290<[d2q ]’2qV+1> for v>uw.

Thus we can conclude that

|E1//| > [d2qu+1]

that is,
B[ >d- 29t —1>d2%, v>u. (28)
Let us now estimate the sum
24qv+1
S an(f)]” = D an(fo)|" = 27727 B, |E| >
n=21v 41 kEE!,

> ¢ (1-%) B, (v>u).

Here we have used the definition of the set E/, and inequality (28).
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If we take into account the condition (15), then we will get

oo gav+1
Slantio) "= 3 3 i) > 3 €2v3) By, = oo
n=1 v>v n=2%+1 v

It remains to consider the case v = 2. As P. L. Ul'ianov ([7], p. 373) has

shown, the function f(¢) =1 — 2t € V, and for this function

o0

Z }an(f)|§ = +o00.

n=1

But f(t) € M(p) for any modulus of §-variation. Thus the theorem is

complete. O

11.
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