Proceedings of A. Razmadze
Mathematical Institute
Vol. 141 (2006), 75-85

ON THE ABSOLUTE CONVERGENCE OF SERIES OF FOURIER-HAAR COEFFICIENTS

R. MESKHIA

Abstract

In the present work the absolute convergence of the series of Fourier-Haar coefficients is considered in terms of the modulus of δ-variation of a function, and the sufficient conditions for the absolute convergence are established. We prove that these conditions are unimprovable in a certain sense.

Let the Haar system be give as follows: $\chi_{1}(t) \equiv 1$ if $n>1$, then

$$
\chi_{n}(t)=\left\{\begin{array}{ll}
\sqrt{2^{p}}, & t \in\left[\frac{2 k-2}{2^{p+1}}, \frac{2 k-1}{2^{p+1}}\right) \\
-\sqrt{2^{p}}, & t \in\left[\frac{2 k-1}{2^{p+1}}, \frac{2 k}{2^{p+1}}\right) \\
0, & \text { at the remaining points of the segment }
\end{array}[0,1],\right.
$$

where $n=2^{p}+k, p=0,1, \ldots, k=1,2, \ldots, 2^{p}$.
We denote the Fourier-Haar coefficients of the function $f \in L(0,1)$ by $a_{n}(f)$, i.e.,

$$
a_{n}(f)=\int_{0}^{1} f(t) \chi_{n}(t) d t
$$

The present work is devoted to the investigation of convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n}(f)\right|^{\gamma} \tag{1}
\end{equation*}
$$

[^0]The problems of convergence of the series (1) for various classes of functions have been studied in the works due to V. Orlicz [11], Z. Ciesielski and J. Musielak [10], P. Ul'yanov [7], V. Golubov [5] and Z. Chanturia [2].

First of all, we cite some notations and definitions.
$M(0,1)$ is a class of bounded functions on the interval $[0,1]$.
The modulus of variation of the function $f \in M(0,1)$ is denoted by $v(n, f)$, a definition of that function has been introduced by Z. Chanturia ([2], p. 26).

Definition 1. $v(0, f)=0$, and for natural $n \geq 1$

$$
v(n, f)=\sup _{\Pi_{n}}\left\{\sum_{k=0}^{n-1}\left|f\left(x_{2 k+1}\right)-f\left(x_{2 k}\right)\right|\right\},
$$

where Π_{n} is an arbitrary division of the interval $[0,1]$ by n nonintersecting intervals $\left(t_{2 k}, t_{2 k+1}\right), k=0,1, \ldots, n-1$.

Let $v(n)$ be a nondecreasing convex function for $n \geq 0$ and $v(0)=0$. $V[v(n)]$ is a class of those functions f for which

$$
v(n, f)=O(v(n)) \quad \text { as } \quad n \rightarrow \infty
$$

Definition 2. Let $f \in M(0,1)$,

$$
\varphi(n ; \delta ; f)=\sup _{\Pi_{n, \delta}} \sum_{k=1}^{n} \omega\left(f ; I_{k}\right)
$$

where $\Pi_{n, \delta}$ is a system consisting of n nonintersecting intervals $\left\{I_{k}\right\}$ of the segment $[0,1]$. The length of each of the segment is equal to δ, and $\omega\left(f ; I_{k}\right)$ is oscillation of the function f on $I_{k} . \varphi(n ; \delta ; f)$ is called the modulus of δ-variation of the function f.

Definition 3. Let $\varphi(k ; \delta)$ be an arbitrary function of integer k and of nonnegative $\delta>0$, satisfying the following conditions:

$$
\varphi(k ; 0)=\varphi(0 ; \delta)=0, \quad k=0,1, \ldots, \quad \delta>0
$$

$\varphi(k ; \delta)$ is continuous and nondecreasing with respect to δ, convex and nondecreasing with respect to k,

$$
\varphi(k ; \delta) \leq C \varphi\left(\left[k \frac{\delta}{\eta}\right] ; \eta\right), \quad \delta \geq \eta>0
$$

where C is some constant. The function $\varphi(k ; \delta)$ is called the modulus of δ-variation.

Definition of $\varphi(n ; \delta ; f)$ and $\varphi(k ; \delta)$ of functions has been introduced by T. Karchava ([3], p. 335).

By $M(\varphi)$ we denote the class of those functions f for which the relation

$$
\varphi(k ; \delta ; f) \leq C_{0} \varphi(k ; \delta)
$$

is fulfilled; here $\varphi(k ; \delta)$ is the modulus of δ-variation and C_{0} is some constant. In the sequel, we will need the following lemmas.

Lemma 1 (I. Wik [8], p. 75). Let $b_{n} \geq 0, \sum_{n=1}^{\infty} b_{n}=\infty$ and $b_{n} \leq C n^{\lambda}$, $\lambda \geq-1$. Then for every $0<\alpha<1$ and $\beta>1$ there exists the sequence of natural numbers q_{ν}, such that

$$
\alpha^{q_{\nu+1}-q_{\nu}} \leq \frac{b_{q_{\nu}}}{b_{q_{\nu+1}}} \leq \beta^{q_{\nu+1}-q_{\nu}}
$$

and

$$
\sum_{\nu=1}^{\infty} b_{q_{\nu}}=+\infty
$$

Lemma 2 (V. Golubov [5], p. 1280). If $c_{n} \geq 0, \sum_{n=1}^{\infty} c_{n}<+\infty$ and

$$
f(t)=\sum_{k=1}^{\infty} c_{k} \cos 2^{k+1} \pi t
$$

then for the Fourier-Haar coefficients of the function f the relation

$$
\sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}(f)\right| \geq \frac{1}{\pi} 2^{\frac{p}{2}} c_{p}
$$

is valid.
Let us prove the following
Theorem 1. If the modulus of variation of the function $f-\varphi(n ; \delta ; f)$ satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\frac{3}{2} \gamma}\left(\sum_{k=n+1}^{2 n} \frac{\varphi\left(k ; \frac{1}{2 n} ; f\right)}{k}\right)^{\gamma}<+\infty \tag{2}
\end{equation*}
$$

for $0<\gamma<2$, then the series (1) is convergent.
Proof. Let $2^{p}+1 \leq n<2^{p+1}$.

It is clear that

$$
\begin{aligned}
a_{n}(f) & =2^{\frac{p}{2}} \int_{\frac{2 k-2}{2^{p-1}}}^{2^{p+1}}\left[f(t)-f\left(t+\frac{1}{2^{p+1}}\right)\right] d t= \\
& =2^{\frac{p}{2}} \int_{0}^{\frac{1}{2^{p+1}}}\left[f\left(t+\frac{2 k-2}{2^{p+1}}\right)-f\left(t+\frac{2 k-1}{2^{p+1}}\right)\right] d t .
\end{aligned}
$$

The summation yields

$$
\begin{equation*}
a_{n}(f)=2^{\frac{p}{2}} \int_{0}^{\frac{1}{2^{p+1}}} \sum_{k=2^{p}+1}^{2^{p+1}}\left[f\left(t+\frac{2 k-2}{2^{p+1}}\right)-f\left(t+\frac{2 k-1}{2^{p+1}}\right)\right] d t . \tag{3}
\end{equation*}
$$

Using the following T. Karchava's inequality ([3], p. 335)

$$
\sum_{k=2^{p}+1}^{2^{p+1}}\left|f\left(t+\frac{2 k-2}{2^{p+1}}\right)-f\left(t+\frac{2 k-1}{2^{p+1}}\right)\right| \leq \sum_{k=2^{p}+1}^{2^{p+1}} \frac{\varphi\left(k ; \frac{1}{2^{p+1}} ; f\right)}{k}
$$

from the relation (3) we obtain

$$
\left|a_{n}(f)\right| \leq \frac{1}{2 \cdot 2^{\frac{3}{2} p}} \sum_{k=2^{p}+1}^{2^{p+1}} \frac{\varphi\left(k ; \frac{1}{2^{p+1}} ; f\right)}{k}
$$

The latter inequality results in

$$
\begin{align*}
\sum_{n=2}^{\infty}\left|a_{n}(f)\right|^{\gamma} & =\sum_{p=0}^{\infty} \sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}(f)\right|^{\gamma} \leq \\
& \leq 2^{-\gamma} \sum_{p=0}^{\infty} 2^{-\frac{3}{2} \gamma p}\left(\sum_{n=2^{p}+1}^{2^{p+1}} \frac{\varphi\left(k ; \frac{1}{2^{p+1}} ; f\right)}{k}\right)^{\gamma} \cdot 2^{p} \tag{4}
\end{align*}
$$

for $\gamma>0$.
Introduce the notation

$$
U_{n}=\sum_{k=n+1}^{2 n} \frac{\varphi\left(k ; \frac{1}{2 n} ; f\right)}{k}
$$

and show that the sequence $\frac{U_{n}}{n}$ is nonincreasing. Indeed, since $\frac{\varphi(n ; \delta ; f)}{n}$ decreases with respect to n, we obtain

$$
\begin{align*}
U_{n+1} & =\sum_{k=n+2}^{2 n+2} \frac{\varphi\left(k ; \frac{1}{2 n+2} ; f\right)}{k} \leq U_{n}+\frac{\varphi\left(2 n+1 ; \frac{1}{2 n+1} ; f\right)}{2 n+1} \leq \\
& \leq U_{n}+\frac{\varphi\left(2 n ; \frac{1}{2 n} ; f\right)}{2 n} \tag{5}
\end{align*}
$$

Notice that

$$
\begin{equation*}
\frac{\varphi\left(2 n ; \frac{1}{2 n} ; f\right)}{2 n} \leq \frac{U_{n}}{n} \tag{6}
\end{equation*}
$$

Taking into account (6), from inequality (5) it follows that $\frac{U_{n}}{n}$ is nonincreasing. Therefore we can use the Cauchy theorem on the number series ([9], p. 21), and taking into account inequality (4), from the condition (2) we can conclude that

$$
\sum_{n=1}^{\infty}\left|a_{n}(f)\right|^{\gamma}<+\infty
$$

It can be easily verified that from Theorem 1 we obtain Z. Chanturia's theorem ([2], p. 27).

If $f \in M(0,1)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\frac{3}{2} \gamma} v^{\gamma}(n ; f)<+\infty \tag{7}
\end{equation*}
$$

where $0<\gamma<2$, then the series (1) converges.
Let us now construct an example of a function f_{0} for which the series (7) diverges and the series (2) converges.

We take the numbers $C_{k}=\frac{1}{\ln \ln k}, n_{k}=2^{2^{k}}$ and the intervals

$$
E_{k}=\left[\frac{1}{n_{k}}-\frac{1}{4 n_{k}}, \frac{1}{n_{k}}+\frac{1}{4 n_{k}}\right], \quad \frac{1}{n_{k+1}}+\frac{1}{4 n_{k+1}}<\frac{1}{n_{k}}-\frac{1}{4 n_{k}} .
$$

Find a sequence of the function

$$
f_{k}(x)=\left\{\begin{array}{l}
C_{k} \quad x=\frac{1}{n_{k}}, \\
0, \quad x=\frac{1}{n_{k}} \pm \frac{1}{4 n_{k}}, \\
\text { linearly on } E_{k}, \\
0, \quad \text { in the remaining } x \text { from }[0,1]
\end{array}\right.
$$

and assume

$$
f_{0}(x)=\sum_{k=1}^{\infty} f_{k}(x) .
$$

Suppose $n_{k-1} \leq n<n_{k}$. It is not difficult to find that

$$
\begin{equation*}
\varphi\left(i ; \frac{1}{2 n} ; f_{0}\right) \leq \frac{2 i C_{k-2} n_{k-2}}{n}+2 C_{k-1} \tag{8}
\end{equation*}
$$

while

$$
\begin{equation*}
v\left(n ; f_{0}\right) \geq \sum_{k=1}^{n} C_{k}>n C_{n} \tag{9}
\end{equation*}
$$

Using inequalities (8) and (9), we can show that if $\gamma>0$, then

$$
\begin{equation*}
\sum_{n=4}^{\infty} n^{-\frac{3}{2} \gamma}\left(\sum_{i=n+1}^{2 n} \frac{\varphi\left(i ; \frac{1}{2 n} ; f_{0}\right)}{i}\right)^{\gamma}<+\infty \tag{10}
\end{equation*}
$$

and the series

$$
\sum_{n=1}^{\infty} 2^{-\frac{3}{2} \gamma} v^{\gamma}\left(n ; f_{0}\right)=+\infty \quad(0<\gamma \leq 2)
$$

By Theorem 1, from (10) it follows that

$$
\sum_{n=1}^{\infty}\left|a_{n}\left(f_{0}\right)\right|^{\gamma}<+\infty
$$

Let us show that Theorem 1 is unimprovable in a certain sense. In particular, the following theorem is valid.

Theorem 2. Let the modulus of δ-variation $\varphi(k ; \delta)$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\frac{3}{2} \gamma}\left(\sum_{i=n+1}^{2 n} \frac{\varphi\left(i ; \frac{1}{2 n}\right)}{i}\right)^{\gamma}=+\infty \tag{11}
\end{equation*}
$$

when $\frac{2}{3} \leq \gamma<2$, and if $\frac{2}{3}<\gamma<1$, then $\varphi(k ; \delta)$ has additionally the following property: for an arbitrary number b we can find $0<d<1$ and a natural number k_{0}, such that if $k>k_{0}$, then the inequality

$$
\varphi(k ; \delta) \geq b \varphi(d k ; \delta)
$$

holds.
Then in the class $M(\varphi)$ there exists the function f_{0} for which

$$
\sum_{n=1}^{\infty}\left|a_{n}\left(f_{0}\right)\right|^{\gamma}=+\infty
$$

Proof. Without losing generality, we can assume that

$$
\begin{equation*}
\varphi\left(n ; \frac{1}{n}\right) \leq n^{\frac{3}{2}-\frac{1}{\gamma}} \tag{12}
\end{equation*}
$$

since, otherwise, instead of φ we would consider

$$
\varphi_{1}\left(n ; \frac{1}{n}\right)=\min \left(\varphi\left(n ; \frac{1}{n}\right) ; n^{\frac{3}{2}-\frac{1}{\gamma}}\right) .
$$

Introduce the notation

$$
B_{n}=\frac{1}{n} \sum_{i=n+1}^{2 n} \frac{\varphi\left(i ; \frac{1}{2 n}\right)}{i} .
$$

Notice that the sequence B_{n} is nonincreasing and, moreover,

$$
\begin{equation*}
B_{n} \leq \frac{\varphi\left(n ; \frac{1}{2 n}\right)}{n} \tag{13}
\end{equation*}
$$

Consequently, taking into account the condition (11), we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\frac{1}{2} \gamma} B_{n}^{\gamma}=+\infty \tag{14}
\end{equation*}
$$

The sequence $B_{n}^{\gamma} n^{-\frac{1}{2} \gamma}$ for $\gamma>0$ is nonincreasing. Using the Cauchy theorem, we can conclude that

$$
\begin{equation*}
\sum_{n=1}^{\infty} 2^{n\left(1-\frac{\gamma}{2}\right)} B_{2^{n}}^{\gamma}=+\infty \tag{15}
\end{equation*}
$$

Having fulfilled the conditions (12) and (13), we obtain

$$
\begin{equation*}
2^{n\left(1-\frac{\gamma}{2}\right)} B_{2^{n}}^{\gamma} \leq 2^{n\left(1-\frac{\gamma}{2}\right)} \frac{\varphi^{\gamma}\left(2^{n} ; \frac{1}{2^{n}}\right)}{2^{n \gamma}} \leq 1 \tag{16}
\end{equation*}
$$

Using Lemma 1, from the conditions (15) and (16) we find that for any numbers α and $\beta\left(2^{\frac{\gamma}{2}-1}<\alpha<1,1<\beta<2^{\frac{3}{2} \gamma-1}\right)$ there exists the sequence q_{ν}, such that

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} B_{2^{q_{\nu}}}^{\gamma} 2^{q_{\nu}}\left(1-\frac{\gamma}{2}\right)=\infty \tag{17}
\end{equation*}
$$

and

$$
\alpha^{q_{\nu+1}-q_{\nu}} \leq \frac{B_{2 q_{\nu}}^{\gamma} 2^{q_{\nu}\left(1-\frac{\gamma}{2}\right)}}{B_{2^{q_{\nu}+1}} 2^{q_{\nu+1}\left(1-\frac{\gamma}{2}\right)}} \leq \beta^{q_{\nu+1}-q_{\nu}},
$$

or, what is the same thing,

$$
\begin{equation*}
\left(2^{\frac{1}{\gamma}-\frac{1}{2}} \alpha^{\frac{1}{\gamma}}\right)^{q_{\nu+1}-q_{\nu}} \leq \frac{B_{2^{q_{\nu}}}}{B_{2^{q_{\nu}+1}}} \leq\left(2^{\frac{1}{\gamma}-\frac{1}{2}} \beta^{\frac{1}{\gamma}}\right)^{q_{\nu+1}-q_{\nu}} \tag{18}
\end{equation*}
$$

Note that $\theta=2^{\frac{1}{\gamma}-\frac{1}{2}} \alpha^{\frac{1}{\gamma}}>1,1<\mu=2^{\frac{1}{\gamma}-\frac{1}{2}} \beta^{\frac{1}{\gamma}}<2$, therefore from (18) we can get

$$
\sum_{1}^{\infty} B_{2^{q_{\nu}}}<+\infty \quad \text { and } \quad \sum_{\nu=1}^{\nu(n)} B_{2^{q_{\nu}}} 2^{q_{\nu}} \leq C B_{2^{q_{\nu}(n)}} 2^{q_{\nu}(n)}
$$

where C is some constant.
Suppose

$$
f_{0}(t)=\sum_{\nu=1}^{\infty} \pi B_{2^{q_{\nu}}} \cos 2^{q_{\nu}+1} \pi t
$$

Let $E_{n}\left(f_{0}\right)$ denote the best approximation of the function f_{0} by the n power trigonometric polynomials. From the condition (18) we can conclude that if $2^{q_{\nu}-1} \leq n<2^{q_{\nu}}$, then the relation

$$
\begin{equation*}
E_{n}\left(f_{0}\right) \leq \pi \sum_{j=\nu}^{\infty} B_{2^{q_{j}}} \leq C B_{2^{q_{\nu}}} \tag{19}
\end{equation*}
$$

holds.
Assume $\nu(n)=\max \left\{\nu ; 2^{q_{\nu}} \leq n\right\}, q_{0}=0$. Let $\omega(\delta ; f)$ denote the modulus of continuity of the function f. Using Stechkin's inequality ([6], p. 234)

$$
\omega\left(\frac{1}{n} ; f\right) \leq \frac{C}{n} \sum_{k=0}^{n} E_{k}(f)
$$

we obtain

$$
\begin{align*}
\omega\left(\frac{1}{n} ; f_{0}\right) & \leq \frac{C}{n} \sum_{k=1}^{n} E_{k}\left(f_{0}\right)=\frac{C}{n}\left\{\sum_{\nu=1}^{\nu(n)} \sum_{2^{q_{\nu}-1}+1}^{2^{q_{\nu}}} E_{k}\left(f_{0}\right)+\sum_{k=2^{\nu(n)}+1}^{n} E_{k}\left(f_{0}\right)\right\} \leq \\
& \leq \frac{C}{n}\left\{\sum_{\nu=1}^{\nu(n)} B_{2^{q_{\nu}}} \cdot 2^{q_{\nu}}+B_{2^{q_{\nu}(n)}} n\right\} \leq C B_{2^{q_{\nu}(n)}} \leq \\
& \leq C \frac{\varphi\left(2^{q_{\nu(n)}} ; \frac{1}{2^{q_{\nu(n)+1}}}\right)}{2^{q_{\nu(n)}}} \leq C \frac{\varphi\left(n ; \frac{1}{n}\right)}{n} . \tag{20}
\end{align*}
$$

It is not difficult to verify that

$$
\varphi(k ; \delta ; f) \leq k \omega(\delta ; f)
$$

Consequently, from (20) it follows that

$$
\begin{align*}
\varphi\left(k ; \frac{1}{n} ; f_{0}\right) & \leq k \omega\left(\frac{1}{n} ; f_{0}\right) \leq k C \frac{\varphi\left(n ; \frac{1}{n}\right)}{n} \leq \\
& \leq k C \frac{\varphi\left(k ; \frac{1}{n}\right)}{k}=C \varphi\left(k ; \frac{1}{n}\right) \quad(k \leq n) \tag{21}
\end{align*}
$$

Let $\delta>0$ and $\frac{1}{n+1} \leq \delta<\frac{1}{n}$, then taking into account the fact that the function $\varphi(k ; \delta ; f)$ nondecreasing with respect to δ, with regard for inequality (21), we have

$$
\varphi\left(k ; \delta ; f_{0}\right) \leq \varphi\left(k ; \frac{1}{n} ; f_{0}\right) \leq \varphi\left(k ; \frac{2}{n+1} ; f_{0}\right) \leq 2 \varphi\left(k ; \frac{1}{n+1} ; f_{0}\right) \leq C_{1} \varphi(k ; \delta),
$$

that is, $f_{0} \in M(\varphi)$.
Using Hölder's inequality ([10], p. 26), we obtain

$$
\left(\sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}\right|^{\gamma}\right)^{\frac{1}{\gamma}} \geq 2^{p\left(\frac{1}{\gamma}-1\right)} \sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}\right|
$$

for $1 \leq \gamma<2$, or, what is the same thing,

$$
\begin{equation*}
\sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}\right|^{\gamma} \geq 2^{p(1-\gamma)}\left(\sum_{n=2^{p}+1}^{2^{p+1}}\left|a_{n}\right|\right)^{\gamma} \tag{22}
\end{equation*}
$$

Using now Lemma 2, inequality (20) yields

$$
\begin{aligned}
\sum_{n=2^{q_{\nu}}+1}^{2^{q_{\nu}+1}}\left|a_{n}\left(f_{0}\right)\right|^{\gamma} & \geq 2^{q_{\nu}(1-\gamma)}\left(\sum_{n=2^{q}+1}^{2^{q_{\nu}+1}}\left|a_{n}\left(f_{0}\right)\right|\right)^{\gamma} \geq \\
& \geq 2^{q_{\nu}(1-\gamma)}\left(2^{\frac{q_{\nu}}{2}} B_{2^{q_{\nu}}}\right)^{\gamma}=B_{2^{q_{\nu}}}^{\gamma} 2^{q_{\nu}\left(1-\frac{\gamma}{2}\right)} .
\end{aligned}
$$

Taking into account (17), the last inequality results in

$$
\sum_{n=1}^{\infty}\left|a_{n}\left(f_{0}\right)\right|^{\gamma}=+\infty
$$

for $1 \leq \gamma<2$.
Consider the case $\frac{2}{3}<\gamma<1$. Note that the condition (11) implies

$$
\sum_{n=1}^{\infty} n^{-\frac{3}{2} \gamma} \varphi^{\gamma}\left(n ; \frac{1}{n}\right)=+\infty
$$

and therefore $\varphi\left(n ; \frac{1}{n}\right) \neq O(1)$.
Let E_{ν}^{\prime} be the set of those numbers $k, 1 \leq k \leq 2^{q_{\nu}}$ for which the inequality

$$
\left|a_{2^{q_{\nu}}+k}\left(f_{0}\right)\right| \geq \frac{1}{2} 2^{-\frac{q_{\nu}}{2}} B_{2^{q_{\nu}}}
$$

is fulfilled, and let E_{ν}^{\prime} be the set of the rest integers from the interval $\left[2^{q_{\nu}}+1,2^{q_{\nu+1}}\right]$.

On the basis of Lemma 2, we have

$$
\begin{align*}
2^{\frac{q_{\nu}}{2}} B_{2^{q_{\nu}}} & \leq \sum_{n=2^{q_{\nu}}+1}^{2^{q_{\nu}+1}}\left|a_{n}\left(f_{0}\right)\right|=\sum_{k \in E_{\nu}^{\prime}}\left|a_{2^{q_{\nu}}+k}\left(f_{0}\right)\right|+\sum_{k \in E^{\prime \prime}{ }_{\nu}}\left|a_{2^{q_{\nu}}+k}\left(f_{0}\right)\right| \leq \\
& \leq \frac{1}{2 \sqrt{2^{q_{\nu}}}} \varphi\left(\left|E_{\nu}^{\prime}\right| ; \frac{1}{2^{q_{\nu}+1}} ; f_{0}\right)+\frac{2^{\frac{q_{\nu}}{2}}}{2} B_{2^{q_{\nu}}} . \tag{23}
\end{align*}
$$

Here we have used the fact that for the Fourier-Haar coefficients the estimate

$$
\sum_{k \in \sigma}\left|a_{n}(f)\right| \leq \frac{1}{2 \sqrt{2^{q_{\nu}}}} \varphi\left(|\sigma| ; \frac{1}{2^{q_{\nu}+1}} ; f\right)
$$

is valid when $2^{q_{\nu}}+1 \leq n<2^{q_{\nu}+1}$, and σ is the subset of the set $\left\{2^{q_{\nu}}+1, \ldots, 2^{q_{\nu+1}}\right\} ;|\sigma|$ denotes a number of elements σ. Inequality (23)
implies that

$$
\begin{equation*}
\varphi\left(\left|E_{\nu}^{\prime}\right| ; \frac{1}{2^{q_{\nu+1}}} ; f_{0}\right) \geq 2^{q_{\nu}} B_{2^{q_{\nu}}} \tag{24}
\end{equation*}
$$

It is clear from the expression B_{n} that

$$
n B_{n}=\sum_{k=n+1}^{2 n} \frac{\varphi\left(k ; \frac{1}{2 n}\right)}{k} \geq \frac{\varphi\left(2 n ; \frac{1}{2 n}\right)}{2 n} n .
$$

Thus we obtain

$$
\begin{equation*}
2^{q_{\nu}} B_{2^{q_{\nu}}} \geq \frac{1}{2} \varphi\left(2^{q_{\nu}+1} ; \frac{1}{2^{q_{\nu}+1}}\right) \tag{25}
\end{equation*}
$$

Since $f_{0} \in M(\varphi)$, there exists the number C_{0}, such that for any natural n and $\delta>0$ the inequality

$$
\begin{equation*}
\varphi\left(n ; \delta ; f_{0}\right) \leq C_{0} \varphi(n ; \delta) \tag{26}
\end{equation*}
$$

holds.
From the relations (24), (25) and (26) we obtain

$$
\begin{align*}
\varphi\left(\left|E_{\nu}^{\prime}\right| ; \frac{1}{2^{q_{\nu}+1}}\right) & \geq \frac{1}{C_{0}} \varphi\left(\left|E_{\nu}^{\prime}\right| ; \frac{1}{2^{q_{\nu}+1}} ; f_{0}\right) \geq \frac{1}{C_{0}} 2^{q_{\nu}} B_{2^{q_{\nu}}} \geq \\
& \geq \frac{1}{2 C_{0}} \varphi\left(2^{q_{\nu}+1} ; \frac{1}{2^{q_{\nu}+1}}\right) \tag{27}
\end{align*}
$$

It follows from the condition of the theorem that for any number $2 C_{0}$ there exist the natural number n_{0} and $0<d<1$, such that

$$
\varphi(n ; \delta) \geq 2 C_{0} \varphi([d n] ; \delta), \quad n>n_{0}
$$

Using the last relation, inequality (27) results in

$$
\varphi\left(\left|E_{\nu}^{\prime}\right| ; \frac{1}{2^{q_{\nu}+1}}\right) \geq \varphi\left(\left[d 2^{q_{\nu}+1}\right] ; \frac{1}{2^{q_{\nu}+1}}\right) \quad \text { for } \quad \nu>\nu_{1}
$$

Thus we can conclude that

$$
\left|E_{\nu}^{\prime}\right| \geq\left[d 2^{q_{\nu}+1}\right]
$$

that is,

$$
\begin{equation*}
\left|E_{\nu}^{\prime}\right| \geq d \cdot 2^{q_{\nu}+1}-1>d 2^{q_{\nu}}, \quad \nu>\nu_{1} \tag{28}
\end{equation*}
$$

Let us now estimate the sum

$$
\begin{aligned}
\sum_{n=2^{q_{\nu}}+1}^{2^{q_{\nu}+1}}\left|a_{n}\left(f_{0}\right)\right|^{\gamma} & \geq \sum_{k \in E_{\nu}^{\prime}}\left|a_{n}\left(f_{0}\right)\right|^{\gamma} \geq 2^{-\gamma} 2^{-\frac{q_{\nu} \gamma}{2}} B_{2^{q_{\nu}}}^{\gamma}\left|E_{\nu}^{\prime}\right| \geq \\
& \geq C 2^{q_{\nu}\left(1-\frac{\gamma}{2}\right)} B_{2 q_{\nu}}^{\gamma} \quad\left(\nu>\nu_{1}\right)
\end{aligned}
$$

Here we have used the definition of the set E_{ν}^{\prime} and inequality (28).

If we take into account the condition (15), then we will get

$$
\sum_{n=1}^{\infty}\left|a_{n}\left(f_{0}\right)\right|^{\gamma} \geq \sum_{\nu \geq \nu_{1}} \sum_{n=2^{q_{\nu}}+1}^{2^{q_{\nu}+1}}\left|a_{n}\left(f_{0}\right)\right|^{\gamma} \geq \sum_{\nu \geq \nu_{1}} C 2^{q_{\nu}\left(1-\frac{\gamma}{2}\right)} B_{2^{q_{\nu}}}^{\gamma}=+\infty
$$

It remains to consider the case $\gamma=\frac{2}{3}$. As P. L. Ul'ianov ([7], p. 373) has shown, the function $f(t)=1-2 t \in V$, and for this function

$$
\sum_{n=1}^{\infty}\left|a_{n}(f)\right|^{\frac{2}{3}}=+\infty
$$

But $f(t) \in M(\varphi)$ for any modulus of δ-variation. Thus the theorem is complete.

References

1. Z. Chanturia, The modulus of variation of a function, and its application in the theory of Fourier coefficients. (Russian) Bull. Acad. Sci. Georgian SSR 75(1974), 281-284.
2. Z. Chanturia, On the absolute convergence of the series of Fourier-Haar coefficients. Commentat. Math. spec. Vol. II, dedic. L. Orlicz, 1979, 25-35.
3. T. Karchava, On the absolute convergence of Fourier series. Georgian Math. J. 4(1997), No. 4, 333-340.
4. B. I. Golubov, On Fourier-Haar series of continuous functions. (Russian) Izv. Akad. Nauk SSSR, ser Mat.28(1964), 1271-1292.
5. B. I. Golubov, Series with respect to the Haar system. (Russian) Itogi Nauki, Ser. Mat., mat. Analiz, (1970), 109-146.
6. S. B. Stechkin, On the order of best approximation of continuous functions. (Russian) Izv. Akad. Nauk SSSR, ser. Mat. 15(1951), 219-242.
7. P. L. Ul'yanov, On Haar series. (Russian) Matem. Sb. 63(1964), 356-391.
8. I. Wik, Extrapolation of absolutely convergent Fourier series by identically zero. Ark. Math. 6(1965), 65-76.
9. N. K. Bari, Trigonometric series. (Russian) Izdat. Fiz.-Mat. Lit., Moscow, 1961.
10. Z. Ciesielski and J. Musielak, On absolute convergence of Haar series. Colloq. Math. 7(1959), 61-65.
11. W. Orlicz, Zur Theorie der Orthogonalreihen. (German) Bulletin Acad. Polon. Sci. (A) (1927), 81-115.
(Received 21.04.2006)
Author's address:
I. Javakhishvili Thilisi State University

Faculty of Exact and Natural Sciences
2, University St., Tbilisi 380043
Georgia

[^0]: 2000 Mathematics Subject Classification. 42A16.
 Key words and phrases. Absolute convergence, modulus of variation of a function, modulus of δ-variation.

