
Proceedings of A. Razmadze
Mathematical Institute
Vol. 141 (2006), 59–66

COMMUTATIVE ALGEBRAIC OPERATIONS

V. KHUKHUNASHVILI

Abstract. In the present work we study commutative algebraic op-
erations acting in the space of solutions of the differential equation.

îâäæñéâ. ê�öîëéöæ öâæïû�ãèâ�� �èàâ�îñè-�æê�îñèæ çëéñð�ùæ-

ñîæ ëìâî�ùæâ�æ îëéèâ�æù éëóéâáâ�âê áæòâîâêùæ�èñî à�êðëèâ-

��å� �éëê�ýïêå� ïæãîùâöæ.

1. In the present work we continue investigation of algebraic properties
of autonomous systems of ordinary differential equations

duk

dt
= F k

(

u1, . . . , uN
)

, (1)

(k = 1, . . . , N).

started in [1-2]. Here, F (u) are smooth functions given in the Euclidean
space ΓN , and t is an independent real function. By J1

N we denote the
space of solutions of equations (1).

In [1], we have found the defining equation (1.3) ([1]) for binary oper-
ations acting in the space of solutions J1

N . Introduce now new variables
rk
(1) = ϕk (u1), rk

(2) = ϕk (u2) where ϕk (u) are characteristic functions of

equations (1). Using equation (2.2) from [1], the defining equation (1.3)
from [1] will take for ϕ (u) the form

(

∂ϕk (Φ)

∂rn
(1)

+
∂ϕk (Φ)

∂rn
(2)

)

bn = bk, (2)

(k = 1, . . . , N).

As is stated in [1], every solution Φ of equation (2), being the function of
arbitrary solutions u1 and u2, establishes one or another binary operation
in J1

N . In particular, the solution represented in the form of an implicit
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function

exp
[

ϕk (u1) − ϕk (Φ)
]

+ exp
[

ϕk (u2) − ϕk (Φ)
]

= 1, (3)

(k = 1, . . . , N),

assigns a commutative binary operation in J1
N . Note that a rather wide

class of solutions of equation (2) has the form

ϕk (Φ) = ln
(

exp rk
1 + exp rk

2

)

+ Qk (r1 − r2) ,

where Q are arbitrary functions of N arguments.
We will say that M -ary operation is defined on a given set if any ordered

subset of M elements of this set corresponds to a uniquely defined element
of the set.

Without going into details, we will show that to find the M -ary operation
([3]) in the space of solutions J1

N , equation (2) extends to the equation

M
∑

a=1

∂ϕk (Φ)

∂rn
(a)

bn = bk, (4)

(k = 1, . . . , N),

where r(a) = ϕ (ua).
Using the results obtained in [5], among some other solutions of equation

(4) we can write out the particular solution

Φ = ϕ−1

(

ln

M
∑

a=1

exp ϕ (ua)

)

, (5)

where ϕ and ϕ−1 are the inverse functions. This result shows that some
M -ary operations can be reduced to binary operations.

Assuming now in (4) that M = 1, we obtain

∂ϕk (Φ)

∂rn
bn = bk. (6)

A solution of this equation assigns unary operation in J1
N . As is men-

tioned in ([1] §3), the unary operation can be interpreted as the mapping
of the space J1

N into itself.
Thus we arrive to the conclusion that equation (4) determines a set of

combinations of algebraic operations, starting from unitary ones and ending
by the M -ary operations, inclusive. Therefore there arises the question
whether the M -ary operations are reducible or not.

However, our aim at this step is to investigate the problems connected
with commutative binary operations. Therefore, as for the M -ary opera-
tions, we will restrict ourselves to the following remark.
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In [1-2] we studied in detail the commutative binary operation, u1+̇
ϕ
u2

which is defined from (3):

u1+̇
ϕ
u2 = ϕ−1

(

ln
[

expϕ (u1) +̇ exp ϕ (u2)
])

, (7)

which is defined from (3). This operation in the space of solutions J1
N of

equations (1) forms a commutative group in which e and h are the neutral
elements:

u+̇
ϕ
e = u, u+̇

ϕ
h = h. (8)

As is mentioned in [1], if the components ek and hk of elements e and h
are finite, then e and h are the stationary points of equations (1).

Besides (7), as is shown in [1-2], there exists another alternative sum

u1+̈
ϕ
u2 = ϕ−1

(

ln [exp (−ϕ (u1)) + exp (−ϕ (u2))]
−1
)

, (9)

which likewise forms a commutative group. Unlike (8), there takes place

u+̈
ϕ
e = e, u+̈

ϕ
h = u. (10)

Due to the existence of equalities (8) and (10), the above two alternative
groups get tied into a whole algebraic object, i.e., into a dual commutative
group.

As is noted in [1-2], the space of solutions J1
N of equations (1) is a dis-

cretely fiber space ([4]), and the base space W 1
N is the space of solutions of

the system

dwk

dt
= wk, (11)

(k = 1, . . . , N).

which is, in fact, a union of N one-dimensional independent equations.
expϕ : J1

N → W 1
N is the projector. As is mentioned in [2], each of equations

from (11) generates a dual commutative group (1.2-1.5) ([2]). But then,
proceeding from (7) and (9), we can write

u1+̇
ϕ
u2 = ϕ−1

(

ln
[

w1+̇w2

])

, (12)

u1+̈
ϕ
u2 = ϕ−1

(

ln
[

w1+̈w2

])

.

If each of the discrete layers of the space J1
N is assumed to be one element,

then taking into account (1.17-1.18) ([1]), from (12) it follows that dual
commutative groups of equations (1) and (11) are isomorphic.

2. By JN0

N and J1
Nα we denote spaces of solutions of equations (1) and

(2) from ([5]). The superscript in J indicates a number of independent
variables, and the subscript a number of unknown functions appearing in
the corresponding equation. Obviously, J1

Nα ⊂ JN0

N hold for every α ∈ ΓN0
,
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where ΓN0
is the N0-dimensional Euclidean space introduced in ([5] §1). As

is seen in [1], there incidentally appears a trivially fiber space P (ΓN0
, Jα, π)

with the base space ΓN0
, layers Jα, and a projector π : P → ΓN0

. A solution
χ of equations (21) from ([5]) should be interpreted as the mapping of the

fiber space P into the space JN0

N ,

P
χ
→ J.

which we call the χ-mapping. In [1], we studied thoroughly algebraic prop-
erties of equations (1) ([5]) by means of the functions χ. However, this does
not exhaust algebraic substance of equations (1) from ([5]). The space J1

Nα

is, in fact, the space of solutions of ordinary equations (2) ([5]). Proceed-
ing from section 1, there exist Mα-ary operations which act in the same
space. But then the defining equation which assigns simultaneously the
Mα-mapping and the χ-ary operations has the form

∑

α∈Ω

Mα
∑

a=1

∂ϕk
α (χ)

∂rn
(a)α

bn = bk, (13)

(k = 1, . . . , N).

It is not difficult to write out a particular solution of equation (13) im-
plicitly with regard for (7) and (40) from ([5]), and (5).

3. For the sake of simplicity, in what follows, it will be assumed that the
neutral elements of the dual commutative group (2) ([5]) do not depend on
α, i.e.,

eα = e, hα = h, (14)

holds for every α ∈ ΓN0
.

As is shown in [2], the characteristic functions on neutral elements tend
to infinity. By virtue of (6.6) from ([2]) we conclude that

ϕα (e) = −∞, ϕα (h) = +∞. (15)

Taking now into account (14), if in (7-10) we replace ϕ → ϕα, then we
will get a dual commutative group with neutral elements e, h, acting in the
space J1

Nα.
4. Consider now an implicit function (35) from ([5]) and assume that

qα = pk
α = 1 for every α ∈ Ω, k = 1, . . . , N . Then taking into account (7)

([5]), we have
∑

α∈Ω

exp
[

ϕk
α (uα) − ϕk

α (χ)
]

= 1, (16)

(k = 1, . . . , N).

Here we cite some properties of the χ-mapping defined from (16).
(a) It follows directly from (6) ([5]) that the characteristic functions ϕα

depend explicitly on α ∈ ΓN0
.
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Consider in (16) two summands with indices α and β.
If in equality (16) we replace α and β and, respectively, uα and uβ, then

obviously (16) remains unchanged. This means that the function χ defined
from (16) has the form

χ = χ (. . . ; α, uα; . . .) (17)

and is a symmetric functions of the blocks (α, uα), where α ranges over the
set Ω. In the sequel, instead of (17) the use will be made of a shortened
writing

χ̇ = χ̇ (. . . , uα, . . .) .

(b) Let the solution uβ = e for some β ∈ Ω. Taking into account (15),
the summand with the index β in the sum (16) vanish, and we obtain

∑

α∈Ω\β

exp
[

ϕk
α (uα) − ϕk

α (χ̇Ω)
]

= 1.

As is mentioned in [1], if all uα = e, as α ranges the set Ω \ γ, then for
χ̇ we obtain χ̇Ω = uγ . In particular, if uα = e for all α ∈ Ω, we have

χ̇Ω (. . . , e, . . . , e, . . .) = e. (18)

However, if for any β ∈ Ω the solution uβ = h, then by virtue of (15)
equality (15) will be fulfilled as soon as χ̇Ω = h, i.e.

χ̇Ω (. . . , uα, . . . , h, . . . , uγ , . . .) = h. (19)

5. In (35) from ([5]) we now put qα = 1, pk
α = −1. By analogy with (16),

we obtain
∑

α∈Ω

exp
[

ϕk
α (χ̈) − ϕk

α (uα)
]

= 1, (20)

(k = 1, . . . , N).

The function χ̈Ω (. . . , uα, . . .) possesses the same properties as
χ̇Ω (. . . , uα, . . .), but unlike χ̇Ω, in χ̈Ω the neutral elements e and h show
opposite properties. More exactly, instead of (18), we have

χ̈Ω (. . . , h, . . . , h, . . .) = h, (21)

and (19) is replaced by the equality

χ̈Ω (. . . , uα, . . . , e, . . . , uγ , . . .) = e. (22)

On the basis of the properties (18-19) and (21-22), in the sequel, χ̇Ω

and χ̈Ω will be called an alternative mappings of the trivially fiber space
P
(

ΓN0
, J1

Nα, π
)

into the space JN0

N , or either χ̇Ω and χ̈ can be called al-
ternative expansions of solutions of equations (1) from ([5]) in plane waves
uα.

6. Let us consider equation (38) ([5]), when the coefficients aν are the
constant values. The use is made of the results of calculations presented in
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([5] §12, b). From the equalities ϕα (uα) = zα + cα, ϕα (uα) = aαµ (uα) we
obtain

χ̇Ω = µ−1

(

ln
∑

α∈Ω

exp µ (uα)

)

.

Performing analogous calculations for finding an alternative expansion,
from (20) for N = 1 we get

χ̈Ω = µ−1



ln

[

∑

α∈Ω

exp (−µ (uα))

]−1


 .

Now we get back to equation (43) ([5]). As is repeatedly mentioned [1-2],
the neutral elements in linear equations have the form

e0, h0,

where ek
0 = 0, hk

0 = ∞, (k = 1, . . . , N). From (55) ([5]) it directly follows
that equalities (18-19) are fulfilled.

Let us now find an alternative sum for (55) ([5]). Towards this end, in
(35) ([5]) we assume that q = 1, pk

α = − 1
λk

α

. Taking into account (43) and

(35) from ([5]), we obtain
∑

α∈Ω

Bα (uα) χ̈Ω = b,

where Bα is the matrix (49) ([5]), and the vector b has the form (51) ([5]).
From the above equality we easily find an alternative expansion e0, h0.

It is not difficult to verify that the expansion (23) for neutral elements

χ̈Ω =

[

∑

α∈Ω

Bα (uα)

]−1

b (23)

and e0, h0 satisfy the conditions (21-22).
Using equality (50) ([5]), we rewrite (55) ([5]) in the form

χ̇Ω =
∑

α∈Ω

B−1
α (uα) b.

Obviously, χ̇Ω and χ̈Ω are the alternative expansion of solutions of equa-
tions (43) ([5]).

7. Let ω ⊂ Ω. Consider now equality (16) on ω, i.e.
∑

α∈ω

exp [ϕα (uα) − ϕα (χ̇)] = 1. (24)

Using the property (15), we add to equality (24) the summands of the
type exp [ϕβ (uβ) − ϕβ (χ̇)], when

uβ = e, β ∈ Ω \ ω. (25)
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It is obvious that equality (24) remains unchanged. But then under the
condition (25) we can write

χ̇ω (. . . , uα, . . . ) = χ̇Ω (. . . , uα, . . . ) . (26)

Analogously, we can write

χ̈ω (. . . , uα, . . . ) = χ̈Ω (. . . , uα, . . . ) , (27)

when

uβ = h, β ∈ Ω \ ω.

8. As is known in ([5-6]), in the classical theory of linear partial differen-
tial equations we can, generally speaking, choose in the representation (55)
from ([5]) uα and the set Ω such that the given solution coincides with the
sum (55) ([5]). On the basis of the above-said, at this step of our investi-
gation, without proof we assume that for every given solution of equations
(1) from ([5]) there exist a set Ω and a corresponding collection uα, α ∈ Ω,
such that the solution can be represented in the form

u = χ̇Ω (. . . , uα, . . . ) . (28)

Note, since JN0

N is the discretely fiber space, the solution u (x) is a definite
sheet of that space ([4]).

Analogously, choosing Ω̃ and uα, the same solution u ∈ JN0

N can be
represented in an alternative form

u = χ̈Ω̃ (. . . , uα, . . . ) . (29)

Thus we can conclude that the existence of χ̇Ω and χ̈Ω generates dual
representation of solutions of equations (1) ([5]).

9. Consider equality (35) from [5]. Using (7) ([5]), for χ̇Ω and χ̈Ω we find
the corresponding equations

·
∑

α∈Ω

qα exp pk
α

[

ϕk
α (uα) − ϕk

α (χ̇)
]

= 1, (30)

(k = 1, . . . , N)

and
··
∑

α∈Ω

qα exp pk
α

[

ϕk
α (uα) − ϕk

α (χ̈)
]

= 1, (31)

(k = 1, . . . , N).

It should be recalled that
·
∑

denotes the summation by the standard rule
(

a+̇b = a + b
)

, and
··
∑

is the alternative summation
(

a+̈b =
(

1
a

+ 1
b

)−1
)

.

It should also be noted that (31) is obtained from (30) by means of the
substitution qα → 1/qα, pk

α → 1/pk
α.
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If equalities (14)–(15) are fulfilled, then if pk
α are reals and change their

sign for different values α ∈ Ω, then equalities (18)–(19) and (21)–(22) fail
to be fulfilled. In this case, the restriction (14) should be neglected, and we
have to require

pk
αϕk (eα) = −∞, pk

αϕk (hα) = +∞. (32)

This means that depending on pk
α, the neutral elements change their

representation.
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