COMMUTATIVE ALGEBRAIC OPERATIONS

V. KHUKHUNASHVILI

Abstract. In the present work we study commutative algebraic operations acting in the space of solutions of the differential equation.

 дง

1. In the present work we continue investigation of algebraic properties of autonomous systems of ordinary differential equations

$$
\begin{gather*}
\frac{d u^{k}}{d t}=F^{k}\left(u^{1}, \ldots, u^{N}\right), \tag{1}\\
\quad(k=1, \ldots, N) .
\end{gather*}
$$

started in [1-2]. Here, $F(u)$ are smooth functions given in the Euclidean space Γ^{N}, and t is an independent real function. By J_{N}^{1} we denote the space of solutions of equations (1).

In [1], we have found the defining equation (1.3) ([1]) for binary operations acting in the space of solutions J_{N}^{1}. Introduce now new variables $r_{(1)}^{k}=\varphi^{k}\left(u_{1}\right), r_{(2)}^{k}=\varphi^{k}\left(u_{2}\right)$ where $\varphi^{k}(u)$ are characteristic functions of equations (1). Using equation (2.2) from [1], the defining equation (1.3) from [1] will take for $\varphi(u)$ the form

$$
\begin{gather*}
\left(\frac{\partial \varphi^{k}(\Phi)}{\partial r_{(1)}^{n}}+\frac{\partial \varphi^{k}(\Phi)}{\partial r_{(2)}^{n}}\right) b^{n}=b^{k} \tag{2}\\
(k=1, \ldots, N)
\end{gather*}
$$

As is stated in [1], every solution Φ of equation (2), being the function of arbitrary solutions u_{1} and u_{2}, establishes one or another binary operation in J_{N}^{1}. In particular, the solution represented in the form of an implicit

[^0]function
\[

$$
\begin{gather*}
\exp \left[\varphi^{k}\left(u_{1}\right)-\varphi^{k}(\Phi)\right]+\exp \left[\varphi^{k}\left(u_{2}\right)-\varphi^{k}(\Phi)\right]=1 \tag{3}\\
(k=1, \ldots, N)
\end{gather*}
$$
\]

assigns a commutative binary operation in J_{N}^{1}. Note that a rather wide class of solutions of equation (2) has the form

$$
\varphi^{k}(\Phi)=\ln \left(\exp r_{1}^{k}+\exp r_{2}^{k}\right)+Q^{k}\left(r_{1}-r_{2}\right)
$$

where Q are arbitrary functions of N arguments.
We will say that M-ary operation is defined on a given set if any ordered subset of M elements of this set corresponds to a uniquely defined element of the set.

Without going into details, we will show that to find the M-ary operation ([3]) in the space of solutions J_{N}^{1}, equation (2) extends to the equation

$$
\begin{gather*}
\sum_{a=1}^{M} \frac{\partial \varphi^{k}(\Phi)}{\partial r_{(a)}^{n}} b^{n}=b^{k} \tag{4}\\
\quad(k=1, \ldots, N)
\end{gather*}
$$

where $r_{(a)}=\varphi\left(u_{a}\right)$.
Using the results obtained in [5], among some other solutions of equation (4) we can write out the particular solution

$$
\begin{equation*}
\Phi=\varphi^{-1}\left(\ln \sum_{a=1}^{M} \exp \varphi\left(u_{a}\right)\right), \tag{5}
\end{equation*}
$$

where φ and φ^{-1} are the inverse functions. This result shows that some M-ary operations can be reduced to binary operations.

Assuming now in (4) that $M=1$, we obtain

$$
\begin{equation*}
\frac{\partial \varphi^{k}(\Phi)}{\partial r^{n}} b^{n}=b^{k} \tag{6}
\end{equation*}
$$

A solution of this equation assigns unary operation in J_{N}^{1}. As is mentioned in ([1] §3), the unary operation can be interpreted as the mapping of the space J_{N}^{1} into itself.

Thus we arrive to the conclusion that equation (4) determines a set of combinations of algebraic operations, starting from unitary ones and ending by the M-ary operations, inclusive. Therefore there arises the question whether the M-ary operations are reducible or not.

However, our aim at this step is to investigate the problems connected with commutative binary operations. Therefore, as for the M-ary operations, we will restrict ourselves to the following remark.

In [1-2] we studied in detail the commutative binary operation, $u_{1} \underset{\varphi}{\dot{\varphi}} u_{2}$ which is defined from (3):

$$
\begin{equation*}
\underset{\varphi}{u_{1}+u_{2}}=\varphi^{-1}\left(\ln \left[\exp \varphi\left(u_{1}\right) \dot{+} \exp \varphi\left(u_{2}\right)\right]\right) \tag{7}
\end{equation*}
$$

which is defined from (3). This operation in the space of solutions J_{N}^{1} of equations (1) forms a commutative group in which e and h are the neutral elements:

$$
\begin{equation*}
u \underset{\varphi}{\dot{+}} e=u, \quad u \dot{\varphi}+h=h \tag{8}
\end{equation*}
$$

As is mentioned in [1], if the components e^{k} and h^{k} of elements e and h are finite, then e and h are the stationary points of equations (1).

Besides (7), as is shown in [1-2], there exists another alternative sum

$$
\begin{equation*}
u_{1} \underset{\varphi}{\ddot{+}} u_{2}=\varphi^{-1}\left(\ln \left[\exp \left(-\varphi\left(u_{1}\right)\right)+\exp \left(-\varphi\left(u_{2}\right)\right)\right]^{-1}\right) \tag{9}
\end{equation*}
$$

which likewise forms a commutative group. Unlike (8), there takes place

$$
\begin{equation*}
\underset{\varphi}{u \ddot{+}} e=e, \quad u \ddot{\varphi} h=u . \tag{10}
\end{equation*}
$$

Due to the existence of equalities (8) and (10), the above two alternative groups get tied into a whole algebraic object, i.e., into a dual commutative group.

As is noted in [1-2], the space of solutions J_{N}^{1} of equations (1) is a discretely fiber space ([4]), and the base space W_{N}^{1} is the space of solutions of the system

$$
\begin{gather*}
\frac{d w^{k}}{d t}=w^{k} \tag{11}\\
(k=1, \ldots, N)
\end{gather*}
$$

which is, in fact, a union of N one-dimensional independent equations. $\exp \varphi: J_{N}^{1} \rightarrow W_{N}^{1}$ is the projector. As is mentioned in [2], each of equations from (11) generates a dual commutative group (1.2-1.5) ([2]). But then, proceeding from (7) and (9), we can write

$$
\begin{align*}
u_{1} \dot{\varphi}+u_{2} & =\varphi^{-1}\left(\ln \left[w_{1} \dot{+} w_{2}\right]\right) \tag{12}\\
u_{1} \ddot{+} u_{2} & =\varphi^{-1}\left(\ln \left[w_{1} \ddot{+} w_{2}\right]\right)
\end{align*}
$$

If each of the discrete layers of the space J_{N}^{1} is assumed to be one element, then taking into account (1.17-1.18) ([1]), from (12) it follows that dual commutative groups of equations (1) and (11) are isomorphic.
2. By $J_{N}^{N_{0}}$ and $J_{N \alpha}^{1}$ we denote spaces of solutions of equations (1) and (2) from ([5]). The superscript in J indicates a number of independent variables, and the subscript a number of unknown functions appearing in the corresponding equation. Obviously, $J_{N \alpha}^{1} \subset J_{N}^{N_{0}}$ hold for every $\alpha \in \Gamma_{N_{0}}$,
where $\Gamma_{N_{0}}$ is the N_{0}-dimensional Euclidean space introduced in ([5] §1). As is seen in [1], there incidentally appears a trivially fiber space $P\left(\Gamma_{N_{0}}, J_{\alpha}, \pi\right)$ with the base space $\Gamma_{N_{0}}$, layers J_{α}, and a projector $\pi: P \rightarrow \Gamma_{N_{0}}$. A solution χ of equations (21) from ([5]) should be interpreted as the mapping of the fiber space P into the space $J_{N}^{N_{0}}$,

$$
P \xrightarrow{\chi} J
$$

which we call the χ-mapping. In [1], we studied thoroughly algebraic properties of equations (1) ([5]) by means of the functions χ. However, this does not exhaust algebraic substance of equations (1) from ([5]). The space $J_{N \alpha}^{1}$ is, in fact, the space of solutions of ordinary equations (2) ([5]). Proceeding from section 1 , there exist M_{α}-ary operations which act in the same space. But then the defining equation which assigns simultaneously the M_{α}-mapping and the χ-ary operations has the form

$$
\begin{gather*}
\sum_{\alpha \in \Omega} \sum_{a=1}^{M_{\alpha}} \frac{\partial \varphi_{\alpha}^{k}(\chi)}{\partial r_{(a) \alpha}^{n}} b^{n}=b^{k} \tag{13}\\
\quad(k=1, \ldots, N)
\end{gather*}
$$

It is not difficult to write out a particular solution of equation (13) implicitly with regard for (7) and (40) from ([5]), and (5).
3. For the sake of simplicity, in what follows, it will be assumed that the neutral elements of the dual commutative group (2) ([5]) do not depend on α, i.e.,

$$
\begin{equation*}
e_{\alpha}=e, \quad h_{\alpha}=h \tag{14}
\end{equation*}
$$

holds for every $\alpha \in \Gamma_{N_{0}}$.
As is shown in [2], the characteristic functions on neutral elements tend to infinity. By virtue of (6.6) from ([2]) we conclude that

$$
\begin{equation*}
\varphi_{\alpha}(e)=-\infty, \quad \varphi_{\alpha}(h)=+\infty \tag{15}
\end{equation*}
$$

Taking now into account (14), if in (7-10) we replace $\varphi \rightarrow \varphi_{\alpha}$, then we will get a dual commutative group with neutral elements e, h, acting in the space $J_{N \alpha}^{1}$.
4. Consider now an implicit function (35) from ([5]) and assume that $q_{\alpha}=p_{\alpha}^{k}=1$ for every $\alpha \in \Omega, k=1, \ldots, N$. Then taking into account (7) ([5]), we have

$$
\begin{gather*}
\sum_{\alpha \in \Omega} \exp \left[\varphi_{\alpha}^{k}\left(u_{\alpha}\right)-\varphi_{\alpha}^{k}(\chi)\right]=1 \tag{16}\\
(k=1, \ldots, N)
\end{gather*}
$$

Here we cite some properties of the χ-mapping defined from (16).
(a) It follows directly from (6) ([5]) that the characteristic functions φ_{α} depend explicitly on $\alpha \in \Gamma_{N_{0}}$.

Consider in (16) two summands with indices α and β.
If in equality (16) we replace α and β and, respectively, u_{α} and u_{β}, then obviously (16) remains unchanged. This means that the function χ defined from (16) has the form

$$
\begin{equation*}
\chi=\chi\left(\ldots ; \alpha, u_{\alpha} ; \ldots\right) \tag{17}
\end{equation*}
$$

and is a symmetric functions of the blocks $\left(\alpha, u_{\alpha}\right)$, where α ranges over the set Ω. In the sequel, instead of (17) the use will be made of a shortened writing

$$
\dot{\chi}=\dot{\chi}\left(\ldots, u_{\alpha}, \ldots\right) .
$$

(b) Let the solution $u_{\beta}=e$ for some $\beta \in \Omega$. Taking into account (15), the summand with the index β in the sum (16) vanish, and we obtain

$$
\sum_{\alpha \in \Omega \backslash \beta} \exp \left[\varphi_{\alpha}^{k}\left(u_{\alpha}\right)-\varphi_{\alpha}^{k}\left(\dot{\chi}_{\Omega}\right)\right]=1
$$

As is mentioned in [1], if all $u_{\alpha}=e$, as α ranges the set $\Omega \backslash \gamma$, then for $\dot{\chi}$ we obtain $\dot{\chi}_{\Omega}=u_{\gamma}$. In particular, if $u_{\alpha}=e$ for all $\alpha \in \Omega$, we have

$$
\begin{equation*}
\dot{\chi}_{\Omega}(\ldots, e, \ldots, e, \ldots)=e \tag{18}
\end{equation*}
$$

However, if for any $\beta \in \Omega$ the solution $u_{\beta}=h$, then by virtue of (15) equality (15) will be fulfilled as soon as $\dot{\chi}_{\Omega}=h$, i.e.

$$
\begin{equation*}
\dot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots, h, \ldots, u_{\gamma}, \ldots\right)=h . \tag{19}
\end{equation*}
$$

5. In (35) from ([5]) we now put $q_{\alpha}=1, p_{\alpha}^{k}=-1$. By analogy with (16), we obtain

$$
\begin{gather*}
\sum_{\alpha \in \Omega} \exp \left[\varphi_{\alpha}^{k}(\ddot{\chi})-\varphi_{\alpha}^{k}\left(u_{\alpha}\right)\right]=1 \tag{20}\\
(k=1, \ldots, N)
\end{gather*}
$$

The function $\ddot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots\right)$ possesses the same properties as $\dot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots\right)$, but unlike $\dot{\chi}_{\Omega}$, in $\ddot{\chi}_{\Omega}$ the neutral elements e and h show opposite properties. More exactly, instead of (18), we have

$$
\begin{equation*}
\ddot{\chi}_{\Omega}(\ldots, h, \ldots, h, \ldots)=h \tag{21}
\end{equation*}
$$

and (19) is replaced by the equality

$$
\begin{equation*}
\ddot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots, e, \ldots, u_{\gamma}, \ldots\right)=e . \tag{22}
\end{equation*}
$$

On the basis of the properties (18-19) and (21-22), in the sequel, $\dot{\chi}_{\Omega}$ and $\ddot{\chi}_{\Omega}$ will be called an alternative mappings of the trivially fiber space $P\left(\Gamma_{N_{0}}, J_{N \alpha}^{1}, \pi\right)$ into the space $J_{N}^{N_{0}}$, or either $\dot{\chi}_{\Omega}$ and $\ddot{\chi}$ can be called alternative expansions of solutions of equations (1) from ([5]) in plane waves u_{α}.
6. Let us consider equation (38) ([5]), when the coefficients a^{ν} are the constant values. The use is made of the results of calculations presented in
([5] §12, b). From the equalities $\varphi_{\alpha}\left(u_{\alpha}\right)=z_{\alpha}+c_{\alpha}, \varphi_{\alpha}\left(u_{\alpha}\right)=a_{\alpha} \mu\left(u_{\alpha}\right)$ we obtain

$$
\dot{\chi}_{\Omega}=\mu^{-1}\left(\ln \sum_{\alpha \in \Omega} \exp \mu\left(u_{\alpha}\right)\right) .
$$

Performing analogous calculations for finding an alternative expansion, from (20) for $N=1$ we get

$$
\ddot{\chi}_{\Omega}=\mu^{-1}\left(\ln \left[\sum_{\alpha \in \Omega} \exp \left(-\mu\left(u_{\alpha}\right)\right)\right]^{-1}\right) .
$$

Now we get back to equation (43) ([5]). As is repeatedly mentioned [1-2], the neutral elements in linear equations have the form

$$
e_{0}, h_{0}
$$

where $e_{0}^{k}=0, h_{0}^{k}=\infty,(k=1, \ldots, N)$. From (55) ([5]) it directly follows that equalities (18-19) are fulfilled.

Let us now find an alternative sum for (55) ([5]). Towards this end, in (35) ([5]) we assume that $q=1, p_{\alpha}^{k}=-\frac{1}{\lambda_{\alpha}^{k}}$. Taking into account (43) and (35) from ([5]), we obtain

$$
\sum_{\alpha \in \Omega} B_{\alpha}\left(u_{\alpha}\right) \ddot{\chi}_{\Omega}=b
$$

where B_{α} is the matrix (49) ([5]), and the vector b has the form (51) ([5]). From the above equality we easily find an alternative expansion e_{0}, h_{0}.

It is not difficult to verify that the expansion (23) for neutral elements

$$
\begin{equation*}
\ddot{\chi}_{\Omega}=\left[\sum_{\alpha \in \Omega} B_{\alpha}\left(u_{\alpha}\right)\right]^{-1} b \tag{23}
\end{equation*}
$$

and e_{0}, h_{0} satisfy the conditions (21-22).
Using equality (50) ([5]), we rewrite (55) ([5]) in the form

$$
\dot{\chi}_{\Omega}=\sum_{\alpha \in \Omega} B_{\alpha}^{-1}\left(u_{\alpha}\right) b .
$$

Obviously, $\dot{\chi}_{\Omega}$ and $\ddot{\chi}_{\Omega}$ are the alternative expansion of solutions of equations (43) ([5]).
7. Let $\omega \subset \Omega$. Consider now equality (16) on ω, i.e.

$$
\begin{equation*}
\sum_{\alpha \in \omega} \exp \left[\varphi_{\alpha}\left(u_{\alpha}\right)-\varphi_{\alpha}(\dot{\chi})\right]=1 \tag{24}
\end{equation*}
$$

Using the property (15), we add to equality (24) the summands of the type $\exp \left[\varphi_{\beta}\left(u_{\beta}\right)-\varphi_{\beta}(\dot{\chi})\right]$, when

$$
\begin{equation*}
u_{\beta}=e, \quad \beta \in \Omega \backslash \omega \tag{25}
\end{equation*}
$$

It is obvious that equality (24) remains unchanged. But then under the condition (25) we can write

$$
\begin{equation*}
\dot{\chi}_{\omega}\left(\ldots, u_{\alpha}, \ldots\right)=\dot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots\right) . \tag{26}
\end{equation*}
$$

Analogously, we can write

$$
\begin{equation*}
\ddot{\chi}_{\omega}\left(\ldots, u_{\alpha}, \ldots\right)=\ddot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots\right), \tag{27}
\end{equation*}
$$

when

$$
u_{\beta}=h, \quad \beta \in \Omega \backslash \omega
$$

8. As is known in ([5-6]), in the classical theory of linear partial differential equations we can, generally speaking, choose in the representation (55) from ([5]) u_{α} and the set Ω such that the given solution coincides with the sum (55) ([5]). On the basis of the above-said, at this step of our investigation, without proof we assume that for every given solution of equations (1) from ([5]) there exist a set Ω and a corresponding collection $u_{\alpha}, \alpha \in \Omega$, such that the solution can be represented in the form

$$
\begin{equation*}
u=\dot{\chi}_{\Omega}\left(\ldots, u_{\alpha}, \ldots\right) \tag{28}
\end{equation*}
$$

Note, since $J_{N}^{N_{0}}$ is the discretely fiber space, the solution $u(x)$ is a definite sheet of that space ([4]).

Analogously, choosing $\tilde{\Omega}$ and u_{α}, the same solution $u \in J_{N}^{N_{0}}$ can be represented in an alternative form

$$
\begin{equation*}
u=\ddot{\chi}_{\tilde{\Omega}}\left(\ldots, u_{\alpha}, \ldots\right) \tag{29}
\end{equation*}
$$

Thus we can conclude that the existence of $\dot{\chi}_{\Omega}$ and $\ddot{\chi}_{\Omega}$ generates dual representation of solutions of equations (1) ([5]).
9. Consider equality (35) from [5]. Using (7) ([5]), for $\dot{\chi}_{\Omega}$ and $\ddot{\chi}_{\Omega}$ we find the corresponding equations

$$
\begin{gather*}
\sum_{\alpha \in \Omega} q_{\alpha} \exp p_{\alpha}^{k}\left[\varphi_{\alpha}^{k}\left(u_{\alpha}\right)-\varphi_{\alpha}^{k}(\dot{\chi})\right]=1 \tag{30}\\
(k=1, \ldots, N)
\end{gather*}
$$

and

$$
\begin{gather*}
\sum_{\alpha \in \Omega} q_{\alpha} \exp p_{\alpha}^{k}\left[\varphi_{\alpha}^{k}\left(u_{\alpha}\right)-\varphi_{\alpha}^{k}(\ddot{\chi})\right]=1 \tag{31}\\
(k=1, \ldots, N)
\end{gather*}
$$

It should be recalled that \sum denotes the summation by the standard rule $(a \dot{+} b=a+b)$, and $\ddot{\sum}$ is the alternative summation $\left(a \ddot{+} b=\left(\frac{1}{a}+\frac{1}{b}\right)^{-1}\right)$. It should also be noted that (31) is obtained from (30) by means of the substitution $q_{\alpha} \rightarrow 1 / q_{\alpha}, p_{\alpha}^{k} \rightarrow 1 / p_{\alpha}^{k}$.

If equalities (14)-(15) are fulfilled, then if p_{α}^{k} are reals and change their sign for different values $\alpha \in \Omega$, then equalities (18)-(19) and (21)-(22) fail to be fulfilled. In this case, the restriction (14) should be neglected, and we have to require

$$
\begin{equation*}
p_{\alpha}^{k} \varphi^{k}\left(e_{\alpha}\right)=-\infty, p_{\alpha}^{k} \varphi^{k}\left(h_{\alpha}\right)=+\infty . \tag{32}
\end{equation*}
$$

This means that depending on p_{α}^{k}, the neutral elements change their representation.

References

1. Z. V. Khukhunashvili and Z. Z. Khukhunashvili, Algebraic structure of space and field. Electron. J. Qual. Theory Differ. Equat., 2001, No. 6, 1-52.
2. Z. Z. Khukhunashvili and V. Z. Khukhunashvili, Alternative analysis generated by a differential equation. Electron. J. Qual. Theory Differ. Equat. 2003, No. 2, 1-31.
3. A. G. Kurosh, Lectures in general algebra. Translated by Ann Swinfen; translation edited by P. M. Cohn. International Series of Monographs in Pure and Applied Mathematics, vol. 70 Pergamon Press, Oxford-Edinburgh-New York, 1965.
4. B. A. Dubrovin and S. R. Novikov, and A. T. Fomenko, Modern geometry-methods and applications. Part I. The geometry of surfaces, transformation groups, and fields. Translated from the Russian by Robert G. Burns. Graduate Texts in Mathematics, 93. Springer-Verlag, New York, 1984.
5. V. Z. Khukhunashvili, On nonlinear expansion of solutions of a quasilinear system, Proc. A. Razmadze Math. inst. 140(2006), 109-119.
6. R. Courant and D. Hilbert, Methods of mathematical physics, v. II, Translated from the German, Gos. Tex-Teor. Izd., Moscow, 1945.
(Received 17.01.2006)
Author's address:
I. Javakhishvili Tbilisi State University

Faculty of Exact and Natural Sciences
2, University St., Tbilisi 0143
Georgia

[^0]: 2000 Mathematics Subject Classification. 35F99.
 Key words and phrases. Partial differential equations, first order, binary operations, commutative operations.

