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THE INFLUENCE OF WALL PERMEABILITY ON THE

STABILITY OF FLOWS BETWEEN TWO ROTATING

CYLINDERS WITH A PRESSURE GRADIENT ACTING

ROUND THE CYLINDERS

L. SHAPAKIDZE

Abstract. The conditions of stability and instability of flow between
rotating permeable cylinders with the fluid pumping round the annu-
lar space are studied. Considering the both axisymmetric and oscilla-
tory three-dimensional perturbation, the calculation of neutral curves
is given.

îâäæñéâ. öâæïû�ãèâ�� ëî òëîëã�ê ùæèæêáîï öëîæï éëå�ãïâ-

�ñèæ ïæåýæï áæêâ�æï éáàî�áë�æï� á� �î�éáàî�áë�æï ìæîë�â�æ,

îëáâï�ù ýáâ�� ïæåýæï á�ðñé�ã� ûîæñèæ éæé�îåñèâ�æå. îë-

àëîù �âîúïæéâðîæñèæ, æïâ îýâãæåæ ï�éà�êäëéæèâ�æ�êæ öâöòëåâ-

�â�æï�åãæï �àâ�ñèæ� éáàî�áë�æï êâæðî�èñîæ éîñáâ�æ.

1. The instability of the rotating fluid applied, in particular, to the prob-
lem of stability of motion between rotating cylinders has been investigated
by Rayleigh [1]. Neglecting viscosity, it was found that the motion of the
rotating fluid is stable or instable depending on whether the circulation
square increases monotonically from the axis of rotation, or not. For the
cylinders rotating in one direction by this criterion it was stated that the
necessary and sufficient condition for instability of a nonviscous flow with
respect to axisymmetric disturbance is Ω2R

2
2 < Ω1R

2
1, where R1 and R2

are the radii, and Ω1, Ω2 are, respectively, angular velocity of the inner and
outer cylinders.

For the flows between rigid cylinders with the fluid pumping round the
annular space, using approximation for a narrow gap [1,2] and for a finite
gap [3] the Rayleigh’s criterion for an velocity distribution, corresponding
to the viscous flow states that there exist both stable and instable layers of
fluid in the basic flow.
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Our aim is to determine by the Rayleigh’s criterium the influence of wall
permeability on the conditions of instability of the flow between permeable
cylinders with the fluid pumping round the annular space.

Let a viscous incompressible flow fill up the space between two rotating
coaxial cylinders. The external mass forces are assumed to be absent, the
flux of velocity through the cross-section of cylinders space is zero and the
fluid inflow s through one cylinder is equal to the fluid outflow through
the other. It is also assumed that the constant pressure gradient acts on

the flow in the azimuthal direction
(

∂P
∂θ

)

0
due to the fluid pumping round

the annular space. The pumping may be in the direction of the rotating
cylinders or opposed to them.

We use Navier-Stokes equations in the cylindrical coordinates (r, θ, z)
with the axis directed along the axis of the cylinders

d~v′

dt
= −

1

ρ
∇p′ − ν rot rot~v′, div~v′ = 0,

2π
∫

0

R2
∫

R1

v′zrdrdθ = 0 (1.1)

and the boundary conditions

R1v
′

r|r=R1
=R2v

′

r|r=R2
=s, vθ|r=Ri

=ΩiRi, v′z |r=Ri
= 0 (i = 1, 2), (1.2)

where v′(t, v′r, v
′

θ, v
′

z) is the velocity vectors, ν is the kinematic viscosity, ρ′

is the density,

∇ =
{ ∂

∂r
,
1

r

∂

∂θ
,

∂

∂z

}

,

d~v′

dt
=

∂~v′

∂t
+ (~v′,∇)~v′ +

{

−
1

r2
(v′θ)

2,
1

r
v′rv

′

θ, 0
}

.

We choose the scales R1, Ω1R1, 1/Ω1, νρ′Ω1, respectively, for length, ve-
locity, time and pressure. Under these assumptions, the system (1.1)–(1.2)
admits the following exact solution with velocity vector ~v0 = {v0r, v0θ, v0z}
and pressure p0:

v0r =
κ0

r
, v0z = 0,

v0θ =















1

2κ

(∂p0

∂θ

)

0

(

− r + A1r
κ+1 + B1

r

)

+ Arκ+1 + B
r , κ 6= −2,

1

4

(∂p0

∂θ

)

0

(

r −
A′

1
ln r+1
r

)

+ A′ ln r+1
r , κ = −2,

1

Re

∂p0

∂r
=

v2
0θ

r
+

κ
2
0

r3
,

(1.3)
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where

A1 =
R2 − 1

Rκ+2 − 1
, B1 =

R2(Rκ − 1)

Rκ+2 − 1
, A =

ΩR2 − 1

Rκ+2 − 1
,

B =
R2(Rκ − Ω)

Rκ+2 − 1
, A′

1 =
R2 − 1

lnR
, A′ =

ΩR2 − 1

lnR
, (1.4)

R=
R2

R1
, Ω=

Ω2

Ω1
, κ0 =

s

Ω1R2
1

, s=Riv0r|r=Ri
(i = 1, 2), Re=

Ω1R
2
1

ν
,

κ = s/ν is the radial Reynolds number.
According to the Rayleigh criterion, neglecting the viscosity, the neces-

sary and sufficient condition of the flow instability will be

Φ(r) =
d

dr
(r2ω0θ)

2 < 0, ω0θ =
v0θ

r
,

while for Φ(r) > 0 the flow is stable.
For the flow (1.3)–(1.4) we have

Φ(r) = 2r3ω0θg(r), (1.5)

where

g(r) =
v0θ

r
+

dv0θ

dr
=

=











1

2κ

[−2 + (κ + 2)A1r
κ ] + (κ + 2)A, κ 6= −2

1

4

(

2 −
A′

1

r2

)

+
A′

r2
, κ = −2.

(1.6)

Suppose the cylinder rotates in the same direction Ω > 0 and pumping
flow is opposed to them,

Pθ =
(∂p0

∂θ

)

0
< 0. (1.7)

Consider the case κ > 0, i.e. there takes place fluid inflow through the
inner cylinder. In this case, taking into account values of the coefficients
(1.4), it is not difficult to see that

ω0θ < 0, 1 < r < R (1.8)

and likewise

g(r) > 0 for r >
[ 2(Rκ+2 − 1)

(κ + 2)(R2 − 1)

]
1

κ

, 0 < ΩR2 < 1, (1.9)

g(r) < 0 for r <
[ 2(Rκ+2 − 1)

(κ + 2)(R2 − 1)

]
1

κ

, ΩR2 > 1. (1.10)

As is known, the condition ΩR2 > 1 is necessary and sufficient for the
stability of a nonviscous and sufficient for a viscous Couette flows [4] in the
whole flow region between the cylinders, while for the flow (1.3)–(1.4) with
pumping the condition of stability (1.10) is sufficient only in some part of its
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region. When κ increases, the region stability likewise increases. Passing
to the limit as κ → ∞, since

lim
κ→∞

[ 2(Rκ+2 − 1)

(κ + 2)(R2 − 1)

]
1

κ

= 2,

we can conclude that the flow is stable in the whole flow region 1 < r < R,
if the conditions ΩR2 > 1 is fulfilled.

Consequently, for the rotating cylinders in the same direction with the
fluid inflow through the inner cylinder if the pumpimg flow is opposed to
them and the condition ΩR2 > 1 is fulfilled, then for the increasing radial
Reynolds number, the flow (1.3)–(1.4) becomes stable in the whole flow
region.

Consider the case κ < 0 for the fluid inflow through the outer cylinder.
In this case (1.8)remains valid, and for κ 6= −2

g(r) < 0, for rκ >
2(Rκ+2 − 1)

(κ + 2)(R2 − 1)
, µR2 > 1, (1.11)

g(r) > 0, for rκ <
2(Rκ+2 − 1)

(κ + 2)(R2 − 1)
, µR2 < 1. (1.12)

If κ = −2, we have

g(r) > 0, for r >
[R2 − 1

2 lnR

]1/2

, ΩR2 > 1, (1.13)

g(r) < 0, for r <
[R2 − 1

2 lnR

]1/2

, ΩR2 < 1. (1.14)

Thus in this case, taking into account (1.7), (1.8), (1.12) and (1.14) we
obtain, that φ(r) < 0 and flow (1.3)–(1.4) is unstable. Passing to the limit
as κ → −∞ we have:

lim
κ→−∞

[ 2(Rκ+2 − 1)

(κ + 2)(R2 − 1)

]
1

κ

= 1.

Consequently, for the rotating cylinders in the same direction with the fluid
inflow through the outer cylinder if the pumping flow is opposed to them
and the condition ΩR2 < 1 is fulfilled, by the increasing in the absolute
value radial Reynolds number, the flow (1.3)–(1.4) becomes instable in the
whole flow region.

2. In [4] in the framework of the linear theory of stability the first loss
of stability of fluid between rigid rotating cylinders in the presence of a
transverse pressure gradient has been investigated.Unlike the earlier works
cited in [4], we consider both the stationary axisymmetric and oscillatory
three-dimensional perturbations for a wide gap between the cylinders. It
was stated that when the stationary flow first losses its stability depending
on Pθ there may take place the stationary axisymmetric as well as oscillatory
flows in the azimuthal direction.
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In the present work we are interested in the effect of the radial Reynolds
number κ on the instability of the main flow (1.3)–(1.4).

Consider an infinitesimal perturbation of the basic flow (1.3)–(1.4) and
describe the perturbed flow by

v′ = ~v0 + ~v, p′ = p0 + p.

The linearized equations of motion then follow from Navier-Stokes equa-
tions and the continuity equation. For axisymmetric disturbances that are
periodic in the axial direction one can look for separated solutions of the
form

~v(vr , vθ, vz) = {u0(r), v0(r), w0(r)}e
iαz , p = p10(r)e

iαz ,

where α is the wave number of the disturbance in the axial direction.
Thus the neutral curves, corresponding to the axisymmetric perturba-

tions, is sought by solving a spectral problem for a system of ordinary
differential equations in dimensionless form:

(L∗ − α2)u0 =
dp10

dr
− 2 Reω0θv0

(L∗∗ − α2)v0 = −Re g(r)u0

(L∗ +
1 − κ

r2
− α2)w0 = αp10 (2.1)

du0

dr
+

u0

r
− αw0 = 0,

u0 = v0 = w0 = 0 (r = 1, R),

where

L∗ =
d2

dr2
+

1 − κ

r

d

dr
−

1 − κ

r2
, L∗∗ =

d2

dr2
+

1 − κ

r

d

dr
−

1 + κ

r2
,

Re =
Ω1R2

1

ν is the Reynolds number, ω0θ =
v0θ

r
and g(r) are given by (1.3)

and (1.6).
When considering the three-dimensional oscillatory perturbations, we

seek for a solution of linearized disturbance equation in the form

~v(tvr, vθ, vz) = eict{u1(r), v1(r), w1(r)}e
−i(mθ+αz),

P = p1(r)e
−i(mθ+αz)eict,

where c is an unknown cyclic frequency (phase velocity of azimuthal waves),
and m is an azimuthal wave number. Having divided the variables, we
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obtain the spectral problem for the system of differential equations

[

L∗ − α2 −
m2

r2
− i Re(c − mω0θ)

]

u1 =
dp1

dr
− 2 Reωv1 −

2im

r2
v1

[

L∗∗ − α2 −
m2

r2
− i Re(c0 − mω0θ)

]

v1 =
im

r
p1 − Re g(r)u1 +

2im

r2
u1

[

L∗ +
1 − κ

r2
− α2 −

m2

r2
− i Re(c − ω0θ)

]

w1 = −iαp1 (2.2)

du1

dr
+

u1

r
−

im

r
v − iαw = 0

u1 = v1 = ω1 = 0 (r = 1, R).

The solution of that spectral problem allowes one to find neutral curves
which corresponds to the initiation of azimuthal waves for three-dimensional
oscillatory perturbations.

Fig. 1.

The problems on eigenvalues (2.1) and (2.2) have been solved numerically
by the shooting method for fixed R, α, m, Pθ, κ, Ω. The use was made of the
calculating algorithm realized by V. Kolesov on computers for Couette flow
[5]. The problems were reduced to the Cauchy boundary value problems
for six first order differential equations with real and complex variables,
respectively.
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Fig. 2.

For numerical integration of these problems the standard Runge-Couette
method was used. Calculations were performed by the numerical minimiza-
tion of Re with respect to the wave numbers m and α in the case R = 2
(radius of the outer cylinder is twice as large as that of the inner cylinder)
and −10 ≤ Pθ ≤ 10. Figs. 1 and 2 show the dependence of the minimized
critical Reynolds number and axial wave number α on Pθ under different
values of the radial Reynolds number κ and Ω. The segments of the curves
on which the azimuthal wave number m is constant, are denoted by the 0, 1,
2. These numbers correspond to the axisymmetric (m = 0) and oscillatory
three-dimensional perturbations with periods 2π(m = 1) and π(m = 2).
On the neutral curves Re = Re(Pθ) there are the points at which pertur-
bations with different wave numbers are equally dangerous, and the curves
α = α(Pθ) at these points are discontinuous.

As calculations show, for Ω = 0 and Ω = 0.2, i.e. when the outer
cylinder is at rest, or when both cylinders rotate in the same direction, for
the flowing fluid through the inner cylinder κ > 0, in the range of variation
Pθ for the first loss of stability there take place only stationary axisymmetric
flows, unlike rigid cylinders [4]: instability leads to a new steady secondary
axisymmetric flow only for Pθ < 0 (pumping flow is opposed to the inner
cylinder), while for Pθ > 0, i.e. the pumping flow has the same direction,
as the inner cylinder there take place both the stationary axissymmetic
and auto-oscillatory regimes with period 2π in the azimuthal direction. An
analogous picture can be seen for the flow (1.3)–(1.4), but only for the
flowing fluid through the outer cylinder.
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When the cylinders rotate in opposite directions, then for the flowing fluid
through the inner cylinder κ > 0 and for Pθ > 0 (the pumping flow and
the inner cylinder rotate in the same direction), after the loss of stability of
main stationary flow there take place stationary axisymmetric flows, while
for Pθ < 0 we have oscillatory three-dimensional flows with period 2π in
the azimuthal direction. For κ < 0 we can see the same picture as for the
rigid cylinders, i.e., depending on Pθ there take place both the stationary
and the auto-oscillatory motions with periods 2π and π.

Thus under the flowing fluid through the inner cylinder when cylinders
rotate in the same direction, or the outer cylinder is at rest then the principle
of exchange of stabilities holds in the considered range of variation of the
constant pressure gradient in the azimuthal direction.

In the rest cases, depending on κ and Pθ, there take place either axisym-
metric or auto-oscillatory regimes.
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