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ON SOLVING THE DIRICHLET BOUNDARY PROBLEM

FOR THE POISSON EQUATION BY THE METHOD OF

CONFORMAL MAPPING

K. AMANO, Z. NATSVLISHVILI AND M. ZAKRADZE

Abstract. In the present paper, the question of solution of the
Dirichlet boundary problem for the Poisson equation by the method
of conformal mapping (MCM) is considered. It is shown that applica-
tion of the method is especially effective in the case where a particular
solution to the Poisson equation cannot be written explicitly. The
cases of both finite and infinite domains are considered. Illustrative
examples are given.

îâäæñéâ. û�îéëáàâêæè ê�öîëéöæ à�êýæèñèæ� ìñ�ïëêæï à�êðë-

èâ�æï�åãæï áæîæýèâï ï�ï�ä�ãîë �éëù�êæï �éëýïêæï ï�çæåýæ çë-

êòëîéñè �ï�ýã�å� éâåëáæå. ê�øãâêâ�æ�, îëé �é éâåëáæï à�éëõâ-

êâ�� à�êï�çñåîâ�æå âòâóðñîæ� æé öâéåýãâã�öæ, îëáâï�ù ìñ�ïëêæï

à�êðëèâ�æï çâîúë �éëê�ýïêæ �î æûâîâ�� ùý�áæ ï�ýæå. à�êýæèñèæ�

îëàëîù ï�ïîñèæ �ïâãâ ñï�ïîñèë �îâå� öâéåýãâãâ�æ. éëùâéñèæ�

ï�æèñïðî�ùæë é�à�èæåâ�æ.

1. The Principle of Solution of Boundary Problems by the

MCM

Let a domainD in the plane z = x+iy ≡ (x, y) be bounded by a piecewise
smooth contour S without multiple points (i.e., S is a simple contour). We
assume that a plane boundary problem consists in finding a function u(x, y)
in the domain D under boundary conditions on S.

As it often happens, the problem can be solved in a relatively simple way
under more complicated boundary conditions for canonical domains such as
a disk, a circular ring, a square and so on. Hence, there are attempts to
transfer the boundary problem posed for the initial (basic) domain D to the
canonical domain G with boundary γ. Obviously in this case generally the
following is being changed: 1) The given differential equation; 2) the domain
in which the unknown function is sought; 3) the boundary conditions.
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As early as the middle of the 19-th century conformal mappings were
widely used for transference of a number of plane problems of mathematical
physics to canonical domains. To implement the transference an analytic
function z = ω(ζ) conformally mapping the domain G in the plane ζ = ξ+iη
onto the domain D is applied (see, e.g., [1]–[4]).

The range of problems solvable by the MCM is very wide. In partic-
ular, the method has been applied successfully in problems of hydro and
aerodynamics, elasticity, filtration etc.

Thus many boundary problems can be reduced to a problem of finding
the function z = ω(ζ). Note that the solution of boundary problems can
easily be constructed when the function z = ω(ζ) is either a rational or poly-
nomial. The mentioned circumstance was organically connected with the
development of methods for constructing conformally mapping functions.

Since conformally mapping functions z = ω(ζ) can be written in explicit
form only for a rather narrow family of domains, one has usually to resort
to approximate methods. Hence quite a number of approximate methods
of constructing mapping functions appeared (see, e.g., [1], [4]–[10]).

It should be noted that in solving boundary problems by the MCM the
following circumstance takes place [11]. The function z = ω(ζ) which is con-
structed approximately, maps conformally the canonical domain G onto the

domain D̃ which is close to D, and thus, practically, the problem stated for

the domain D with boundary S is solved for the domain D̃ with the simple

boundary S̃. Here we mean that the conditions which ensure the existence
and uniqueness of a solution to a mathematical problem are fulfilled for the

domain D̃.
The possibility of such approach is due to the following facts. When

passing from a practical problem to a mathematical model, the idealization
of both the physical properties of the medium and the contour S takes
place. Since the real boundary does not coincide with the ideal boundary
S, the contour S has a tolerance field in which it can vary almost arbitrarily
(without change of type). Physically this means that a small change of
data induces a small change of effect, and mathematically this means that
a solution depends continuously on the data. Therefore, in solving correct
problems by the MCM, we have to find a function z = ω(ζ) such that

the deviation of a simple contour S̃ from the given boundary S be within

admissible limits. It is evident, that if S̃ → S, then ũ(x, y) → u(x, y), where
u(x, y) is a solution of the initial problem, and ũ(x, y) is a solution of the

problem for the domain D̃ with boundary S̃.
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2. The Dirichlet Boundary Problem for Poisson’s Equation

and a General Principle of Its Solution

Let a domain D in the plane z be bounded by a simple contour S. Con-
sider the Dirichlet boundary problem for the Poisson equation

∆u(z) = ϕ(z), z ∈ D, (2.1)

u(z) = g(z), z ∈ S, (2.2)

where u(z) is an unknown function, u(z) ≡ u(x, y) ∈ C2(D)
⋂
C(D), ϕ(z) ∈

C1(D)
⋂
C(D) and g(z) ∈ C(S) are given functions, ∆ is the Laplace oper-

ator.
It is known [12] that the problem (2.1), (2.2) is correct, i.e., the solution

exists, is unique and depends continuously on the data. If the domain D is
infinite, then for the uniqueness of the solution of the problem (2.1), (2.2)
we require in addition that

u(∞) = limu(z) = c, for z → ∞,

where c is a real constant and |c| < ∞. The constant c cannot be fixed in
advance, it should be found while solving the problem (2.1), (2.2).

We note that many problems of the theory of heat conductivity, electro-
statics, the torsion of homogeneous and isotropic beams and rods reduce to
the problem (2.1), (2.2) (see [13], [14]). In the case of a finite domain D
a number of interesting works are devoted to the numerical solution of the
problem (2.1), (2.2) (see, e.g., [15]–[24]).

A general principle of solution of the problem (2.1), (2.2) consists in
seeking its solution in the form

u(z) = u0(z) + v(z), (2.3)

where u0(z) is a particular solution of the equation (2.1) (u0(z) ∈ C(D)),
and v(z) is a solution of the following Dirichlet boundary problem for the
Laplace equation:

∆v(z) = 0, z ∈ D, (2.4)

v(z) = g(z) − u0(z), z ∈ S, (2.5)

which can be solved e.g., by the method of fundamental solutions [22], [23],
[25], [26].

Katsurada and Okamoto obtained extensive results concerning error
bounds and convergence of the method in such domains as a disk, its ex-
terior, or an annulus [27], [28], and then generalized the results to Jordan
domains [29]–[31].

Thus while solving the problem (2.1), (2.2) we find first an analytic form
of the function u0(z). It is evident that the particular solution u0(z) is
defined up to a harmonic function in D. The difficulty in construction
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of u0(z) in explicit form, evidently, depends on the form of ϕ(z). As an
illustration we consider some cases with a finite domain D.

1. ϕ(z) is a polynomial,

ϕ(x, y) =

n∑

i=0

n∑

j=0

aijx
iyj . (2.6)

A particular solution uo(z) has the form

u0(z) ≡ u0(x, y)=
1

a+ b

[
a

n∑

i=0

n∑

j=0

aij
(−1)[j/2]

(i+ 2)(i+ 1)Cj
i+j+2

Pi+j+2,j(x, y)+

+b

n∑

i=0

n∑

j=0

aij
(−1)[i/2]

(j + 2)(j + 1)Ci
i+j+2

P i+j+2,i(x, y)

]
, (2.7)

where

Pi+j+2,j(x, y) =

[j/2]∑

k=0

(−1)kC
2k+{j/2}
i+j+2 xi+j+2−2k−{j/2}y2k+{j/2},

P i+j+2,i(x, y) =

[i/2]∑

k=0

(−1)kC
2k+{i/2}
i+j+2 x2k+{i/2}yi+j+2−2k−{i/2}.

Here, {i/2} denotes the remainder of the ratio i/2, i.e., 1 when i is odd,
and 0 when i is even; [k] denotes the whole part of a number k; a and b are
arbitrary finite numbers and a2 +b2 6= 0; Ck

m is the number of combinations
of k objects from m ones (we put C0

m = 1);Ck
m = Cm−k

m .

2. ϕ(x, y) has the form

ϕ(x, y) =

n∑

i=0

n∑

j=0

aij sin(bix+ ci) sin(djy + ej).

Then

u0(x, y) = −

n∑

i=0

n∑

j=0

aij(b
2
i + d2

j )
−1 sin(bix+ ci) sin(djy + ej).

3. ϕ(x, y) has the form

ϕ(x, y) =
n∑

i=0

n∑

j=0

aije
bix+cjy.

Then

u0(x, y) =

n∑

i=0

n∑

j=0

aij(b
2
i + c2j)

−1ebix+cjy,

where aij , bi, cj , dj , ej are given numbers.
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4. If functions ϕ1(x, y), ϕ2(x, y) are harmonic in the domain D, then the
functions [15, 23]

u1(x, y) = xH1(x, y)/2, u2(x, y) = yH2(x, y)/2,

are particular solutions of the equation (2.1). Here H1(x, y) and H2(x, y)
are harmonic in D and

∂H1(x, y)

∂x
= ϕ1(x, y),

∂H2(x, y)

∂y
= ϕ2(x, y), (x, y) ∈ D,

H1(x, y) =

x∫

x0

ϕ1(t, y) dt+ h1(y), h1(y) = −

y∫

y0

(y − t)
∂ϕ1(x0, t)

∂x
dt,

H2(x, y) =

y∫

y0

ϕ2(x, t) dt + h2(x), h2(x) = −

x∫

x0

(x− t)
∂ϕ2(t, y0)

∂y
dt,

(x0, y0) is an arbitrarily fixed point in D.
In [20], [21], [23] an approximate expression for a particular solution is

constructed on the basis of an approximation of ϕ(x, y). Obviously, in this
case the accuracy of the solution of the problem (2.1), (2.2) depends on the
accuracy of both the solution of the problem (2.4), (2.5) and approximation
of ϕ(x, y).

In general, if the particular solution u0(x, y) cannot be written explicitly,
then as a rule, a logarithmic potential is used as u0(z):

u0(z) = u0(x, y) =
1

2π

∫

D

ϕ(t) ln |z − t|dt1 dt2, (2.8)

t = t1 + it2, z ∈ D, t ∈ D.

It is well known ([12], [13]) that if ϕ(z) ∈ C1(D)
⋂
C(D), the improper inte-

gral (2.8) is continuous on D, twice continuously differentiable and satisfies
the equation (2.1) in D.

Since the integral (2.8) cannot be expressed by elementary functions,
the numerical integration of the integral (2.8) strongly increases the com-
putation time of the boundary problem (2.1), (2.2). For example, in [16]
the integral (2.8) is computed by means of numerical quadrature, and in
[17]–[19] quasi-Monte-Carlo methods are applied to approximate integrals
of type (2.8).

In [24], an improved method for calculating integrals of type (2.8) is given
for finite domains. It gives especially high accuracy if a domain D is a disk.

If D is infinite, direct calculation of integrals of type (2.8) by means of
the above methods is impossible or represents a very difficult problem. If,
besides, the function u0(z) cannot be written explicitly, it is reasonable to
solve the problem (2.1), (2.2) by the method of conformal mapping.
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It is evident that the method of conformal mapping can be applied to
the case, where the particular solution u0(z) can be written explicitly.

3. The Transference of the Boundary Problem onto a Disk by

the MCM

Suppose that a domain D is finite or infinite(i.e., z-plane with a hole) and
G is the unit disk(|ζ| < 1). Let the function z = ω(ζ) conformally map the
disk G onto a domain D, and the function ζ = f(z) be inverse of z = ω(ζ),
i.e., ζ = ω−1(z). It is clear from above mentioned that the systems

{
x = x(ξ, η)

y = y(ξ, η)
and

{
ξ = ξ(x, y)

η = η(x, y)
(3.1)

are mutually inverse.
It is well-known ([1], [2]) that for functions ω(ζ) and f(z) the following

conditions take place:

f ′(z) 6= 0 for z ∈ D, ω′(ζ) 6= 0 for ζ ∈ G,

f ′(z) =
1

ω′(ζ)
for z ∈ D, ζ ∈ G (z ↔ ζ).

(3.2)

Taking into account that the function u(x, y) was unknown in the domain
D, after transference of the problem (2.1), (2.2) onto disk G the unknown
function will be

u∗(ξ, η) = u(x(ξ, η), y(ξ, η)) ≡ u(x, y). (3.3)

Let us note that in order to find a value of the function u(x, y) at any
point of the initial domain D it is necessary to know the function ζ = f(z).
Indeed, since the functions ζ = f(z) and z = ω(ζ) are mutually inverse, at
any point z = (x, y) of D, u(x, y) = u∗(ξ, η), where ξ + iη = ζ = f(z).

Due to the analyticity of the function ζ = f(z) ≡ ξ(x, y) + iη(x, y),
using (3.1), (3.3) we easily obtain that after the transformation the Laplace
operator ∆u(x, y) takes the form (see [1], [4])

∆u(x, y) = |f ′(z)|2∆u∗(ξ, η). (3.4)

From (3.4) we get the known result saying that a function, harmonic before
transformation, remains harmonic, since |f ′(z)| 6= 0 for z ∈ D. According
to (3.2) and (3.4), after transference to the domain G the problem (2.1),
(2.2) takes the form

∆u∗(ξ, η) = |ω′(ζ)|2ϕ∗(ζ) ≡ ψ∗(ζ), ζ = (ξ, η) ∈ G, (3.5)

u∗(τ) = g∗(τ), τ = (ξ, η) ∈ γ, (3.6)

where

ϕ∗(ζ) ≡ ϕ∗(ξ, η) = ϕ(x(ξ, η), y(ξ, η)), g∗(τ) ≡ g∗(ξ, η) = g(x(ξ, η), y(ξ, η)).
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If the domain D is infinite, then in order to have ψ∗(ζ) ∈ C1(G)
⋂
C(G)

we should require in addition that

ϕ(z) = O
( 1

|z|4+α

)
for |z| → ∞, α ≥ 0. (3.7)

Indeed, if for the mapping z = ω(ζ) we assume for definiteness that the
point z = ∞ transforms into the point ζ = 0, then at the point ζ = 0 the
function ω(ζ) will have a simple pole, i.e., the function ω(ζ) will have the
form

ω(ζ) =
c

ζ
+ ω1(ζ), (3.8)

where c = c1 + ic2 is a constant, and a function ω1(ζ) is analytic in the disk
G. It is evident that the function ω(ζ) cannot have other singularities in G,
since in this case the mapping will not be one-to-one. From (3.8) we have

ω′(ζ) = −
c

ζ2
+ ω′

1(ζ),

|ω′(ζ)|2 =
|ζ2ω′

1(ζ) − c|2

|ζ|4
.

(3.9)

Using (3.7), (3.8) and (3.9) we have

|ϕ∗(ζ)| <
A|ζ|4+α

|c+ ζω1(ζ)|4+α
for ζ ∈ G,

|ψ∗(ζ)| <
A|ζ|α|ζ2ω′

1(ζ) − c|2

|ζω1(ζ) + c|4+α
< B for ζ ∈ G,

where A and B are real numbers. If we choose the origin of coordinates
of plane z outside of D, then ζω1(ζ) + c 6= 0 for ζ ∈ G and consequently
ψ∗(ζ) ∈ C1(G)

⋂
C(G), Q.E.D.

Thus we obtain again the Dirichlet boundary problem for the Poisson
equation with changed right hand sides, however for the disk G.

Evidently, for approximate solution of the problem (3.5), (3.6) we can use
the general method described in Section 2, however for the same purpose
we can apply any other variant. In particular, a solution to the problem
(3.5), (3.6) is sought in the form of the sum (see [1], pp. 595–597)

u∗(ζ) = v(ζ) + w(ζ), (3.10)

where v(ζ) is a solution to the Dirichlet boundary problem

∆v(ζ) = 0, ζ ∈ G, (3.11)

v(τ) = g∗(τ), τ ∈ γ, (3.12)

and the function w(ζ) represents a solution to the boundary problem

∆w(ζ) = ψ∗(ζ), ζ ∈ G, (3.13)

w(τ) = 0, τ ∈ γ. (3.14)
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The problem (3.11), (3.12) can be approximately solved by the method
of fundamental solutions or the Poisson integral ([1], [2], [13])

v(ζ) = v(r, ϑ) =
1

2π

2π∫

0

g∗(τ)
1 − r2

1 − 2r cos(θ − ϑ) + r2
dθ, (3.15)

where ζ = (r cosϑ, r sinϑ), τ = (cos θ, sin θ), 0 ≤ ϑ ≤ 2π, 0 ≤ θ ≤ 2π,
0 ≤ r < 1, can be applied. Expression (3.15) is meaningless when r=1,
however it is known [2], that

lim
ζ→τ

v(ζ) ≡ lim
r→1
ϑ→θ

v(r, ϑ) = g∗(θ) ≡ g∗(τ), ζ ∈ G, τ ∈ γ.

Concerning the problem (3.13), (3.14), its solution has the form [1]

w(ζ) = w(r, ϑ) =
1

2π

∫ ∫

G

ψ∗(t) ln
|ζ − t|

|1 − ζt|
dt1 dt2 =

=
1

2π

∫ ∫

G

ψ∗(t) ln |ζ − t| dt1 dt2−

−
1

2π

∫ ∫

G

ψ∗(t) ln |1 − ζt|dt1 dt2 = I1 + I2 , (3.16)

where t = (t1, t2) ≡ t1 + it2 = ρeiθ, ζ = (ξ, η) = reϑ, ζ ∈ G, t ∈ G.
Since in the problem (3.13), (3.14) ψ∗(ζ) ∈ C1(G)

⋂
C(G), logarithmic

potential I1 satisfies the Poisson equation (3.13) in the domain G and is
continuous in G (is harmonic outside G). The function I2 is harmonic in
G, continuous in G and

lim
ζ→γ

(I1 + I2) = 0, ζ ∈ G.

For calculation of the integral (3.16) we can apply the method described in
[24].

4. Examples of Application of Conformal Mapping

In the examples below (for control of the accuracy of the solution of the
problem (2.1), (2.2) by the method of conformal mapping) the role of ϕ(z)
was played by a function for which a particular solution to equation (2.1)
can be written explicitly. Namely, in the case of a finite simply connected
domain we take the function

ϕ(z) = ϕ(x, y) = x2y3. (4.1)

In the case of function (4.1) in formula (2.6) we have: n = 3; a11 = a12 =
a21 = a32 = a33 = 0; a23 = 1. By (2.7) we get that the particular solution
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of equation (2.1) for the function (4.1) has the form

u0(z) =
1

a+ b

(
− a

x6y

60
+ a

x4y3

12
− b

y7

420
+ b

x2y5

20

)
, (4.2)

where a and b are arbitrary finite numbers which do not vanish simultane-
ously.

In order to obtain from (4.2) a simpler particular solution we consider
two cases: 1) a 6= 0, b = 0; 2) a = 0, b 6= 0. Consequently, we come to the
following particular solutions of the equation (2.1)

u1
0(z) = −

x6y

60
+
x4y3

12
,

u2
0(z) = −

y7

420
+
x2y5

20
.

In Example 4.1 the function

g(z) = −
x6y

60
+
x4y3

12
, z ∈ S, (4.3)

is taken as a boundary function. It is clear that for functions (4.1) and (4.3)
the exact solution of the problem (2.1), (2.2) will be

u(z) = −
x6y

60
+
x4y3

12
, z ∈ D.

In the case of an infinite domain D as ϕ(z) we take

ϕ(z) =
4

|z|4
, (4.4)

where |z| =
√
x2 + y2 and it is assumed that the origin lies outside of the

domain D (for example in the ”center” of a hole). It is easy to see that for
function (4.4) the particular solution of equation (2.1) has the form

u0(z) =
1

|z|2
, z ∈ D.

If as a boundary function we take

g(z) =
1

|z|2
, z ∈ S, (4.5)

then the exact solution to the problem (2.1), (2.2) for the functions (4.4)
and (4.5) will have the form

u(z) = u(x, y) =
1

|z|2
, z ∈ D.

Evidently, in the above case u(z) ∈ C2(D)
⋂
C(D), ϕ(z) ∈ C1(D)

⋂
C(D)

and

u(z) = O

(
1

|z|2

)
, ϕ(z) = O

(
1

|z|4

)
for z → ∞.
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Example 4.1. Let the domain D be the interior of the Pascal limacon
with the equation

S : z = K(τ + aτ2),

where 0 ≤ a ≤ 0.5, K > 0, τ = eiθ, 0 ≤ θ ≤ 2π.

It is known [3] that a function z = ω(ζ) which conformally maps the
disk G onto the interior of the indicated limacon has the form ω(ζ) =
K(ζ + aζ2), ζ = ξ + iη ∈ G. We have

|ω′(ζ)|2 = K2
[
(1 + 2aξ)2 + 4a2η2

]
,

z=x+ iy=K(ζ + aζ2), x=K
[
ξ + a(ξ2 − η2)

]
, y=Kη(1 + 2aξ). (4.6)

Consequently, for the functions (4.1) and (4.3) the problem (2.1), (2.2) after
transference onto the disk G will have the form (see (3.5), (3.6))

∆u∗(ξ, η) = ψ∗(ξ, η), (ξ, η) ∈ G, (4.7)

u∗(ξ, η) = g∗(ξ, η), (ξ, η) ∈ γ, (4.8)

where

ψ∗(ξ, η) = K7
[
(1 + 2aξ)2 + 4a2η2

][
ξ + a(ξ2 − η2)

]2
(η + 2aξη)3,

g∗(ξ, η) =
K7

[
ξ + a(ξ2 − η2)

]4
(η + 2aξη)3

12
−

−
K7

[
ξ + a(ξ2 − η2)

]6
(η + 2aξη)

60
.

It is evident that, ψ∗(ξ, η) ∈ C1(G)
⋂
C(G), g∗(ξ, η) ∈ C(γ).

Example 4.2. Let D be the exterior of the ellipse S : x = a cos t, y =
b sin t, 0 ≤ t ≤ 2π. As it is known [3] the function which conformally maps
the disk G onto the exterior of the above mentioned ellipse has the form

z = ω(ζ) = c

(
1

ζ
+ dζ

)
, ζ ∈ G, (4.9)

where

c =
a+ b

2
, d =

a− b

a+ b
, a ≥ b.

From (4.9) we have

|ω′(ζ)|2 = c2
[
d2 +

1 − 2d(ξ2 − η2)

(ξ2 + η2)2
]
,

x = cξ
(
d+

1

ξ2 + η2

)
, y = cη

(
d−

1

ξ2 + η2

)
.

(4.10)

Thus, if in the problem (2.1), (2.2) as the functions ϕ(z) and g(z) we will
take (4.4) and (4.5) respectively, then after transference onto the disk G it
will have the form

∆u∗(ξ, η) = ψ∗(ξ, η), (ξ, η) ∈ G, (4.11)
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u∗(ξ, η) = g∗(ξ, η), (ξ, η) ∈ γ, (4.12)

where

ψ∗(ξ, η) =
4[d2(ξ2 + η2)2 − 2d(ξ2 − η2) + 1]

c2[d2(ξ2 + η2)2 + 2d(ξ2 − η2) + 1]2
, (ξ, η) ∈ G,

g∗(ξ, η) =
1

c2[d2 + 2d(ξ2 − η2) + 1]
, (ξ, η) ∈ γ.

Since

|1 + dζ2|2 = d2(ξ2 + η2)2 + 2d(ξ2 − η2) + 1 6= 0, (ξ, η) ∈ G (0 ≤ d < 1),

therefore ψ∗(ξ, η) ∈ C1(G)
⋂
C(G), g∗(ξ, η) ∈ C(γ).

Finally we note that for concrete numbers K, a, c and d the solution to
the problems (4.7), (4.8) and (4.11), (4.12) must be sought in the form
(3.10).

Let us assume that we have found the value of an approximate solution
of the problem (4.7), (4.8) (or (4.11), (4.12)) at a point (ξ, η) ∈ G. Using
the principle of the conformal mapping method we conclude that actually
we have found an approximate value of the solution u(x, y) to the problem
(2.1), (2.2) for functions (4.1) and (4.3) (or (4.4) and (4.5)) at a point
(x, y) ∈ D, where x and y are defined by the relation z = ω(ζ), i.e., from
(4.6) (or from (4.10)).

5. Concluding Remarks

We have presented an algorithm of approximate solution of the Dirichlet
boundary problem for the Poisson equation. This algorithm is a synthe-
sis of the MCM and an improved method [24] for calculating integrals of
logarithmic potential type. An application of the described algorithm is
especially effective in the case when a particular solution to the Poisson
equation cannot be written explicitly. In the case of an infinite domain for
an application of the presented algorithm an additional condition is estab-
lished for the right-hand side of the Poisson equation.
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