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THE TWO-WEIGHTED INEQUALITIES FOR

GENERALIZED MARCINKIEWICZ INTEGRALS

TS. TSANAVA

Abstract. In the present paper we establish the two-weighted in-
equalities for generalized Marcinkiewicz integrals. We consider the
integrals with multiple kernels as well.

îâäæñéâ. ê�öîëéöæ á�éðçæùâ�ñèæ� ëîûëêæ�êæ ñðëèë�â�æ à�ê-

äëà�áëâ�ñèæ é�îùæêçâãæøæï æêðâàî�èâ�æï�åãæï.

Let P be a closed set of the space Rn and δ(y) be a distance from the
point y to the set P . J. Marcinkiewicz was the first who studied the following
integral transforms [1]:

Jf(x) =

∫

P

(δ(y))λ

|x− y|n+λ
f(y) dy, λ > 0 (1.1)

and

Jf(x) =

∫

{y:δ(y)≤δ0<1}

(log 1
δ(y) )

−1

|x− y|n
f(y) dy. (1.2)

These integrals are of importance in the theory of Fourier series. Modifi-
cation of the above integrals have been considered by L. Carleson [2] and
A. Zygmund [3]. For example, A. Zygmund studied the following integral
transformations:

(J∗f)(x) =

∫

Rn

[δ(y)]λ

(|x− y| + δ(y))n+λ
f(y) dy, (1.3)

(J∗f)(x) =

∫

{δ(y)≤δ0<1}

[lg 1
δ(y) ]

−1

(|x− y| + δ(y))n
f(y) dy. (1.4)

It is evident that if x ∈ P , then (J∗f)(x) and (J∗f)(x) = (Jf)(x). In the
theory of singular and hypersingular integrals the most important turned
out to be the integrals written in the form (1.3) and (1.4). In this section
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we shall prove the two-weight inequality for generalized Marcinkiewicz inte-
grals. This generalization has been considered by Calderon [4] who proved
the one-weighted inequality for the Muckenhoupt Ap classes.

Let on the set (0,∞)× [0,∞) be defined the nonnegative function ϕ(ρ, t)
satisfying the following conditions:

(1) for every fixed t, t ∈ [0,∞) the function (ρ + t)−nϕ(ρ, t) is nonin-
creasing with respect to ρ, and

lim
ρ→∞

(ρ+ t)−nϕ(ρ, t) = 0;

(2) there exists the positive constant c such that
∞
∫

0

ρn−1(ρ+ t)−nϕ(ρ, t) dρ ≤ c,

for every nonnegative t.
Let ψ(y)≥0 be a measurable function such that the function ϕ(|x−y|, ψ(y))
is measurable. Consider the integral

Kf(x) =

∫

Rn

ϕ(|x − y|, ψ(y))

(|x− y| + ψ(y))n
ϕ
(

|x− y|, ψ(y)
)

f(y) dy. (1.5)

Obviously, when

ϕ(ρ, t) =
t2

(ρ+ t)2
, ψ(y) = δ(y),

we obtain Kf(x) = J∗f(x).
Let w(x) be a nonnegative locally integrable function. We define the

space Lp
w as follows:

Lp
w =

{

f : ‖f‖Lp

w
<∞

}

, where
∥

∥f
∥

∥

Lp

w

=

(
∫

K

∣

∣f(x)
∣

∣

p
w(x) dx

)1/p

.

Definition 1.1. Let v and w be nonnegative increasing functions, and
v(π−) <∞, w(π−) <∞. (v, w) ∈ ap, if the condition

sup
0<x<π

∞
∫

x

v(t)

tp
dt

(

x
∫

0

w1−p′

(t) dt

)p−1

<∞

is fulfilled.

Definition 1.2. Let v and w be nonnegative decreasing functions, and
v(π−) <∞, w(π−) <∞. (v, w) ∈ bp if

sup
0<x<π

x
∫

0

v(t) dt

(

∞
∫

x

w1−p′

(t)t−p′

dt

)p−1

<∞
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is fulfilled.

In the sequel, we shall consider the radial weights σ(x) = w(|x|), ρ(x) =
v(|x|), x ∈ Rn. To prove the two-weighted inequalities for the general-
ized Marcinkiewicz integral we shall use the following criteria of the two-
weighted inequalities (in the case of monotone weights) for maximal Hardy–
Littlewood functions

Mf(x) = sup
r>0

1

B(x, r)

∫

B(x,r)

∣

∣f(y)
∣

∣ dy,

where B(x, r) is a ball in an n-dimensional Euclidean space.

Theorem A. If 1 < p < ∞, v and w are increasing even functions,

then for the boundedness of the operator H : Lp
σ → Lp

ρ it is necessary and

sufficient that (v, w) ∈ ap

Theorem B. If 1 < p < ∞, v and w are decreasing functions, then for

the boundedness of the operator H : Lp
σ → Lp

ρ it is necessary and sufficient

that the condition

sup
r>0

1

r

r
∫

0

v(t) dt

(

1

r

r
∫

0

w1−p′

(t) dt

)p−1

<∞.

be fulfilled.

The above theorems can be proved analogously to the case of singular
Calderon–Zygmund integrals treated in their joint work by D. Edmunds and
V. Kokilashvili [5].

Theorem 1.1. Let 1 < p <∞ and, moreover, let the condition (v, w) ∈ bp
be fulfilled. Let ρ(x) = v(|x|) and σ(x) = w(|x|). Then there exists the

positive constant c such that for any function f ∈ Lp
σ(Rn) the inequality

∫

Rn

∣

∣(Kf)(x)
∣

∣

p
ρ(x) dx ≤ c

∫

Rn

∣

∣f(x)
∣

∣

p
σ(x) dx (1.6)

holds.

To prove the theorem we shall need one lemma which establishes acon-
nection between the generalized Marcinkiewicz integral and the maximal
Hardy–Littlewood function.

Lemma. Let f and g be some positive measurable functions defined on

an n-dimensional space. Then the inequality
∫

Rn

Kf(x)g(x) dx ≤ c

∫

Rn

f(x)Mg(x) dx (1.7)

holds, where the constant c does not depend on the functions f and g.
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Proof. We have
∫

Rn

(Kf)(x)g(x) dx =

=

∫

Rn

f(y)

∫

Rn

1

[|x− y| + ψ(y)]n
ϕ
(

|x− y|, ψ(y)
)

g(x) dx ≤

≤

∫

Rn

f(y) sup
t

∫

Rn

1

[|x− y| + t]n
ϕ
(

|x− y|, t
)

g(x) dx. (1.8)

Let

G(y, ρ) =

∫

|x−y|≤ρ

g(x) dx,

then

G(y, ρ) ≤ cρn(Mg)(y)

and
∫

Rn

1

[|x− y| + t]n
ϕ
(

|x− y|, t
)

g(x)g(x) dx =

∞
∫

ρ=0

ϕ(ρ, t)

(ρ+ t)n
dG(y, ρ) =

= −

∞
∫

ρ=0

G(y, ρ)d
ϕ(ρ, t)

(ρ+ t)n
≤ −c(Mg)(y)

∞
∫

ρ=0

ρnd
ϕ(ρ, t)

(ρ+ t)n
=

= nc(Mg)(y)

∞
∫

0

ρn−1

(ρ+ t)n
ϕ(ρ, t) dρ ≤ nc(Mg)(y).

Taking into account the signs of the functions G(y, ρ) and (ρ+t)−nϕ(ρ, t)
and the fact that these functions tend to zero as ρ → 0 and ρ → ∞,
respectively, then after integration by parts and substitution into (1.8) we
obtain the desired result. �

Proof of Theorem 1. Obviously,

∥

∥Kf
∥

∥

Lp

ρ

= sup
g

∣

∣

∣

∣

∫

Rn

(Kf)(x)g(x) dx

∣

∣

∣

∣

, (1.9)

where the least upper bound is taken for all functions g such that
∫

Rn

∣

∣g(x)
∣

∣

p′

ρ1−p′

(x) dx ≤ 1

or
∥

∥g
∥

∥

Lp′

ρ1−p′

≤ 1. (1.10)
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On the other hand, using Hölder’s inequality, we obtain
∫

Rn

∣

∣f(x)
∣

∣Mg(x) ≤
∥

∥f
∥

∥

Lρ

σ

∥

∥Mg
∥

∥

Lp′

σ1−ρ′

(1.11)

Applying now Theorem A and the condition (1.6), we find that
∫

Rn

∣

∣f(x)
∣

∣Mg(x) dx ≤ c
∥

∥f
∥

∥

Lρ

σ

∥

∥g
∥

∥

Lp′

σ1−ρ′

≤ c
∥

∥f
∥

∥

Lρ

σ

. (1.12)

Making use of inequalities (1.9), (1.10) and (1.11), we complete the proof
of the theorem. �

Theorem 1.2. Let 1 < ρ < ∞, v and w be nonnegative even and

increasing functions and let the condition

sup
r>0

1

r

r
∫

0

w1−ρ(t) dt

(

1

r

r
∫

0

v(t) dt

)p′−1

<∞

be fulfilled. If ρ(x) = v(|x|) and σ(x) = w(|x|), then there exists the positive

constant c such that for any function f ∈ Lp
σ(Rn) the inequality

∫

Rn

∣

∣(Mf)(x)
∣

∣

p
ρ(x) dx ≤ c

∫

Rn

∣

∣f(x)
∣

∣

p
σ(x) dx

holds.

Proof. Obviously,

∥

∥Kf
∥

∥

Lp

ρ

= sup
g

∣

∣

∣

∣

∫

Rn

(Kf)(x)g(x) dx,

∣

∣

∣

∣

(1.13)

where the least upper bound is taken for all functions g such that
∥

∥g
∥

∥

Lp′

ρ1−p′

≤ 1.

On the other hand, by virtue of Hölder’s inequality we obtain
∫

Rn

∣

∣f(x)
∣

∣Mg(x) dx ≤
∥

∥f
∥

∥

Lp

σ

∥

∥Mg
∥

∥

Lp′

σ1−p′

. (1.14)

From Theorem B and the condition (1.6) it follows that
∫

Rn

∣

∣f(x)
∣

∣Mg(x) dx ≤ c
∥

∥f
∣

∣

Lp

σ

∥

∥g
∥

∥

Lp′

ρ1−p′

≤
∥

∥f
∥

∥

Lp

σ

. (1.15)

Using inequalities (1.13), (1.14) and (1.15), we complete the proof of the
theorem. �
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2. The Multiple Generalized Marcinkiewicz Integrals. Here we have
established the two-weighted inequalities for multiple generalized Marcinki-
ewicz integrals.

Consider the integral transformation

Kf(x, y) =

∞
∫

−∞

∞
∫

−∞

ϕ1(|x − t|, x1(t))

|x− t| + x1(t)

ϕ2(|y − s|, x2(s))

|y − s| + x2(s)
f(t, s)dtds, (2.1)

where the functions ϕi and xi(i = 1, 2) satisfy the same conditions as those
of the above functions ϕ and x.

Using twice inequality (1.7), we can conclude that for every pair of non-
negative functions given on R2, the inequality

∞
∫

−∞

∞
∫

−∞

Kf(x, y)g(x, y) dxdy ≤ c

∞
∫

−∞

∞
∫

−∞

f(x, y)M1(M2f)(x, y) dxdy (2.2)

is valid, where M1(M2f)(x, y) is the iterated maximal function,

M1(M2f)(x, y) = sup
h

1

h

x+h
∫

x−h

(

sup
k

1

k

y+k
∫

y−k

∣

∣f(t, s)
∣

∣ ds

)

dt.

The following statements are true.

Theorem 2.1 Let 1 < p < ∞, v and w be the weighted functions such

that they are even and increasing with respect to every variable. Assume

also that w(x, y) = w1(x)w2(y). If the condition

sup
a,b>0

(

1

ab

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)(

1

ab

a
∫

0

b
∫

0

v(x, y)dxdy

)p′−1

<∞ (2.3)

is fulfilled, then the operator K is bounded from Lp
w(R2) to the space Lp

v(R
2).

Theorem 2.2. Let 1 < p < ∞. Suppose that the weighted functions

of two variables are even, decreasing with respect to every variable, and

w(x, y) = w1(x)w2(y). If, moreover, the condition

sup
a,b>0

(

∞
∫

a

∞
∫

b

w1−p′

(x, y)

(xy)p′
dxdy

)(

a
∫

0

b
∫

0

v(x, y)dxdy

)p′−1

<∞ (2.4)

is fulfilled, then the operator K is bounded from Lp(R2) to the space Lp
v(R

2).

The above stated theorems can be proved by the same way as Theo-
rems 1.1 and 1.2 but here we have only to use inequality (2.2) and the
criteria of the boundedness of iterated maximal functions from Lp

w(R2) to
Lp

v(R
2) established in [6].
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Now we will proceed to investigating the one-weighted estimate for the
operatorK for which we prove the analogue of the theorem due to Calderon.

Introduce the following

Definition. We say that the weight w : R2 → R1 belongs to the class
Ap(J) if

sup
1

|J|

∫

J

w(x, y)dxdy

(

1

|J|

∫

J

w1−p′

(x, y)dxdy

)p−1

<∞, (2.5)

where the supremum is taken over all rectangles with sides parallel to the
coordinate axes.

These classes have been introduced in [7]. It was proved that they char-
acterize the classes of those weighted functions for which the strong is the
maximal function and multiple Hilbert transforms are bounded in Lp

w(R2)
(see, for e.g., [8]).

It has also been proved in [7] that the condition w ∈ Ap(J) is equivalent
to the simultaneous fulfilment of the following two conditions:

sup
y

sup
I

1

|I|

∫

R1

w(x, y) dx

(

1

|I|

∫

R1

w1−p′

(x, y)dxdy

)p−1

<∞ (2.6)

and

sup
x

sup
I

1

|I|

∫

R1

w(x, y) dy

(

1

|I|

∫

R1

w1−p′

(x, y)dydy

)p−1

<∞. (2.7)

The classes Ap(J) are narrower than the classes Ap introduced by B. Mu-
kenhoupt, when the exact upper bound is taken over all squares. For ex-
ample, for the power functions w(x) = |x|α we have

w ∈ Ap ⇔ −2 < α < 2(p− 1),

while

w ∈ Ap(J) ⇔ −1 < α < p− 1.

Theorem. Let 1 < p < ∞ and w ∈ Ap(J). Then the operator K is

bounded in Lp
w(R2).

The proof of this theorem is similar to that of Theorem 1.1, but we have
only to apply inequality (2.2) and the fact that the condition w ∈ Ap(J) is

equivalent to w1−p′

∈ Ap′(J), p′
p

p− 1
. The latter is obvious by the definition

of the class Ap(J).
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