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CONTACT PROBLEM FOR ORTHOTROPIC PLATE WITH

AN ELASTIC SEMI-INFINITE INCLUSION

N. SHAVLAKADZE

Abstract. A contact problem of the theory of elasticity of infinite
orthotropic plates with an elastic semi-infinite inclusion of variable
rigidity is considered. The problem is reduced to the system of in-
tegral differential equations with variable coefficient of singular op-
erator. If such coefficient varies with power law we can manage to
investigate the obtained equations, to get exact solutions and to es-
tablish behavior of unknown contact stresses at the ends of elastic
inclusion.

îâäæñéâ. à�êýæèñèæ� áîâç�áë�æï åâëîææï ï�çëêð�óðë �éë-

ù�ê� ùãè�áæ ïæýæïðæï ê�ýâãî�á ñï�ïîñèë áîâç�áæ ø�îåãæï éóë-

êâ ñï�ïîñèë ëîåëðîëìñèæ òæîòæðæï�åãæï. �éëù�ê� éæõã�êæ-

èæ� ïæêàñè�îñèæ ëìâî�ðëîå�ê ùãè�áæ çëâòæùæâêðæï éóëêâ æê-

ðâàîë{áæòâîâêùæ�èñî à�êðëèâ��å� ïæïðâé�äâ. îëáâï�ù âï çë-

âòæùæâêðæ ý�îæïýëã�êæ ç�êëêæå æùãèâ��, à�éëçãèâñèæ� éæ�â�ñèæ

à�êðëèâ��å� ïæïðâé�, �àâ�ñèæ� äñïðæ �éëê�ýïêâ�æ á� á�áàâêæ-

èæ� ñùêë�æ ï�çëêð�óðë ú��ãâ�æï õëò�óùâã� ø�îåãæï �ëèëâ�æï

é�ýèë�èë��öæ.

Introduction

The contact problems on interaction of thin-shelled elements (stringers
or inclusions) of various geometric form with massive deformable bodies
belong to the extensive field of the theory of contact and mixed problems of
mechanics of deformable rigid bodies. A vast number of work are devoted
to problems of tension and bending of finite or infinite plates with thin
absolutely rigid elements or elements with constant rigidity (see, e.g., [1-5]).
We investigated the contact problems of tension and bending of plates with
inclusion of variable rigidity, as for unknown contact stresses we obtained
the Prandtl’s integral differential equation with variable coefficient. In the
case when the coefficient of a singular operator tends at the ends of line
of integration to zero of any order, this equation is equivalent to singular
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integral equation of the third kind. We have investigated this equation and
got or approximate solutions [6-8].

1. The basic relations

An orthotropic plate is strengthened with an inclusion of variable rigidity
along semi-axis (0,∞) loaded with tangential efforts of intensity τ0(x). Let
us define the distribution law of contact strains along the line of contact.
Suppose that after deformation the inclusion remains rectilinear and hor-
izontal. According to the equilibrium equations of inclusion element and
Hooke’s law we have

du(1)(x)

dx
=

1

h1(x)E1(x)

x∫

0

[τ (1)(t) − τ0(t)]dt

dv(1)(x)

dx
= 0, x > 0

(1.1)

and the equilibrium equations of the inclusion has the form

∞∫

0

[τ (1)(t) − τ0(t)]dt = 0,

∞∫

0

q(1)(t)dt = 0 (1.2)

where u(1)(x) and v(1)(x) are the horizontal and vertical displacements of
inclusion points; τ (1)(x) and q(1)(x)-the skippings of tangential and normal
contact strains, subjects to determinations; E1(x) and h1(x)-the modulus
of elasticity of the inclusion and its thickness, respectively.

Besides, it is known that the derivations of displacements on the border
of anisotropic, unorthotropic semiplane, dependent on outer load, acting on
semi axis, has the form

du(2)(x)

dx
=
A

(2)
1

π

∞∫

0

q(2)(t)dt

t− x
+B

(2)
1 q(2)(x) +

A
(2)
2

π

∞∫

0

τ (2)(t)dt

t− x

dv(2)(x)

dx
=
A

(2)
3

π

∞∫

0

q(2)(t)dt

t− x
+B

(2)
4 τ (2)(x) +

A
(2)
4

π

∞∫

0

τ2(t)dt

t− x

(1.3)

where u(2)(x) and v(2)(x) are the boundary values of horizontal and verti-
cal displacements on the semi axes; τ (2)(x), q(2)(x)-the boundary values of
tangential and normal strains, respectively.

When a body is orthotropic and the axes of anisotropy are parallel to
coordinate axes, the characteristic equation is biquadrate and its roots are
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purely imaginary [9] (µ
(2)
1 = iν

(2)
1 , µ

(2)
2 = iν

(2)
2 ), then

A
(2)
1 = 0, B

(2)
1 = −β(2)

11 ν
(2)
1 ν

(2)
2 − β

(2)
12 , A

(2)
2 = −β(2)

11 (ν
(2)
1 + ν

(2)
2 )

A
(2)
3 = −β(2)

22

ν
(2)
1 + ν

(2)
2

ν
(2)
1 ν

(2)
2

, A
(2)
4 = 0, B

(2)
4 = β

(2)
22

1

ν
(2)
1 ν

(2)
2

+ β
(2)
12

β
(2)
ij -the elastic coefficients of plates material.
Due to the contact condition of the inclusion with orthotropic plate

du(1)(x)

dx
=
du(2)(x)

dx
,

dv(1)(x)

dx
=
dv(2)(x)

dx
(1.4)

2. Solution of problem

By formulas (1.1-1.4) for determination of unknown contact strains one
may receive the following system of singular integral differential equations:

∞∫

0

ψ′(t)dt

t− x
+
πB

(2)
1

A
(2)
2

ϕ(x) =
π

h1(x)E1(x)A
(2)
2

ψ(x) + f1(x)

∞∫

0

ϕ(t)dt

t− x
+
πB

(2)
4

A
(2)
3

ψ′(x) = f2(x), x > 0

(2.1)

f1(x) = −
∞∫

0

τ0(t)dt

t− x
, f2(x) = −πB

(2)
4

A
(2)
3

τ0(x), ϕ(x) = q(1)(x) = q(2)(x)

ψ(x) =

x∫

0

[τ(t) − τ0(t)]dt, τ(t) = τ (1)(t) = τ (2)(t).

Assume that E1(x)h1(x) = h0x
ω , h0 = const and ω is an arbitrary real

number (in point x = 0 the inclusion has a qualitative cusp, while in infinity
is becomes rigid).

System of equations (2.1) is considered with the following boundary con-
ditions

ψ(0) = 0, ψ(∞) = 0,

∞∫

0

ϕ(t)dt = 0.

Substituting x = eξ, t = eξ, Fourier’s transformation of eqs. (2.1) gives:

scthπsΨ(s) +
B

(2)
1

A
(2)
2

isΦ(s) = kΨ(s+ i(ω − 1)) − F1(s)

scthπsΦ(s) +
B

(2)
4

A
(2)
3

isΨ(s) = −F2(s), |s| <∞
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where Φ(s) and Ψ(s) are Fourier’s transformations for functions ϕ0(ξ) =
ξ∫

−∞

eζϕ(eζ)dζ and ψ0(ξ) = ψ(eξ), respectively, while F1(s) and F2(s)-for

functions f1(e
ξ) and f2(e

ξ), k = − 1

h0A
(2)
2

> 0.

From the last system, relative to function Ψ(s), there is received the
boundary condition of Karleman type problem for strip

1

k
G(s)Ψ(s) − Ψ(s+ i(ω − 1)) = F (s), |s| <∞ (2.2)

whereG(s) = scthπs
(
1+

B
(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

th2 πs
)
, F (s) =

1

k

( iB(2)
1 F2(s)

A
(2)
2 cthπs

−F1(s)
)
.

After solution of the last problem we can find function Φ(z) by formula

Φ(z) = −F2(z) + iB
(2)
4 zΨ(z)/A

(2)
3

zcthπz
. (2.3)

Therefore, we consider the problem: find function Ψ(z), which is holo-
morphic in strip 0 < Im z < ω − 1, vanishing in infinity, continuously ex-
tendable on the border of the strip and satisfying condition (2.2).

Let us represent the coefficient of problem (2.2) in the form

G(s) = −isG0(s) cth π sth
πs

2(ω − 1)

sh(π(s + i(ω − 1))/2(ω − 1))

sh(πs/2(ω − 1))
× (2.4)

×
(
1 +

B
(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

)

whereG0(s) =
(
1+

B
(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

th2 πs
)/(

1+
B

(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

)
. Using the properties

of biquadrate equation, one can show that −1 <
B

(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

< 0, therefore,

function G0(s) is positive and G0(±∞) = 1.

Since the index of function G0(s) cthπ sth
πs

2(ω − 1)
equals zero and

ln
[
G0(s) cth π sth

πs

2(ω − 1)

]
is integrable on entire axis, then it is repre-

sented in the form

G0(s) cth π sth
πs

2(ω − 1)
=

X0(s)

X0(s+ i(ω − 1))
(2.5)

where

X0(z) = exp

{
1

2(ω − 1)

∞∫

−∞

ln
[
G0(s) cthπ sth

πs

2(ω − 1)

]
cthπ(s− z)ds

}
.
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Function X0(z) is holomorphic in the strip, continuous on the border of the
strip and bounded in the closed strip 0 ≤ Im z ≤ ω−1 and in infinity.Putting
(2.4), (2.5) into condition (2.2) and introducing notations

Ψ1(z) =
zX0(z)Ψ(z)

sh(πz/2(ω − 1))
, H0 = 1 +

B
(2)
1 B

(2)
4

A
(2)
2 A

(2)
3

we receive

H0

k
(ω − 1 − is)Ψ1(s) + Ψ1(s+ i(ω − 1)) =

=
F (s)(s+ i(ω − 1))X0(s+ i(ω − 1))

sh(π(s+ i(ω − 1))/2(ω − 1))
. (2.6)

The coefficient of condition (2.6) is represented in the form

H0

k
(ω − 1 − is) =

X1(s+ i(ω − 1))

X1(s)
, |s| <∞

where X1(z) = exp
(
− iz

ω − 1
ln

(ω − 1)H0

k

)
Γ(1− iz

ω − 1
), 0 < Im z < ω−1.

Substituting the value into (2.6), the solution of this problem takes the form
[10]

Ψ(z) = − X(z)

2iz(ω − 1)

∞∫

−∞

F (t)(t+ i(ω − 1))dt

X(t+ i(ω − 1)) sh(π(t− z)/(ω − 1))
(2.7)

where X(z) =
X1(z)

X0(z)
sh

πz

2(ω − 1)
, 0 < Im z < ω − 1

Function X(z) satisfies condition

C1|t|1/2 ≤ |X(t+ iτ)| ≤ C2|t|3/2, 0 ≤ τ ≤ ω − 1.

When functions F1(t) and F2(t) exponentially vanish in infinity, then the
integral in solution (2.7) exponentially decreases, i.e., it is continuous in
closed strip 0 ≤ Im z ≤ ω − 1 and exponentially vanishes in infinity.

Therefore, the solution of given problem is given by formula (2.7) and
function Φ(z) is determined by formula (2.3).

Suppose that ω ≥ 2. The contact strain can be calculated by formula

τ (1)(x) − τ0(x) = ψ′(x) =
x−1

√
2π

∞∫

−∞

itΨ(t)e−it ln xdt =

=
ix−1

√
2π

∞∫

−∞

(t+ i(ω − 1))Ψ(t+ i(ω − 1))e−i(t+i(ω−1)) ln xdt =

= xω−2τ1(x),
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where τ1(x) is bounded function in the neighborhood of point x = 0. Func-
tion Φ(z) exponentially vanishes in infinity, it is analytically extendable in

strip 0 < Im z < ω − 1, except, perhaps, the point: z0 =
i

2
, z1 =

3i

2
, . . .

being poles in strip. Then according to Cauchy’s formula we have

q(1)(x) = x−1ϕ′

0(lnx) = x−1 res
t= i

2

[itΦ(t)e−it ln x] + x−1 res
t= 3i

2

[itΦ(t)e−it lnx]+

+
ix−1

√
2π

∞∫

−∞

(t+ i(ω − 1))Φ(t+ i(ω − 1))e−i(t+i(ω−1)) ln xdt =

= c1x
−1/2 + c2x

1/2 + xω−2q1(x),

where c1 and c2 are known constant, q1(x) is bounded function for x ≥ 0.
For 1 < ω < 2, according to condition (2.2) we see that function Ψ(z),

defined by formula (2.7), is analytically extendable in strip 0 < Im z < 1, ex-

cept point z =
i

2
. Therefore, tangential contact strain in the neighborhood

of point x = 0 has the following estimation: τ (1)(x) − τ0(x) = O(x−1/2),
x→ 0.

Now consider the case when ω ≤ 1. Introducing notation: m = −(ω−1),
condition (2.2) turns in

1

k
G(s)Ψ(s) − Ψ(s− im) = F (s), −∞ < s <∞. (2.8)

The problem takes the form: find a function, which is holomorpic in strip
−m < Im z < m, vanishing in infinity, bounded in entire strip, except points
z+

k = t+k +iτ+
k (k = 0, 1, 2, . . . , l), being zeros of function G(z) in upper strip.

If we solve the problem: find a function, which is holomorphic in strip
−m < Im z < 0, vanishing in infinity, continuously extendable on the border
of the strip and according to condition (2.8), then the solution of preceding
problem is given by function

Ψ0(z) =





Ψ(z), −m < Im z < 0
F (z) − Ψ(z − im)

G(z)
k, 0 < Im z < m.

Analogously to previous reasoning for function Ψ(z) we have the following
representation

Ψ(z) =
X̃(z)

2im

∞∫

−∞

F (t)dt

X̃(t) sh(π(t − z)/m)
, −m < Im z < 0

X̃(z) =
X̃0(z)X̃1(z)

z
sh

πz

2m
, X̃1(z) = Γ

(
1 +

iz

m

)
exp

( iz
m

ln
mH0

k

)
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X̃0(z) = exp

{
1

2im

∞∫

−∞

ln
[
G0(t) cthπ tth

πt

2m

]
cth π(t− z)dt

}
.

Unknown contact strain: τ (1)(x) − τ0(x) = c0x
τ+

0
−1 + ϕ2(x), c0 = const,

ϕ2(x)-is bounded function for x ≥ 0.
For ω = 1 condition (2.2) gives

Ψ(z) = k
F (z)

G(z) − k

and for tangential strain we have: τ (1)(x) − τ0(x) = O(xµ−1), for x → 0,
where µ is the zero of function G(z) − k, closest to real axis in the upper
semi-plane.

In the case of isotropic body (ν is Poisson’s ratio, E-modulus of elasticity)
the system of eqs. (2.1) gives

scthπsΨ(s) +
1 − 2ν

2(1 − ν)
isΦ(s) = k0Ψ(s+ i(ω − 1)) − F1(s),

scthπsΦ(s) +
1 − 2ν

2(1 − ν)
isΨ(s) = −F2(s), k0 =

E

h0(1 − ν2)
,

which gives the following condition

1

k0
G(s)Ψ(s) − Ψ(s+ i(ω − 1)) = F (s), −∞ < s <∞

where

G(s) = scthπs
[
1 − (1 − 2ν)2

4(1 − ν)2
th2 πs

]
,

F (s) =
1

k0

[
F1(s) −

1 − 2v

2(1 − v)
thπsF2(s)

]
.

Therefore, the contact problem for orthotropic plane with elastic inclusion,
when the axes of anisotropy are parallel to co-ordinate axes, is being solved
exactly in the same way as the analogous problem for isotropic plane.
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