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GENERALIZED GOURSAT PROBLEM FOR A SPATIAL

FOURTH ORDER HYPERBOLIC EQUATION WITH

DOMINATED LOW TERMS

B. MIDODASHVILI

Abstract. In this paper the correctness of the generalized Goursat
problem for a spatial fourth order hyperbolic equation with dominated
low terms is considered. The effect of influence of low terms on the
correctness of the problem is shown.

îâäæñéâ. ê�öîëéöæ éâëåýâ îæàæï áëéæêæîâ��áæ ñéùîëïûâãîâ-

�æ�êæ ÿæìâî�ëèñîæ à�êðëèâ�æï�åãæï à�êýæèñèæ� àñîï�ï à�êäë-

à�áëâ�ñèæ ïæãîùæåæ �éëù�êæï çëîâóðñèë�æï ï�çæåýæ. ê�øãâêâ-

�æ� á���èæ îæàæï ûâãîâ�æï à�ãèâêæï âòâóðæ �éëù�êæï çëîâóðñ-

èë��äâ.

In the space R3 of independent variables x1, x2 and x3 let

D :=
{
x := (x1, x2, x3) ∈ R3; R := ] −∞; +∞[ ; xi > 0; i = 1, 2, 3

}
,

Ω :=
{
(ξ, η)∈R2 : 0 < ξ, η

}
, Si :=D ∩

{
x∈R3 : xi =0

}
, i=1, 2, 3;

Γi := Sj ∩ Sk, i 6= j, k; i, j, k = 1, 2, 3.

For the class of functions ϕ , continuous in D with its own partial deriva-
tives Di

x1
ϕ, Dj

x2
ϕ, Dk

x3
ϕ, 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l we use the

symbol Cm,n,l(D), m, n, l = 0, 1, . . ., while the symbol Cm,n,l
0 (D), m, n,

l = 0, 1, . . . denotes the subspace of those functions of the class Cm,n,l(D)
which vanish on Γi, i = 1, 2, 3, with their partial derivatives. Suppose that
the functions ai,j,k belong to the class Ci,j,k(D), i = 0, 1, 2; j, k = 0, 1;
i+ j + k 6= 4 and f ∈ C0(D).

For the equation

∂4

∂x2
1∂x2∂x3

u ( x )+
∑

i+j+k≤3
i=0,1,2;j,k=0,1

ai,j,k (x)
∂i+j+k

∂xi
1∂x

j
2∂x

k
3

u ( x )=f( x ) (1)

we consider the following generalized Goursat problem: find in the domain
D a regular solution of equation (1) of the class C2,1,1

0 (D) which satisfies
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the following boundary conditions:
( ∑

i+j+k≤3
i=0,1,2; j,k=0,1

bi,j,km

∂i+j+k

∂xi
1∂x

j
2∂x

k
3

u

)∣∣∣∣
xm=0

= fm, m = 2, 3, (2)

( ∑

i+j+k≤3
i=0,1,2; j,k=0,1

b
i,j,k
1n

∂i+j+k

∂xi
1∂x

j
2∂x

k
3

u

)∣∣∣∣
x1=0

= f1n(x), n = 1, 2, (3)

where bi,j,km ∈ Ci,j,k(Sm), bi,j,k1n ∈ Ci,j,k(S1), fm ∈ C0(Sm), f1n ∈ C0(S1),
m = 2, 3; n = 1, 2 are the given functions.

The problem (1)–(3) represents the variant of the two– and three- dimen-
sional generalized Goursat problems for linear hyperbolic equations consid-
ered in [1-3]. Some spatial boundary problems for the third order hyperbolic
equations are considered in [4, 5].

Theorem 1. If conditions

det

(
b
0,1,1
11 b

1,1,1
11

b
0,1,1
12 b

1,1,1
12

)
6= 0, b

2,0,1
2 6= 0, b

2,1,0
3 6= 0

hold, then the problem (1)–(3) is uniquely solvable in the class C
2,1,1
0 (D).

Proof. Let us show that in the above conditions it is possible to define
uniquely the Goursat traces on characteristic planes xi = 0, i = 1, 2, 3.
Towards this end, we introduce the functions

α1 := u
∣∣
S1

, α2 := ux1

∣∣
S1

, α3 := ux1x1

∣∣
S1

.

Then with respect to the unknown function

χ :=




α1

α2

α3





from equation (1) and conditions (3) we have

Aχx2x3
+Bχx2

+ Cχx3
+Dχ = G, (4)

where

A :=




a0,1,1
∣∣
S1

a1,1,1
∣∣
S1

1

b
0,1,1
11 b

1,1,1
11 0

b
0,1,1
12 b

1,1,1
12 0


 , B :=




a0,1,0
∣∣
S1

a1,1,0
∣∣
S1

a2,1,0
∣∣
S1

b
0,1,0
11 b

1,1,0
11 b

2,1,0
11

b
0,1,0
12 b

1,1,0
12 b

2,1,0
12


 ,

C :=




a0,0,1
∣∣
S1

a1,0,1
∣∣
S1

a2,0,1
∣∣
S1

b
0,0,1
11 b

1,0,1
11 b

2,0,1
11

b
0,0,1
12 b

1,0,1
12 b

2,0,1
12


 ,
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D :=




a0,0,0
∣∣
S1

a1,0,0
∣∣
S1

a2,0,0
∣∣
S1

b
0,0,0
11 b

1,0,0
11 b

2,0,0
11

b
0,0,0
12 b

1,0,0
12 b

2,0,0
12


 ,

G :=




f
∣∣
S1

f11

f12


 .

It is easy to see that the function χ satisfies the homogenous Goursat con-
ditions

χ
∣∣
Γ2∪Γ3

= 0. (5)

According to the conditions of the theorem, detA 6= 0, and therefore the
problem (4), (5) is uniquely solvable, and thus we can define uniquely the
Goursat traces u

∣∣
x1=0

, ux1

∣∣
x1=0

.

Further, we introduce the functions

β1 := u
∣∣
S3

, β2 := ux3

∣∣
S3

.

Now, with respect to the unknown function ϕ :=

(
β1

β2

)
, from equation (1)

and from the second condition of (2) we obtain

A′ϕx1x1x2
+B′ϕx1x1

+ C′ϕx1x2
+D′ϕx1

+ E′ϕx2
+ F ′ϕ = G′ (6)

where

A′ :=

(
a2,1,0

∣∣
S3

1

b
2,1,0
3 0

)
, B′ :=

(
a2,0,0

∣∣
S3

a2,0,1
∣∣
S3

b
2,0,0
3 b

2,0,1
3

)
,

C′ :=

(
a1,1,0

∣∣
S3

a1,1,1
∣∣
S3

b
1,1,0
3 b

1,1,1
3

)
, D′ :=

(
a1,0,0

∣∣
S3

a1,0,1
∣∣
S3

b
1,0,0
3 b

1,0,1
3

)
,

E′ :=

(
a0,1,0

∣∣
S3

a0,1,1
∣∣
S3

b
0,1,0
3 b

0,1,1
3

)
, F ′ :=

(
a0,0,0

∣∣
S3

a0,0,1
∣∣
S3

b
0,0,0
3 b

0,0,1
3

)
,

G′ :=

(
f
∣∣
S3

f3

)

It is easy to verify that the following Goursat conditions

ϕ
∣∣
x1=0

= 0, ϕ
∣∣
x2=0

= 0, ϕx1

∣∣
x1=0

= 0. (7)

hold. According to the conditions of the theorem, detA′ 6= 0, and therefore
the problem (6), (7) is uniquely solvable and hence the Goursat trace u

∣∣
x3=0

is uniquely defined [3].
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Further, let us introduce the functions

γ1 := u
∣∣
S2

, γ2 := ux2

∣∣
S2

.

With respect to unknown function ψ :=

(
γ1

γ2

)
, from equation (1) and from

the first condition of (2) we get

A′′ψx1x1x3
+B′′ψx1x1

+ C′′ψx1x3
+D′′ψx1

+ E′′ψx3
+ F ′′ψ = G′′, (8)

where

A′′ :=

(
a2,1,0

∣∣
S2

1

b
2,1,0
2 0

)
, B′′ :=

(
a2,0,0

∣∣
S2

a2,0,1
∣∣
S2

b
2,0,0
2 b

2,0,1
2

)
,

C′′ :=

(
a1,1,0

∣∣
S2

a1,1,1
∣∣
S2

b
1,1,0
2 b

1,1,1
2

)
, D′′ :=

(
a1,0,0

∣∣
S2

a1,0,1
∣∣
S2

b
1,0,0
2 b

1,0,1
2

)
,

E′′ :=

(
a0,1,0

∣∣
S2

a0,1,1
∣∣
S2

b
0,1,0
2 b

0,1,1
2

)
, F ′′ :=

(
a0,0,0

∣∣
S2

a0,0,1
∣∣
S2

b
0,0,0
2 b

0,0,1
2

)
,

G′′ :=

(
f
∣∣
S2

f2

)
.

It is easy to verify that there hold the following Goursat conditions

ψ
∣∣
x1=0

= 0, ψ
∣∣
x3=0

= 0, ψx1

∣∣
x1=0

= 0 (9)

hold. Since detA′′ 6= 0, the problem (8), (9) is uniquely solvable and there-
fore the Goursat trace u

∣∣
x2=0

is uniquely defined.

As is known, in this case the Goursat problem [7]




∂4

∂x2
1∂x2∂x3

u(x) +
∑

i+j+k≤3
i=0,1,2; j,k=0,1,

ai,j,k(x)
∂i+j+k

∂xi
1∂x

j
2∂x

k
3

u(x) = f(x)

u
∣∣
x1=0

= σ1, u
∣∣
x2=0

= σ2, u
∣∣
x3=0

= σ3, ux1

∣∣
x1=0

= σ1
1

is uniquely solvable.
Now let us show that the above-constructed solution of the Goursat prob-

lem is of class C2,1,1
0 . To this end, we consider, for example, the edge Γ1

and show that

∂i+j+k

∂xi
1∂x

j
2∂x

k
3

u
∣∣∣
Γ1

= 0, i+ j + k ≤ 4, i = 0, 1, 2; j, k = 0, 1. (10)

As it can be seen from the process of construction of the solution, there take
place the following conditions:

u
∣∣
Γ1

= 0, ux1

∣∣
Γ1

= 0, ux2

∣∣
Γ1

= 0, ux3

∣∣
Γ1

= 0.
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It is easy to see that these conditions ensure the fulfillment of (10), except

ux1x2x3

∣∣
Γ1

= 0, ux2x3

∣∣
Γ1

= 0.

Let us show the last conditions. On the edge Γ1 equation (8) reads as
(
A′′ψx1x1x3

+ C′′ψx1x3
+ E′′ψx3

)∣∣∣
Γ1

= 0

Introducing a new function Ψ := ψx3

∣∣
Γ1

, we obtain the ordinary second

order differential equation

A′′Ψx1x1
+ C′′Ψx1

+ E′′Ψ = 0. (11)

From conditions (3), when x1 = x2 = x3 = 0 , we have



b
1,1,1
11 ux1x2x3

∣∣
x=0

+ b
0,1,1
11 ux2x3

∣∣
x=0

= 0

b
1,1,1
12 ux1x2x3

∣∣
x=0

+ b
0,1,1
12 ux2x3

∣∣
x=0

= 0
.

Since the determinant of the system is nonzero, we have the unique solution

ux1x2x3

∣∣
x=0

= ux2x3

∣∣
x=0

= 0,

and therefore for equation (11) we have the Cauchy problem

Ψ(0) = Ψx1
(0) = 0.

Thus Ψ
∣∣
Γ1

= 0, and hence ψx3

∣∣
Γ1

= 0. Finally, ux2x3

∣∣
Γ1

= 0,

ux1x2x3

∣∣
Γ1

= 0.

By analogy we can verify that conditions (10) are valid for the rest edges
Γ2 and Γ3. �

Thus the theorem is proven.
Let us show by a simple equation

ux1x1x2x3
= F, F ∈ C0(D), (12)

that the low terms in the boundary conditions (2), (3) affect the correctness
of the problem (12), (2), (3).

It is easy to see that the regular solution of equation (12) of class C2,1,1
0 (D)

can be represented in the following form [7]:

u(x1, x2, x3) =

x1∫

0

x2∫

0

(x1 − ξ1)ϕ(ξ1, ξ2) dξ1 dξ2+

+

x1∫

0

x3∫

0

(x1 − ξ1)ψ(ξ1, ξ3) dξ1 dξ3 +

x2∫

0

x3∫

0

χ(ξ2, ξ3) dξ2 dξ3+

+x1

x2∫

0

x3∫

0

χ̃(ξ2, ξ3) dξ2 dξ3 +

x1∫

0

x2∫

0

x3∫

0

(x1 − ξ1)F (ξ1, ξ2, ξ3) dξ1 dξ2 dξ3, (13)
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where

ϕ(x1, x2) := ux1x2
(x1, x2, 0), ψ(x1, x3) := ux1x3

(x1, 0, x3),

χ(x2, x3) := ux2x3
(0, x2, x3), χ̃(x2, x3) := ux1x2x3

(0, x2, x3),

and formula (13) establishes one-to-one correspondence between the solu-

tions of equation (12) of the class C2,1,1
0 (D) and the functions ϕ, ψ, χ, χ̃

belonging to the class C0(Ω).

Remark 1. Here we take into account the fact that R(x; ξ) = x1 − ξ1 is
the Riemann function for equation (12).

Substituting (13) in the boundary conditions (2), (3), we obtain the sys-
tem of the third kind Volterra integral equations

b
0,1,1
11 (x2, x3)χ(x2, x3) + b

1,1,1
11 (x2, x3)χ̃(x2, x3)+

+b0,0,1
11 (x2, x3)

x2∫

0

χ(ξ2, x3) dξ2 + b
1,0,1
11 (x2, x3)

x2∫

0

χ̃(ξ2, x3) dξ2+

+b0,1,0
11 (x2, x3)

x3∫

0

χ(x2, ξ3) dξ3 + b
1,1,0
11 (x2, x3)

x3∫

0

χ̃(x2, ξ3) dξ3+

+b0,0,0
11 (x2, x3)

x2∫

0

x3∫

0

χ(ξ2, ξ3) dξ2dξ3+

+b1,0,0
11 (x2, x3)

x2∫

0

x3∫

0

χ̃(ξ2, ξ3) dξ2 dξ3 = f̃11(x2, x3),

b
0,1,1
12 (x2, x3)χ(x2, x3) + b

1,1,1
12 (x2, x3)χ̃(x2, x3)+

+b0,0,1
12 (x2, x3)

x2∫

0

χ(ξ2, x3) dξ2 + b
1,0,1
12 (x2, x3)

x2∫

0

χ̃(ξ2, x3) dξ2+

+b0,1,0
12 (x2, x3)

x3∫

0

χ(x2, ξ3) dξ3 + b
1,1,0
12 (x2, x3)

x3∫

0

χ̃(x2, ξ3) dξ3+

+b0,0,0
12 (x2, x3)

x2∫

0

x3∫

0

χ(ξ2, ξ3) dξ2 dξ3+

+b1,0,0
12 (x2, x3)

x2∫

0

x3∫

0

χ̃(ξ2, ξ3) dξ2 dξ3 = f̃12(x2, x3), (14)
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b
2,0,1
2 (x1, x3)ψ(x1, x3) + b

1,0,1
2 (x1, x3)

x1∫

0

ψ(ξ1, x3) dξ1+

+b0,0,1
2 (x1, x3)

x1∫

0

(x1 − ξ1)ψ(ξ1, x3) dξ1 + b
2,0,0
2 (x1, x3)

x3∫

0

ψ(x1, ξ3) dξ3+

+b1,0,0
2 (x1, x3)

x1∫

0

x3∫

0

ψ(ξ1, ξ3) dξ1 dξ3+

+b0,0,0
2 (x1, x3)

x1∫

0

x3∫

0

(x1 − ξ1)ψ(ξ1, ξ3) dξ1 dξ3 = f̃2(x1, x3),

b
2,1,0
3 (x1, x2)ϕ(x1, x2) + b

1,1,0
3 (x1, x2)

x1∫

0

ϕ(ξ1, x2) dξ1+

+b0,1,0
3 (x1, x2)

x1∫

0

(x1 − ξ1)ϕ(ξ1, x2) dξ1 + b
2,0,0
3 (x1, x2)

x2∫

0

ϕ(x1, ξ2) dξ2+

+b1,0,0
3 (x1, x2)

x1∫

0

x2∫

0

ϕ(ξ1, ξ2) dξ1 dξ2+

+b0,0,0
3 (x1, x2)

x1∫

0

x2∫

0

(x1 − ξ1)ϕ(ξ1, ξ2) dξ1 dξ2 = f̃3(x1, x2),

where

f̃11(x2, x3) = f11(x2, x3) − b
2,0,1
11 (x2, x3)

x2∫

0

F (0, ξ2, x3) dξ2−

b
2,1,0
11 (x2, x3)

x3∫

0

F (0, x2, ξ3) dξ3 − b
2,0,0
11 (x2, x3)

x2∫

0

x3∫

0

F (0, ξ2, ξ3) dξ2 dξ3,

f̃12(x2, x3) = f12(x2, x3) − b
2,0,1
12 (x2, x3)

x2∫

0

F (0, ξ2, x3) dξ2−

−b2,1,0
12 (x2, x3)

x3∫

0

F (0, x2, ξ3) dξ3 − b
2,0,0
12 (x2, x3)

x2∫

0

x3∫

0

F (0, ξ2, ξ3) dξ2 dξ3,
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f̃2(x1, x3) = f2(x1, x3) − b
1,1,1
2 (x1, x3)

x1∫

0

F (ξ1, 0, x3) dξ1−

−b2,1,0
2 (x1, x3)

x3∫

0

F (x1, 0, ξ3) dξ3 − b
1,1,0
2 (x1, x3)

x1∫

0

x3∫

0

F (ξ1, 0, ξ3)dξ1dξ3−

−b0,1,1
2 (x1, x3)

x1∫

0

(x1 − ξ1)F (ξ1, 0, x3)dξ1−

−b0,1,0
2 (x1, x3)

x1∫

0

x3∫

0

(x1 − ξ1)F (ξ1, 0, ξ3)dξ1dξ3,

f̃3(x1, x2) = f3(x1, x2) − b
1,1,1
3 (x1, x2)

x1∫

0

F (ξ1, x2, 0) dξ1−

−b2,0,1
3 (x1, x2)

x2∫

0

F (x1, ξ2, 0)dξ2 − b
1,0,1
3 (x1, x2)

x1∫

0

x2∫

0

F (ξ1, ξ2, 0)dξ1dξ2−

−b0,1,1
3 (x1, x2)

x1∫

0

(x1 − ξ1)F (ξ1, x2, 0)dξ1−

−b0,0,1
3 (x1, x2)

x1∫

0

x2∫

0

(x1 − ξ1)F (ξ1, ξ2, 0)dξ1dξ2.

Introducing the notation

A :=

(
b
0,1,1
11 b

1,1,1
11

b
0,1,1
12 b

1,1,1
12

)
, A2 :=

(
b
0,1,1
11 b

1,1,1
11

b
0,1,1
12 b

1,1,1
12

)
, A3 :=

(
b
0,1,0
11 b

1,1,0
11

b
0,1,0
12 b

1,1,0
12

)
,

A23 :=

(
b
0,0,0
11 b

1,0,0
11

b
0,0,0
12 b

1,0,0
12

)
,X :=

(
χ

χ̃

)
, F :=

(
f̃11

f̃12

)
,

the first two integral equations can be rewritten in the form

A(x2, x3)X(x2, x3) +A2(x2, x3)

x2∫

0

X(ξ2, x3) dξ2+

+A3(x2, x3)

x3∫

0

X(x2, ξ3)dξ3+
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+A23(x2, x3)

x2∫

0

x3∫

0

X(ξ2, ξ3)dξ2dξ3 = F (x2, x3), (x2, x3) ∈ Ω.

As is known, if detA(x2, x3) 6= 0, (x2, x3) ∈ Ω, then the last Volterra in-
tegral equation is uniquely solvable. As for the third and the fourth Volterra
integral equations, in (14) if b2,0,1

2 6= 0 and b2,1,0
3 6= 0 everywhere, then they

are uniquely solvable.

Further, let us show that if the condition b
2,1,0
3 6= 0 in Theorem 1 is

violated, the problem (1)–(3) under appropriate conditions can nevertheless

be still correct. Thus we suppose that b2,1,0
3 = 0 everywhere, and the rest

coefficients bi,j,k3 , i = 0, 1, 2; j, k = 0, 1; i+ j+ k 6= 4 in the left-hand side of
the fourth equation of (14) are constant. The fourth integral equation will
be read as

b
1,1,0
3

x1∫

0

ϕ(ξ1, x2)dξ1 + b
0,1,0
3

x1∫

0

(x1 − ξ1)ϕ(ξ1, x2)dξ1+

+b2,0,0
3

x2∫

0

ϕ(x1, ξ2)dξ2 + b
1,0,0
3

x1∫

0

x2∫

0

ϕ(ξ1, ξ2)dξ1dξ2+

+b0,0,0
3 (x1, x2)

x1∫

0

x2∫

0

(x1 − ξ1)ϕ(ξ1, ξ2)dξ1dξ2 = f̃3(x1, x2). (15)

Introducing the function

Φ(x1, x2) :=

x1∫

0

x2∫

0

(x1 − ξ1)ϕ(ξ1, ξ2) dξ1 dξ2, (x1, x2) ∈ Ω,

equation (15) can be rewritten as follows:

b
2,0,0
3 Φx1x1

+ b
1,1,0
3 Φx1x2

+ b
1,0,0
3 Φx1

+ b
0,1,0
3 Φx2

+ b
0,0,0
3 Φ = f̃3. (16)

Noticing that

Φ
∣∣
x1=0

= Φ
∣∣
x2=0

= 0, (17)

we can conclude that the solvability of equation (15) is reduced to that of
equation (16) with the boundary conditions (17). Note that the derivative
Φx1x1x2

should be continuous, and this is provided by imposing additional
conditions of smoothness with respect to the variable x1 on the functions f3
and F . Besides, due to the definition of these functions we have Φx1

∣∣
x1=0

=

0.
It is easy to see that if b2,0,0

3 = 0 and b
1,1,0
3 6= 0, then the problem (16),

(17) represents the Goursat problem, and therefore it is uniquely solvable.
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Suppose now that b2,0,0
3 · b1,1,0

3 < 0, and not restricting the generality

of reasoning we assume that b2,0,0
3 < 0, b1,1,0

3 > 0. With respect to new

variables ξ = x2 −
b
1,1,0

3

b
2,0,0

3

x1, η = x2 equation (16) is read as

Φ∗
ξη + αΦ∗

ξ + βΦ∗
η + γΦ∗ = f̃∗, (18)

where α, β, γ are certain constants and f̃∗ is the known function. It is easy
to verify that the conditions

Φ∗
∣∣
η=0

= Φ∗
∣∣
ξ=η

= 0 (19)

are valid. For equation (18) we consider the Goursat problem with the
following conditions:

Φ∗
∣∣
η=0

= 0, Φ∗
∣∣
ξ=0

= µ, µ(0) = 0, (20)

where the function µ is such that the solution of the Goursat problem (18),
(20) satisfies conditions (19). As is known [6], the solution of the Goursat
problem (18), (20) reads as

Φ∗(ξ, η) = R(0, η; ξ, η)µ(η) +

η∫

0

[
αR(0, τ ; ξ, η) −

∂

∂τ
R(0, τ ; ξ, η)

]
µ(τ) dτ+

+

ξ∫

0

dt

η∫

0

R(t, τ ; ξ, η)f̃∗(t, τ) dτ,

and for ξ = η, due to (19),

R(0, η; η, η)µ(η) +

η∫

0

[
αR(0, τ ; η, η) −

∂

∂τ
R(0, τ ; η, η)

]
µ(τ) dτ+

+

η∫

0

dt

η∫

0

R(t, τ ; ηη)f̃∗(t, τ) dτ = 0. (21)

Noticing also that for the Riemann function we have

R(0, η; η, η) = exp

{
−

η∫

0

β(τ, η)dτ

}
6= 0,

we see that the solution of the integral Volterra equation (21) satisfies con-
ditions (19) and therefore the problem (18), (19) is uniquely solvable.

Thus, for the case when b
2,1,0
3 = 0, b2,0,0

3 = 0 and b1,1,0
3 6= 0 the problem

(16), (17) is solvable and therefore equation (15) is solvable too.
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Further, consider the case when b
2,1,0
3 = b

1,1,0
3 = b

2,0,0
3 = 0. Then equa-

tion (16) reads as

b
1,0,0
3 Φx1

+ b
0,1,0
3 Φx2

+ b
0,0,0
3 Φ = f̃3, (22)

with
Φ(x1, 0) = 0, Φ(0, x2) = 0, x1, x2 ∈ R+. (23)

This case is considered in [3]. It is found that conditions b0,1,0
3 · b1,0,0

3 ≥ 0,

|b0,1,0
3 | + |b1,0,0

3 | 6= 0 or b0,1,0
3 · b1,0,0

3 < 0 together with the equality
x2∫

0

exp
{b0,0,0

3

b
0,1,0
3

(ξ2−x2)
}
f̃3

(
x1+

b
1,0,0
3

b
0,1,0
3

(ξ2−x2), ξ2

)
dξ2 = 0, x2 ∈ R+, (24)

ensure the solvability of the problem (22), (23) and, hence, of equation (15).
Thus the following theorem is valid

Theorem 2. If det

(
b
0,1,1
11 b

1,1,1
11

b
0,1,1
12 b

1,1,1
12

)
6= 0, b2,0,1

2 6= 0 and any of the

following conditions

a) b2,1,0
3 = b

2,0,0
3 = 0, b1,1,0

3 6= 0,

b) b2,1,0
3 = 0, b2,0,0

3 · b1,1,0
3 < 0,

c) b2,1,0
3 = b

1,1,0
3 = b

2,0,0
3 = 0, b0,1,0

3 · b1,0,0
3 ≥ 0,

∣∣∣b0,1,0
3

∣∣∣+
∣∣∣b1,0,0

3

∣∣∣ 6= 0,

d) b2,1,0
3 = b

1,1,0
3 = b

2,0,0
3 = 0, b0,1,0

3 · b1,0,0
3 < 0 together with equality

(24), take place, then the problem (12), (2), (3) is uniquely solvable in the

class C
2,1,1
0 (D) for any f2 ∈ C0(S2), f3 ∈ C

1,0
0 (S3), f1n ∈ C0(S1), n = 1, 2,

F ∈ C
1,0,0
0 (D).

References
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