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DYNAMICAL STABILITY OF ORTHOTROPIC SHELLS OF

ROTATION, CLOSE BY THEIR SHAPE TO THE

CYLINDRICAL ONES, UNDER THE ACTION OF

MERIDIONAL STRESSES

S. KUKUDZHANOV

Abstract. In the present paper we investigate the influence of merid-
ional forces on the form of wave formation, eigen oscillations, on mag-
nitude of lower frequencies and on the boundaries of dynamical insta-
bility of orthotropic shells of revolution, close to cylindrical ones.

îâäæñéâ. ê�öîëéöæ à�êýæèñèæ� éâîæáæ�êñèæ ú�èâ�æï à�ãèâê�

ùæèæêáîñè òëîé�ïå�ê éæ�ýèëâ�ñèæ �îñêãæåæ ëîåëðîëìñèæ

à�îïæï ï�ä�ã�îäâ éëáâ�ñèæ ð�è�ñîæ û�îéëóéêæï òëîé�äâ, ñé-

ùæîâïæ îýâãâ�æï ïæáæáâäâ á� áæê�éæñî éáàî�áë��äâ.

We investigate eigen oscillations and dynamical stability of orthotropic
shells of revolution, close by their shape to cylindrical ones, under the action
of meridional stresses uniformly distributed over the shell faces. We consider
the shells of middle length whose middle surface element is described by the
parabolic function. On the basis of the theory of shallow shells the resolving
equation for oscillations of the corresponding prestressed shell is obtained.
This equation in an isotropic case differs from the well-known one [1] by an
additive term which may be of the same order as another terms. We con-
sider the shells of positive and negative Gaussian curvature. Shell edges are
assumed to be simply supported. In dimensionless form we present formu-
las and universal curves of dependence of the least frequency, forms of wave
formation and boundaries of dynamical instability on the parameters of or-
thotropy, preliminary stress, Gaussian curvature and on the amplitude of
shell deviation from the cylinder. It is shown that in the presence of prelimi-
nary stresses the orthotropy parameters and shell deviation from cylindrical
form (order of thickness) may essentially change the lower frequencies, the
forms of wave formation and boundaries of dynamical instability of the cor-
responding prestressed orthotropic cylindrical shell. It should be noted that
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for convex shells under preliminary pressure the influence of an elastic axial
parameter is stronger than of an elastic circumferential parameter, while for
concave shells the situation is opposite. However, for shells under prelimi-
nary tension the leading role of one or another parameter of orthotropy may
be changed depending on the magnitude of preliminary stress and Gaussian
curvature.

1. Let us consider the shell whose midlength surface is formed by rotating
a square parabola around the z-axis of the Cartesian coordinate system x,
y, z, with the origin at the middle of the segment of the axis of revolution
(Fig.1). It is assumed that radius R of the middle surface cross-section of
the shell is defined by the equality

R = r + δ0
[

1 − ξ2(r/ℓ)2
]

(1.1)

where r is radius of the face cross-section; δ0 is maximal deviation (for
δ0 > 0 the shell is convex, while for δ0 < 0 it is concave); L = 2ℓ is the shell
length; ξ = z/r. We consider the midlength shells ([2], [3]) and assume that

(

δ0/r
)2
,

(

δ0/ℓ
)2 ≪ 1. (1.2)

In the capacity of basic equations of oscillations we take the equations of
the theory of shallow shells ([4]). For the midlength shells under consider-
ation, the forms of oscillations corresponding to the lower frequencies, are
accompanied with feebly marked longitudinal wave formation compared to
circumferential one. Therefore the following relation is valid:

∂2f

∂ξ2
≪ ∂2f

∂ϕ2
(f = w,ψ) (1.3)

where w and ψ are, respectively, the functions of radial displacement and
stress. As a result, the system of equations for the shells under consideration
is reduced to the equation

ε
∂8w

∂ϕ8
+
E1

E2

(∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂ϕ2
+ 4δ2

∂4w

∂ϕ4

)

−

−t01
∂6w

∂ξ2∂ϕ4
− t02

∂6w

∂ϕ6
+
ρr2

E2

∂

∂t2

(∂4w

∂ϕ4

)

= 0 (1.4)

ε =
h2

12r2(1 − ν2)
, δ = δ0r/ℓ

2, t0i = T 0
i /E2h (i = 1, 2)

where E1, E2, ν1, ν2 are the elastic moduli and Poisson coefficients in the
axial and circumferential direction (E1ν2 = E2ν1); h is the shell thickness; ϕ
is the angular coordinate; T 0

1 , T 0
2 are meridional and circumferential stresses

of the initial state; t is time and ρ is density.
The additive term in the above equation, compared with the equation

given in [1] for an isotropic shell, is the fourth term which is, owing to in-
equality (1.3), of the same order as the third term of that equation. We
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consider a simply supported shell with uniformly distributed meridional
stresses P1 applied to its edges. The initial state is assumed to be moment-
less. On the basis of the corresponding solution and equalities (1.2) and
(1.3) we obtain the following approximate expressions:

T 0
1 = P1

[

1 +
δ0
r

(

ξ2(r/ℓ)2 − 1
)

]

, T 0
2 = −2P1δ0r/ℓ

2. (1.5)

Taking into account the fact that

∣

∣ξ2(r/ℓ)2 − 1
∣

∣

∂2w

∂ξ2
≪ 2

(r

ℓ

)2 ∂2w

∂ϕ2
(1.6)

equation (1.4) takes the form

ε
∂8w

∂ϕ8
+
E1

E2

(∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂ϕ2
+ 4δ2

∂4w

∂ϕ4

)

−

− P1

E2h

∂6w

∂ξ2∂ϕ4
+

2P1δ

E2h

∂6w

∂ϕ6
+
ρr2

E2

∂2

∂t2

(∂4w

∂ϕ4

)

= 0 (1.7)

Consider first the case P1 = const. The expression

w = A cosλmξ sinnϕ sinωt,

λm = mπτ/L (m = 2i+ 1, i = 0, 1, 2, . . .)
(1.8)

satisfies the adopted boundary conditions. Substituting (1.8) in (1.7), for
determination of eigen frequencies we obtain the following equality:

ρr2

E2
ω2 = εn4 +

E1

E2

(

λ4
mn

−4 + 4δλ2
mn

−2 + 4δ2
)

+
P1

E2h

(

λ2
m − 2δn2

)

. (1.9)

Introduce the dimensionless parameters

α1 = E1/E, α2 = E2/E, p = −P1/Eh. (1.10)

Then equation (1.9) takes the form

ω2 =
E

ρr2

[

α2εn
4 + α1

(

λ4
mn

−4 + 4δλ2
mn

−2 + 4δ2
)

− p
(

λ2
m − 2δn2

)

]

. (1.11)

It is clear that for p = 0 and δ > 0 the value m = 1 corresponds to the lower
frequency. We can also show that this condition holds likewise for δ < 0
if we take into account inequalities (1.2), (1.3) and the fact that ω2 > 0.
Therefore first of all we will consider the forms of oscillations for which only
one half-wave m = 1 locates along the shell length and n circumferential
waves. Under pressure p > 0, and under tension p < 0.
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To represent expression (1.11) (for m = 1) in dimensionless form we
introduce dimensionless quantities θ, P and the following notation:

θ = (α2/α1)
1/4N, N = n2/n2

0, P = P/
√
α1α2, P = p/p∗,

n2
0 = λ1ε

−1/4, p∗ = 2ε1/2, δv
∗

= (α1/α2)
1/4δ∗, δ∗ = ε

−1/2
∗ δ,

ε∗ = (1 − ν2)−1/2 h

τ

( τ

L

)2

, λ1 = πr/L, ω2
∗

= 2λ2
1ε

1/2 E

ρr2
, (1.12)

where ω∗ and p∗ are, respectively, the lower frequency and the critical load-
ing for an isotropic cylindrical shell of middle length ([2], [7]). As a result,
equality (1.11) can be written in the following dimensionless form:

ω2/ω2
∗

= 0, 5
√
α1α2

[

θ2 + θ−2 + 2, 37δv
∗
θ−1 + 1, 404δv2

∗
−

−2P (1 − 1, 185δv
∗
θ)

]

. (1.13)

The lower frequency (for ω2 > 0) is defined from the condition ω2(N)′ = 0.
Hence we get

−1, 185δv
∗
P = θ − 1, 185δv

∗
θ−2 − θ−3 (1.14)

or

θ4 + 1, 185δv
∗
Pθ3 − 1, 185δv

∗
θ − 1 = 0. (1.15)

Note that for P = 0 we obtain the following well-known equation:

θ4 − 1, 185δv
∗
− 1 = 0, (1.16)

whose roots have been obtained explicitly in [8]. Moreover, from (1.15) for
δ∗ = 0 we get the equality θ4 − 1 = 0 whose positive root is θ = 1 (N =
(α1/α2)

1/4). Consequently, for the orthotropic cylindrical shell of middle
length the lower frequency is realized for N = (α1/α2)

1/4 independently of
P . For an isotropic case, all the above-said corresponds completely with [9].

Moreover, from equation (1.15) for P = 1 (P = α
1/2
1 α

1/2
2 ) we find that the

positive root θ = 1 does not depend on δv
∗
. For ω = 0, equality (1.13) yields

P =
θ2 + θ−2 + 2, 37δv

∗
θ−1 + 1, 404δv2

∗

2(1 − 1, 185δv
∗
θ)

. (1.17)

As is known, the least value P is called a critical load. In particular,
for δ∗ = 0, θ = 1 from (1.17) we obtain the well-known formula of critical
compressive force for a cylindrical orthotropic shell P = 1 ([2]). The least

value P (P > 0), depending on θ, is realized for P
′

θ = 0. This implies that

2(θ − θ−3 − 1, 185δv
∗
θ−2)(1 − 1, 185δv

∗
) =

= −1, 185δv
∗
(θ2 + θ−2 + 2, 37δv

∗
θ−1 + 1, 404δv2

∗
). (1.18)

More simplified equation (1.18) is of the fifth degree; it is impossible to
obtain its roots explicitly. Therefore we suggest somewhat different way of
finding a positive root of that equation. Denote a positive root of equation
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(1.18) by θ∗. The value θ = θ∗ corresponds to a number of transversal
waves for which is realized critical load of loss of stability P∗. Substituting
equality (1.18) in (1.17), we obtain

−1, 185δvP ∗ = θ∗ − 1, 185δv
∗
θ−2 − θ−3. (1.19)

It is not difficult to notice that equality (1.19) follows likewise from (1.14)
for ω = 0. Consequently, the values P and θ, satisfying equality (1.14), for
which the expression (1.13) vanishes, are the critical values P ∗ and θ∗.

By virtue of equality (1.15) for P = 0, we obtain equation (1.16) whose
positive root θ = θ0 corresponds to the lower frequency of the unloaded shell
([8]), while for P = P ∗ equation (1.19), whose root is θ = θ∗, corresponds
to ω = 0. Thus as P varies in the interval

0 ≤ P ≤ P ∗ (1.20)

the lower frequency varies in the interval [ω(θ0, P = 0), 0].
Reasoning analogous to that of [7] enables us to show that when P varies

in the interval (1.20) for δ∗ ≤ 0, the value θ realizing the lower frequency
ω(θ, P ) is in the interval

θ0 ≤ θ ≤ θ∗. (1.21)

For clarity we pass to the values N = θ(α1/α2)
1/4. In particular, for δ∗ = 0

inequalities (1.20) and (1.21) take the form 0 ≤ P ≤ 1, θ0 = θ∗ = 1 (or

0 ≤ P ≤ α
1/2
1 α

1/2
2 , N0 = N∗ = (α1/α2)

1/4).

Fig. 1 Fig. 2

Figs. 1 and 2 show the dependencies N0 = n2/n2
0, ω(N0)/ω on the

parameter δ∗ for the cases α1 = 1, α2 = 1(0), α1 = 2, α2 = 1(1), α1 = 1,
α2 = 2(2) (ω∗ and n0 are, respectively, the lower frequency and a number
of waves for the cylindrical isotropic midlength shell which are defined by
equalities (1.12)); corresponding curves are denoted by N0(i) and (i) (i =
0, 1, 2). It is not difficult to see that for convex shells the influence of the
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elastic axial parameter is greater than of the elastic circumferential one,
while for concave shells the situation is opposite.

Fig. 3 Fig. 4

Dependencies N∗ = n2
∗
/n2

0 and P∗ = p2
∗
/p2

0 on the parameter δ∗ < 0
for the cases i = 0, 1, 2 can be found in Fig. 3. The curves are denoted
respectively by N∗(i) and (i). It can be easily seen that for the concave shells
the main part belongs to the elastic circumferential parameter compared to
the axial one.

On the basis of equality (1.14) we can construct dependencies N(P )
which realize minimal frequency of the prestressed shell for different values
of δ∗. Towards this end, we fix α1, α2, δ∗ and for the given θ from the
interval (1.21) we find P by formula (1.14). Fig. 4 displays the dependence
N(P ) for the cases i = 0, 1, 2 (for δ∗ = −0, 4 and δ∗ = 0, 4) which are
denoted respectively by i1 and i2. For comparison, in Fig. 5 we can see
the curves of dependence of dimensionless lower frequency ω(N,P )/ω∗ on
P for the cases under consideration which are also denoted by i1 and i2.
Moreover,

Fig. 5
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Fig. 5 presents diagrams of dependence ω/ω∗ on P for the cylindrical shell
(δ∗ = 0) for the cases i = 0, 1, 2. On the basis of these curves it is not difficult
to notice that if the influence of orthotropy parameters for the cylindrical
shell is practically the same, the role of elastic circumferential parameter
compared with the elastic axial one is much more greater for convex shells,
whereas for concave shells the situation is opposite.

In the case of tensile force P < 0, and equalities (1.13) and (1.14) take
the form

ω2/ω2
∗

= 0, 5α
1/2
1 α

1/2
2

[

θ2 + θ−2 + 2, 37δv
∗
θ−1 + 1, 404δv2

∗
+

+2|P |(1 + 1, 185δv
∗
θ)

]

, (1.22)

1, 185δ∗|P | = θ − 1, 185δ∗θ
−2 − θ−3. (1.23)

Analogously, on the basis of formulas (1.22) and (1.23) we can construct
corresponding dependencies. In Figs. 4 and 5, on the left from the coordi-
nate axis we can see the curves of dependencies ω/ω∗ and N on P < 0 for
the cases 0, 1, 2 (for δ∗ = −0, 4 and δ∗ = 0, 4).

Let us find under which conditions the inequality n2 ≫ λ2
1 used for the

above-stated theory, is valid. It is seen in Fig.4 that in the worst case
for δ∗ = −0, 4, i1 = 21 when contractive load P varies in the interval
0 ≤ P ≤ P∗, the value N is in the interval 0, 753 ≤ N ≤ 0, 795, whereas for
large values of δ∗ the boundaries of the interval increase. This implies that
when the action of loading does not exceed the value of contractive critical
loading for an isotropic cylindrical shell, the condition n2 ≫ λ2

1 is valid,
and hence the above-given formulas are true. Moreover, it is not difficult to
notice that for δ∗ = −0, 4, under tensile loading 0 ≤ |P | ≤ 0, 8 the value N
decreases negligibly. Consequently, for the tensile loading in the intervals
under consideration this inequality is likewise valid. The fulfilment of these
conditions along with the conditions (1.1) and (1.2) justifies the validity
of application of the theory of shallow shells and of the above-described
investigation.

Consider next the value m > 1. Using notation (1.12), formula (1.11)
can be represented as follows:

ω2/ω2
∗

= 0, 5
√
α1α2m

2
[

Q2 +Q−2 + 2, 37δv
∗
Q−1m−1 + 1, 404δv2

∗
−m−2

−2P (1 − 1, 185δv
∗
Qm−1)

]

(1.24)

where

Q = θ/m, θ = (α2/α1)
1/4N, m = 2i+ 1 (i = 0, 1, 2, . . .). (1.25)

For δ∗ = 0, formula (1.24) takes the form

ω2/ω2
∗

= 0, 5
√
α1α2m

2
(

Q2 +Q−2 − 2P
)

. (1.26)

For ω = 0 we obtain
P = 0, 5(Q2 +Q−2). (1.27)
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It is not difficult to see that for any m the least value of (1.27) is realized for
Q = 1, and the critical compressive force P = 1 (P =

√
α1α2). The least

value of (1.26), depending on Q (for P < 1), is likewise realized for Q = 1,
and (1.24) takes the form

ω/ω∗ =
√
α1α2m

2(1 − P )

{

P < 1

δ∗ = 0
.

Consequently, the least value of frequency (for P < 1) is realized for m = 1.
Consider now the expression for finding a critical load for δ∗ 6= 0. In the

sequel, taking into account inequalities (1.2), we will restrict ourselves to
the consideration of the case |δ∗| ≤ 1. The relation (1.24) vanishes if

P =
Q2 +Q−2 + 2, 37δv

∗
Q−1m−1 + 1, 404δv2

∗
−m−2

2(1 − 1, 185δv
∗
θm−1)

. (1.28)

Consider first the case δ∗ < 0. The expression (1.28) for δ∗ = −|δ∗| takes
the form

P =
Q2 +Q−2 − |δv

∗
|m−1(2, 37Q−1 − 1, 404δv

∗
−m−1)

2(1 + 1, 185|δv
∗
|Qm−1)

. (1.29)

Now we define how P varies together with the variation of m. As m in-
creases, the denominator of (1.27) decreases. As for the nominator (for
Q ≤ 1, |δv

∗
| ≤ 1), the third term |δv

∗
|m−1(2, 37Q−1 − 1, 404|δv

∗
|m−1) de-

creases as m increases, hence the nominator increases. This implies that
the expression (1.29), depending on m, will be minimal for m = 1. On the
other hand, simple numerical calculations show that the least value P (for
|δ∗| ≤ 1) is realized for m = 1 and Q ≤ 1.

Fig. 6

In particular, Fig. 6 displays least values of P (depending on Q) for fixed
m (for δv

∗
= −0, 4) which are given in the form of the curve b.
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Consider the case δ∗ > 0. Now the formula for finding the critical stress
has the form (1.28). It is easily seen that as m increases, the nominator of
(1.28) decreases and the denominator increases. Thus the value P decreases.
Therefore the least critical load defined by means of (1.28) is attainable for
sufficiently large m; therefore we can neglect the terms corresponding to
the deviation of the shell from the cylindrical form, and the corresponding
critical load P kp will practically be equal to the critical compressive loading

for the cylindrical orthotropic shell P ∗ ≈ 1 (Q = 1). This result is verified
in [10]. The least values of P (depending on Q) for fixed m (for δv

∗
= 0, 4)

are presented in Fig. 6 in the form of the curve a. As δv
∗
→ 0, the both

curves a and b merge with the straight line P ∗ = 1.
Consider now the expression (1.24) and find how it depends on m. We

denote m = x and write the expression for the derivative ω2 with respect
to x.

(ω2)′x = 2
{

x
[

0, 5(Q2 +Q−2) − P
]

+ 0, 5925δv
∗
(Q−1 + PQ)

}

. (1.30)

The function 0, 5(Q2 + Q−2) has the least value for Q = 1 and is equal to
unity; note that the second summand (for δv

∗
> 0) is positive. Thus for

P ≤ 1 the value of the derivative is more than zero. This implies that the
function ω2 increases monotonically and attains its minimum for m = 1.

The least value ω2 with respect to Q (for fixed m) can be defined by
means of the condition

(ω2)Q =
√
α1α2m

2
(

Q−Q−3−1, 185δv
∗
Q−2m−1+1, 185δv

∗
Pm−1

)

=0 (1.31)

whence
Q4 + bQ3 + dQ+ ℓ = 0, b = 1, 185δ◦

∗
P ,

d = −1, 185δ◦
∗
, ℓ = −1, δ◦

∗
= δv

∗
m−1.

(1.32)

The roots of equation (1.32) coincide with those of the two quadratic equa-
tions

Q2 + (b+B1,2)Q/2 +
(

y1 +
by1 − d

B1,2

)

= 0, B1,2 = ±
√

8y1 − b2. (1.33)

The roots of equations (1.33) have the form

Q1,2 =
−(

√
8γ1 + b)

4
±

√

− (by1 − d)√
8γ1

+
(b
√

8γ1 − 4γ2)

8
(1.34)

γ1 = y1 +
b2

8
,

3,4 =
(
√

8γ1 + b)

4
±

√

(by1 − d)√
8γ1

+
(b
√

8γ1 + 4γ2)

8
(1.35)

γ2 = y1 −
b2

4
,
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where y1 is any real root of the cubic equation

y3 + 3py + 2q = 0, 3p =
(bd− 4ℓ)

4
, 2q =

−(b2ℓ+ d)

8
, (1.36)

p =
1

3

(

1 − 1, 1852δ◦2
∗
P

4

)

, q = −1, 1852δ◦2
∗

(1 − P )

16
. (1.37)

Next, we simplify the expression (1.37) for p assuming that

1, 1852δ◦2
∗
P

4
≪ 1

(

|δ◦
∗
| ≤ 0, 5, P ≤ 0, 5

)

. (1.38)

Then p = 1
3 , and

D = p3 + q2 =
1

33
+

1, 1854δ◦4
∗
P

162
> 0, δ◦

∗
= δv

∗
/m. (1.39)

Since the discriminant of the equation D > 0, the equation has only one
real root

y1 =
(

− q +
√
D

)1/3
+

(

− q −
√
D

)1/3
.

Substituting the values of q and D, we obtain

y1 =
1√
3

[(

0, 456δ◦2
∗

(1 − P
2
) +

√

1 + 0, 208δ◦4
∗

(1 − P
2
)2

)1/3
+

+
(

0, 456δ◦2
∗

(1 − P
2
) −

√

1 + 0, 208δ◦4
∗

(1 − P
2
)2

)1/3]
. (1.40)

Taking

0, 104δ◦4
∗

(1 − P
2
) ≪ 1 (1.41)

performing series expansion of the expressions contained in (1.40) and ne-
glecting the values of the second order of smallness, we find that

y1 ≈ 0, 1755δ◦2
∗

(1 − P
2
). (1.42)

Note that if the condition (1.38) is fulfilled, then the condition (1.41) is all
the more so. Substituting the values y1, b and d in (1.34) and (1.35) and
taking into account the fact that only positive values Q are of interest (since
n2 > 0), we find that for δ◦

∗
< 0 (d > 0) the positive root is only the root

of Q1, whereas for δ◦
∗
> 0 (d < 0) there takes place the root of Q3. As a

result, we have

Q =

√

1 + 0, 1755δ◦2
∗
P (1 − P

2
) − 0, 0877δ◦2

∗
(1 + 2P − 3P

2
)−

−0, 2962|δ◦
∗
|(1 − P ) (δ∗ < 0), (1.43)

Q =

√

1 + 0, 1755δ◦2
∗
P (1 − P

2
) − 0, 0877δ◦2

∗
(1 + 2P − 3P

2
)+

+0, 2962δ◦
∗
(1 − P ) (δ∗ > 0). (1.44)
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The above equalities for P = 0 yield

θ =
√

1 − 0, 0877δ2
∗
/m2 − 0, 2962|δv

∗
|/m (δ∗ < 0),

θ =
√

1 − 0, 0877δ2
∗
/m2 + 0, 2962δv

∗
/m (δ∗ > 0).

(1.45)

For m = 1, α1 = α2 = 1, and we obtain the well-known formulas (see [8]).
For P = 1, equation (1.32) takes the form

Q4 + 1, 185
δv
∗

m
θ3 − 1, 185

δv
∗

m
θ − 1 = 0,

and we obtain

(Q2 − 1)
(

Q2 + 1 − 1, 185
δv
∗

m

)

.

It is not difficult to see that the positive root of the above equation is Q = 1.
For P = 1, the expressions (1.43) and (1.44) likewise yield Q = 1.

Compare now, in particular for δv
∗

= 0, 4, the least value of frequency for
m = 1, when P = 0 and P = 1:

ω
(

δv
∗

= 0, 4, P = 0, m = 1, Q = 1, 148
)

/ω∗ = 1, 2495

ω
(

δv
∗

= 0, 4, P = 1, m = 1, Q = 1
)

/ω∗ = 1, 0297.

For sufficiently large m by formulas (1.43) and (1.44) we find that Q ≈ 1,
and on the basis of formula (1.24) we have

ω2/ω2
∗
≈ 0, 5

√
α1α2

(

Q2 +Q−2 − 2P
)

i.e., we obtain the formula which practically coincides with formula (1.26)
for cylindrical shells.

Fig. 7
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For δv
∗

= 0, 4, Fig.7a displays changes of least frequencies which take
place depending on P for different m(m = 1, 3, 5, 7). In is not difficult to
notice that the lower frequency for P ≤ 1 is realized for m = 1, but as P
tends to unity from above the lower frequency is realized by the form with
sufficiently large m, corresponding to the form of stability loss. For δ∗ < 0,
the expression (1.24) takes the form

ω2/ω2
∗

= 0, 5m2√α1α2

[

Q2 +Q−2 − |δv
∗
|m−1

(

2, 37θ−1 − 1, 404|δv
∗
|m−1

)

−

−2P
(

1 + 1, 185|δv
∗
Q|m−1

)

]

.

Taking into account the fact that the last and the third term of that ex-
pression (for θ ≤ 1, |δv

∗
| ≤ 1) decrease as m increases, this implies that

the expression in square brackets increases and, moreover, the factor m2

increases as well. Consequently, the lower frequency for δ∗ < 0 is realized
for m = 1. This will be demonstrated below by our calculations.

Fig 7a displays changes of the lower frequencies depending on P for
different m, for δ∗ = −0, 4. It is easily seen that the lower frequency is
realized for m = 1. Moreover, the diagrams in Fig.7b show that for δ∗ < 0,
as m increases the curves tend to P = 1 from below, whereas for δ∗ > 0 on
the contrary from above (Fig 7a).

It should be noted that the results obtained for m > 1 hold for the
values of Q, close to unity (Q ≈ 1), i.e., when n2 ≈ (α1/α2)

1/4ε−1/4λm.
Therefore these results are valid only for sufficiently thin shells. When
(α1/α2)

1/4ε−1/4 ≫ λm, we have the relation n2 ≫ λ2
m, and the given

theory is valid.
It follows from the above-obtained qualitative results (for δ∗ > 0) that

the forms of oscillations with m > 1, coinciding with the corresponding
form of stability loss, take place for P > 1, and the larger is m, the closer
is the critical load P kp to unity. When P varies in the interval 0 ≤ P ≤ 1,
the lower frequency with the form of oscillation takes place when m = 1.
For δ∗ < 0, the forms of oscillations with m > 1, coinciding with the forms
of stability loss, take place for P , larger than P kp (m = 1). The form
of oscillations, corresponding to the lower frequency, and also the form of
stability loss, corresponding to the least critical loading, are realized for
m = 1.

2. Consider now the case

P1 = P0 + Pt cosΩt. (2.1)

A solution of equation (1.7) will be sought in the form

w = fmn(t) cosλmξ sinnϕ. (2.2)
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Substituting the above-given solution in (1.7) and requiring for the latter
to be satisfied for any ξ and ϕ, we obtain

d2fmn

dt2
+
E2

ρr2

[

εn4 +
E1

E2

(

λ4
mn

−4 + 4δλ2
mn

−2 + 4δ2
)

+

+
P1(t)

E2h

(

λ2
m − 2δn2

)

]

fmn = 0. (2.3)

Frequencies of eigen oscillations of the shell (for P1 = P0) can be defined
from equation (2.3) by putting fmn(t) = C and expressed by formula (1.9).
Since equation (2.3) is identical for all forms of oscillations, therefore we
can omit the indices m and n.

Similarly to the above-said, we introduce dimensionless quantities (1.12),
(1.25) and rewrite equation (2.3) as follows:

d2f

dt2
+ 0, 5ω2

∗
m2√α1α2

[

Q2 +Q−2 + 2, 37δv
∗
Q−1m−1 + 1, 404δv2

∗
m−2−

−2
(

P 0 + P t cosΩt
)(

1 − 1, 185δv
∗
Qm−1

)]

f = 0

P 0 = p0/p0∗, P t = pt/p0∗ P t = Pi
√
α1α2 (i = 0, t). (2.4)

The critical stress P in the statical case (Pt = 0, f = const) is defined by
means of equation (2.4) and formula (1.17). We reduce equation (2.4) to
the standard Matye’s equation

d2f

dt2
+ ω2(Q)

[

1 − 2µ(Q) cosΩt
]

f = 0, (2.5)

ω2(Q) = ω2
0(Q)

(

1 − P 0

P (Q)

)

, ω2
0(Q) =

= 0, 5ω2
∗
m2√α1α2

(

Q2 +Q−22, 37δv
∗
Q−1m−1 + 1, 404δv2

∗
m−2

)

, (2.6)

µ(Q) =
P t

2[P (Q) − P 0]
, ω2

∗
= 2λ2

1ε
1/2E/ρr2, (2.7)

P (Q) =
Q2 +Q−2 + 2, 37δv

∗
θ−1m−1 + 1, 404δv2

∗
m−2

2(1 − 1, 185δ∗θm−1)
(2.8)

the value µ is commonly called the excitation coefficient. The solution of
equation (2.5) have been investigated in a quite number of works where it is
noted that under certain relations between µ, Ω, ω and t→ ∞ the solution
of equation (2.5) increses unboundedly in the regions of instability.

Generalizing the obtained results [12] to the shell under consideration,
we cite here the following formulas. To find regions of dynamical instability,
we consider first the case Pt → 0 (µ → 0). Thus we find that these regions
of instability are near the frequencies

Ω∗ = 2ω(Q)/k (k = 1, 2, 3, . . .) (2.9)
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Depending on number k, we can distinguish the first, second, third and
so on regions of dynamical instability. The region of instability (k = 1) lying
near Ω∗ = 2ω(Q), when ω(Q) takes the least value, is the most dangerous
and is of great practical value. This region is called the principal region of
dynamical instability.

For Pt, different from zero, we obtain the formula for boundaries of the
principal region of instability:

Ω∗ = 2ω(Q)
√

1 ± µ(Q). (2.10)

If we take into account resistance forces, proportional to the first derivative
with respect to time (with damping coefficient ε), then the formula for
finding boundaries of the principal region of instability takes the form

Ω∗ = 2ω(Q)

√

1 ±
√

µ2(Q) − (∆/π)2, ∆ = 2πε/ω(Q) (2.11)

where the terms containing higher degrees ∆/ε are omitted and the damping
discriminant ∆ is usually rather small compared to unity. The values of the
expressions ω(Q), P (Q), µ(Q) are defined by virtue of formulas (2.6), (2.7)
and (2.8), in which m and Q correspond to the least value ω(Q). For
m = 1, on the basis of formula (1.25), we have Q = θ = (α2/α1)

1/4N .
The corresponding values N and ω(Q), depending on α1, α2, P0 and δ∗,
are presented in Figs.4 and 5 (for the cases δ∗ = −0, 4; 0, 4; i = 0, 1, 2).
It follows from (2.11) that the minimal value of the excitation (critical)
coefficient for which undamped oscillations are still possible, can be defined
by the equality

µ∗1 = ∆/π (2.12)

For the boundaries of the second region of instability (k = 2) we have the
following formula:

Ω∗ = ω(Q)

√

1 + µ2(Q) ±
√

µ4(Q) − (∆/π)2[1 − µ2(Q)]. (2.13)

In this case the critical value of the excitation coefficient we define approx-
imately by the equality µ∗2(Q) = (∆/π)1/2. Analogously, generalizing the
obtained results [12], we can deduce formulas for the boundaries of the third
region of instability which is realized practically very seldom.

On the basis of the above formulas and diagrams it is not difficult to
define intervals of variation of exciting frequencies (depending on δ∗, P0,
Pt, α1, α2) which fall into the regions of dynamical instability. Thus, for
example, for δ∗ = 0, 4, P0 = 0, 3, Pt = 0, 05, ∆ = 0, 01, α1 = 2, α2 = 1
we find that the lower frequency is realized for m = 1, θ = 1, 102; ω(θ) =
1, 508ω∗, P (θ) = 4, 445, µ(θ) = 0, 00853, µ∗1 = 0, 00318, µ∗2 = 0, 0564.
Then by virtue of formula (2.11) we find that the values Ω contained in
the interval 3, 00ω∗ < Ω < 3, 028ω∗ are in the principal region of dynamical
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instability. Since µ(θ) < µ∗2, this means that the second region of instability
is unattainable.

For α1, α2 = 2, δ∗ = 0, 4 and for the same values of external load the lower
frequency is realized for m = 1, θ = 1, 074; ω(θ) = 1, 376ω∗, P (θ) = 3, 611,
µ(θ) = 0, 00755 and on the basis of formula (2.11) we find that the values
Ω, contained in the interval 2, 742ω∗ < Ω < 2, 761ω∗, fall into the principal
region of instability. In this case the second region of instability is likewise
unattainable.

For δ∗ = −0, 4, α1 = 2, α2 = 1 and for the same values of external loading
the lower frequency is realized for m = 1, θ = 0, 880; ω(θ) = 0, 574ω∗,
P (θ) = 0, 520, µ(θ) = 0, 113. Analogously, according to the above-said, we
find that the values Ω, contained in the interval 1, 081ω∗ < Ω < 1, 211ω∗,
fall into the principal region of instability. Since µ(θ) > µ∗2, the second
region of instability is quite attainable. By virtue of formula (2.13) we find
that the values Ω, contained in the interval 0, 574ω < Ω < 0, 581ω, fall into
the second region of instability.

For α1 = 1, α2 = 2, δ∗ = −0, 4 and for the same values of external
loading we find that the values Ω contained in the interval 1, 43ω∗ < Ω <
1, 516ω∗, fall into the principal region of instability, while the values Ω,
contained in the interval 0, 724ω∗ < Ω < 0, 731ω∗, fall into the second
region of instability.

Comparing the principal regions of dynamical instability for different α1,
α2, δ∗ > 0 we find that the elastic axial parameter α1 is of more great im-
portance compared with the elastic circumferential parameter α2, whereas
for δ∗ < 0 the situation is opposite.

The above formulas and diagrams allow one to define easily regions of
instability for shells under consideration.
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