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THE MAXIMAL OPERATOR ON SPACES OF

HOMOGENOUS TYPE

M. KHABAZI

Abstract. We study the boundedness of the maximal operator in
the spaces Lp(·)(Ω) over a measurable subset of a space of homogenous
type with an exponent p(x) satisfying the Dini–Lipschitz condition.

îâäæñéâ. öâïû�ãèæèæ� é�óïæé�èñîæ ëìâî�ðëîæï öâéëï�ä�ãîñ-

èë�æï ï�çæåýæ âîåàã�îëã�êæ ðæìæï ïæãîùæï äëé�á óãâïæéî�ãèâäâ

à�êï�ä�ãîñè ùãè�áé�øãâêâ�èæ�ê Lp(·)(Ω) ïæãîùâäâ, îëù� p(x)
é�øãâêâ�âèæ �çé�õëòæèâ�ï áæêæ{èæòöæùæï ìæîë��ï.

In the last years the Lebesgue spaces Lp(·) with variable exponent have
become an object of intensive investigation, see [1]-[4] for basic properties of
the spaces Lp(·). One of the main results in this field was Diening’s theorem
[1] about the boundedness of the Hardy-Littlewood maximal operator in
Lp(·)(Ω) when Ω is a mesuareble bounded set inRn, under certain conditions
on p. Later Diening has extended this result to the whole Rn with the
aditional assumption that p is constant outside of a fixed ball. Our goal
was to expand this research on the spaces of homogenous type. We have to
mention that for that case our Theorem 1 independently was proved by P.
Harjulento, P. Hástó amd M. Pere [5] for bounded metric measure spaces.

We start with the definition of the space of homogenous type (see e.g. [6]).

Definition 1. A space of homogenous type (SHT in following) (X, ρ, µ)
is a topological space with a measure µ such that the space of compactly
supported continuous functions is dense in L1(X,µ) and there exists a non-
negative real-valued function ρ : X ×X → R1 satisfying:

(i) ρ(x, x) = 0 for all x ∈ X .

(ii) ρ(x, y) > 0 for all x 6= y, x, y ∈ X .

(iii) There is a constant a0 > 0 such that ρ(x, y) ≤ a0ρ(y, x) for all
x, y ∈ X .

2000 Mathematics Subject Classification. 42B20, 47B37, 45P05.
Key words and phrases. Spaces of homogeneous type, Lebesgue spases with variable

exponent, maximal operator.



18 M. KHABAZI

(iv) There is a constant a1 > 0 such that ρ(x, y) ≤ a1(ρ(x, z) + ρ(z, y))
for all.

(v) For every neighbourhood V of x ∈ X there is r > 0 such that the
ball B(x, r) = {y ∈ X : ρ(x, y) < r} is contained in V .

(vi) Balls B(x, r) are measurable for every x ∈ X and every r > 0.

(vii) There is a constant b > 0 such that µB(x, 2r) ≤ bµB(x, r) <∞ for
every x ∈ X and every r > 0.

One can find many interesting examples of SHT in [6].

Suppose that Ω is a mesuareble bounded set in X and p is a measurable
function on Ω such that 1≤ p(x) ≤ p < ∞, x ∈ Ω. By Lp(·)(Ω) we denote
the space of measurable functions f(x) on Ω such that

∣

∣f
∣

∣

p(·)
=

∫

Ω

∣

∣f(x)
∣

∣

p(x)
dµ(x) <∞.

Lp(·)(Ω) is a Banach space with the norm:

∥

∥f
∥

∥

p(·)
= inf

{

λ > 0 :
∣

∣

∣

f

λ

∣

∣

∣

p(·)
≤ 1

}

.

In this paper we consider the Hardy-Littlewood maximal operator,

Mf(x) = sup
r>0

1

µB(x, r)

∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣ dµ(y).

We will use also the following notations:

pB = essinf
x∈B

p(x), pB = esssup
x∈B

p(x), p
Ω

= p, pΩ = p,

Mrf(x) = 1
µB(x,r)

∫

B(x,r)∩Ω

|f(y)|dµ(y). We also assume that ρ is a metric.

Theorem 1. Let Ω be a bounded set in a homogenous type space X and

p : Ω → [1,∞) satisfy the following conditions:

a) 1 < p ≤ p <∞ (1)

b) there exists a positive number c0, such that for every pair x, y ∈ Ω

∣

∣p(x) − p(y)
∣

∣ ≤
c0

log 1
ρ(x,y)

, when ρ(x, y) <
1

2
. (2)

Then the maximal operator M is bounded in Lp(·) space.

We need some lemmas to prove this theorem.
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Lemma 1. Let Ω be a bounded set and r0 > 0. Then there exist positive

numbers s, α and β, such that

a) µB(x, r) ≤ βrs, when x ∈ Ω and r ≥ r0;
b) µB(x, r) ≥ αrs, when x ∈ Ω and r < r0.

Proof. Let us suppose that r0 = 1 and k(x) = µB(x, 1), x ∈ Ω. As Ω is a
bounded set there exists a ball B0, such that Ω ⊂ B0. We can suppose that
B0 is sufficiently large so that B(x, 1) ⊂ 2B0 for every x ∈ Ω. Consequently

k(x) ≤ µ(2B0) = K <∞.

For the other side, it’s easy to show that there exists a natural number
N , independent of x, such that Ω ⊂ B(x,N). Thus µΩ ≤ µB(x,N) ≤

c1µB(x, 1) and k(x) ≥
µΩ

c1
= k > 0. So we have

0 < k ≤ k(x) ≤ K <∞, x ∈ Ω.

Using the doubling condition several times we get:

µB(x, 2n) ≤ cnµB(x, 1) = k(x)(2n)log2c ≤ K(2n)s,

µB
(

x,
1

2n

)

≥ c−nµB(x, 1) = k(x)
(

2−n
)log2c

≥ k(2−n)s,

where s = log2 c.
Now let r ≥ r0 =1. There exists a natural number n, such that 2n−1≤r<2n.
Then

µB(x, r) ≤ µB(x, 2n) ≤ K(2n)s ≤ K(2r)s = K2srs = βrs.

In the same way, if r < r0 = 1, there exists a natural number n, such that
2−n ≤ r < 2−n+1 and

µB(x, r) ≥ µB(x, 2−n) ≥ k
( r

2

)s

= k2−srs = αrs.

In the case of an arbitrary r0 the proof is analogous. The lemma is
proved. �

Lemma 2. Let Ω be a bounded set and the condition (2) holds. Then

there exists a positive number c1, such that for every ball B
(

µB
)p

B
−pB ≤ c1 (3)

when µ(Ω ∩B) > 0.

Proof. As Ω is a bounded and (2) holds, it is obvious that 1 ≤ p ≤ p
B

≤

pB ≤ p < ∞. If µB ≥ 1 then (µB)p
B
−pB ≤ 1 and (3) holds. Let µB < 1

and diam(B) ≥ 1
2 . As we have seen in the proof of Lemma 1, in this

case µB ≥ k > 0. Hence, (µB)p
B
−pB ≤ kp−p. Thus we can assume that
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diam(B) < 1
2 . Let us choose a pair u, ν ∈ Ω∩B, so that 0 ≤ 1

2 (p
B
− pB) ≤

p(u) − p(ν). Since ρ(u, ν) < 1
2 ,

∣

∣p(u) − p(ν)
∣

∣ ≤ c0log−1 1

ρ(u, ν)
.

Hence,

ec0 ≥
(

ρ(u, ν)
)−|p(u)−p(v)|

≥
(

ρ(u, v))
1
2 (p

B
−pB).

By Lemma 1 ρ(u, ν) ≤ 2r(B) ≤ c(µB)
1
s . So,

e2c0 ≥
(

ρ(u, ν)
)p

B
−pB ≥ c

(

µB
)

1
s
(p

B
−pB)

,

or
(

µ,B
)p

B
−pB ≤ ce2c0s = c1.

and the lemma is proved. �

Lemma 3. Let Ω be a bounded set and the conditions (1) and (2) hold.

Then there exists a positive number c such that for every f ∈ Lp(·)(Ω), with

‖f‖p(·) ≤ 1
∣

∣Mrf(x)
∣

∣

p(x)
≤ c

(

1 +Mr(|f(·)|p(·)(x))
)

, r > 0 (4)
∣

∣Mf(x)
∣

∣

p(x)
≤ c

(

1 +M(|f(·)|p(·)(x))
)

. (5)

Proof. Let r ≥ 1
2 :

∣

∣Mrf(x)
∣

∣

p(x)
=

( 1

µB(x, r)

∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣ dµ(y)
)p(x)

≤

≤
( 1

µB(x, r)

∫

B(x,r)

(

1 +
∣

∣f(y)
∣

∣

p(y))
dµ(y)

)p(x)

.

As we have seen while proving the Lemma 1 µB(x, 1) ≥ k. Hence,

µB(x, r) ≥ µB
(

x,
1

2

)

≥ cµB(x, 1) ≥ ck,

and
∣

∣Mrf(x)
∣

∣

p(x)
≤

( 1

ck
+ 1

)p(x)

<
( 1

ck
+ 1

)p

.

Now let 0 < r < 1
2 :

∣

∣Mrf(x)
∣

∣

p(x)
=

(

1

µB(x, r)

∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣ dµ(y)

)p(x)

≤

≤

(

1

µB(x, r)

∫

B(x,r)

∣

∣f(y)
∣

∣

p
B(x,r) dµ(y)

)

p(x)
p

B(x,r)

≤
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≤

(

1

µB(x, r)

∫

B(x,r)∩Ω

(

1 +
∣

∣f(y)
∣

∣

p(y))
dµ(y)

)

p(x)
p

B(x,r)

≤

≤
(

µB(x, r)
)

p(x)
p

B
(x,r)

(
∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣

p(y)
dµ(y) + µB(x, r)

)

p(x)
p

B(x,r)

.

Since µB(x, r) ≤ µB(x, 1) ≤ k,
∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣

p(y)
dµ(y) + µB(x, r) ≤ 1 +K.

Thus,
∣

∣Mrf(x)
∣

∣

p(x)
≤

≤
(

µB(x, r)
)− p(x)

pB(x,r)
(

1+K
)

p

p

(

1

1 +K

∫

B(x,y)∩Ω

∣

∣f(y)
∣

∣

p(y)
dµ(y) +

µB(x, r)

1 +K

)

p

p

≤

≤
(

µB(x, r)
)

p(x)
p

B(x,r)
(

1 +K
)

p

p

(

1

1 +K

∫

B(x,y)∩Ω

∣

∣f(y)
∣

∣

p(y)
dµ(y) +

µB(x, r)

1 +K

)

=

=
(

µB(x, r)
)1− p(x)

p
B(x,r)

(

1 +K
)

p

p
−1

(

1

µB(x, r)

∫

B(x,r)∩Ω

∣

∣f(y)
∣

∣

p(y)
dµ(y) + 1

)

≤

≤
(

µB(x, r)
)

p
B(x,r)

−pB(x,r)

pB(x,r) (1 +K)
p

p
−1(

1 +Mr

(∣

∣f(·)
∣

∣

p(·)
(x)

))

.

By virtue of Lemma 2, (µB(x, r))p
B
−pB ≤ c1. Hence,

(

µB(x, r)
)

p
B

−pB

p
B ≤ max

(

1, c
1
p

1

)

and
(

Mrf(x)
)p(x)

≤ c
(

1 +Mr

(
∣

∣f(·)
∣

∣

p(·)
(x)

))

.

The inequality (4) is proved. Taking the supremum by r we obtain (5). �

Proof of Theorem 1. First of all we should mention that if f ∈ Lp(·)(Ω)
then f ∈ L1(Ω), as Ω is bounded. Define a function q by the quality

q(x) = p(x)
p

. It is obvious that 1 ≤ q(x) ≤ p(x) ≤ p < ∞ and there exists

a positive number A, such that ‖f‖q(·) ≤ A‖f‖p(·) for every f ∈ Lp(·)(Ω).

Let ‖f‖p(·) ≤
1
A

. Then ‖f‖q(·) ≤ 1 and by virtue of Lemma 3
∣

∣Mf
∣

∣ =
∥

∥(Mf)q(·)
∥

∥

p

Lp(Ω)
≤

∥

∥c
(

M
(

|f(·)|q(·)
)

+ 1
)∥

∥

p

Lp(Ω)
≤

≤ c
(

c′
∥

∥

∣

∣f(·)
∣

∣

q(·)∥
∥

Lp(Ω)
+

∥

∥1
∥

∥

Lp(Ω)

)p

≤ c
(

c′
∥

∥

∣

∣f(·)|q(·)
∥

∥

Lp(Ω)
+

∥

∥1
∥

∥

Lp(Ω)

)p

=
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= c
(

c′
(∣

∣f
∣

∣

p(·)

)
1
p +

∥

∥1
∥

∥

Lp(Ω)

)p
< c1 <∞.

Thus, |Mf |p(·) < c1 when |f |p(·) <
1
A

. Then |Mf |p(·) < c2 when |f |p(·) <
1
A

.

But this means that the operator M is bounded in Lp(·). The theorem is
proved. �

Theorem 2. Let X be a homogenous type space, p : X → [1,∞) satisfy

the conditions (1) and (2) and p be a constant outside some ball. Then the

operator M is bounded in Lp(·)(Ω):
∥

∥Mf
∥

∥

Lp(·)(X)
< c

∥

∥f
∥

∥

Lp(·)(x)
.

Proof. Let us suppose that p(x) = p0 when x /∈ B0 = B(x0, R) and B1 =
B(x0, 2r). Let ϕ(x) = f(x)1B1(x) and ψ(x) = f(x)1X\B1

(x) . It is obvious
that Mf ≤Mϕ+Mψ. We are going to show that |Mf |p(·) < c <∞ when
|f |p(·) ≤ 1. We will do it separately for |Mϕ|p(·) and |Mψ|p(·). We start
with |Mϕ|p(·). Let x ∈ B1. Then

Mϕ(x) = sup
r

1

µB(x, r)

∫

B(x,r)

∣

∣ϕ(y)
∣

∣dµ(y) =

sup
r

1

µB(x, r)

∫

B(x,r)∩B1

∣

∣f(y)
∣

∣dµ(y) = MB1f(x)

and by virtue of Theorem 1
∫

B1

(

Mϕ(x)
)p(x)

dµ(x) =

∫

B1

(

MB1f(x)
)p(x)

dµ(x) < c1 (6)

as ‖f‖p(·),B1
≤ ‖f‖p(·) ≤ 1.

Now let x ∈ X \B1 and B(x, r) ∩B0 = ∅:

Mrϕ(x) =
1

µB(x, r)

∫

B(x,r)∩(B1\B0)

∣

∣ϕ(y)
∣

∣dµ(y) =

=
1

µB(x, r)

∫

B(x,r)

∣

∣f(y) · 1B1\B0
(y)

∣

∣dµ(y) ≤M
(

f · 1B1\B0

)

(x) (7)

Now suppose that x ∈ X \B1 and B(x, r)∩B0 6= ∅. It is not difficult to
check that in this case B1 ⊂ B(x, 9r). Let h = |f |B1 · 1B1 , where |f |B1 =

1
µB1

∫

B1
|f |dµ. It is obvious that h ∈ Lp0(X) and

∥

∥h
∥

∥

Lp0(x)
=

(

µB1

)
1

p0

∣

∣f
∣

∣

B1
=

(

µB1

)
1

p0
−1

∫

B1

∣

∣f
∣

∣dµ(y) ≤
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≤
(

µB1

)
1

p0
−1

(
∫

B1

∣

∣f
∣

∣

p0
dµ

)
1

p0 (

µB1

)
1

q0 ≤

(
∫

B1

∣

∣f(y)
∣

∣

p(y)
dµ(y)

)
1

p0

≤ 1. (8)

Now we estimate Mrϕ(x):

Mrϕ(x) =
1

µB(x, r)

∫

B(x,r)

∣

∣ϕ(y)
∣

∣dµ(y) ≤
1

µB(x, r)

∫

B1

∣

∣f(y)
∣

∣dµ(y) ≤

≤
c

µB(x, 9r)

∫

B1

∣

∣f(y)
∣

∣dµ(y) ≤
c

µB(x, 9r)
µB1

1

µB1

∫

B1

∣

∣f(y)
∣

∣dµ(y) =

=
c

µB(x, 9r)

∫

B1

∣

∣h(y)
∣

∣dµ(y) =
c

µB(x, 9r)

∫

B(x,9r)

∣

∣h(y)
∣

∣dµ(y) ≤

≤ CMh(x). (9)

From (7) and (9) follows that

Mϕ(x) ≤M
(

f · 1B1\B0

)

(x) + cMh(x), x ∈ X \B1.

Taking into consideration (8) we get:
∫

X\B1

(

Mϕ(x)
)p(x)

dµ(x) =

∫

X\B1

(

Mϕ(x)
)p0

dµ(x) ≤

≤ c

∫

X\B1

(

M
(

f · 1B1\B0

)

(x)
)p0

dµ(x) + c

∫

X\B1

(

Mh(x)
)p0

dµ(x) ≤

≤ c

∫

X\B1

((

f · 1B1\B0

)

(x)
)p0

dµ(x) + c

∫

X\B1

(

h(x)
)p0

dµ(x) ≤

≤ c

∫

X\B1

∣

∣f(x)
∣

∣

p(x)
dµ(x) + c ≤ c2 <∞. (10)

Combining (6) and (10) we have:
∫

X

(

Mϕ(x)
)p(x)

dµ(x) ≤ c1 + c2 <∞. (11)

Now we start to estimate |Mψ|p(·). Let x ∈ B0. If r < R then B(x, r) ∩
(X \ B1) = ∅ and, therefore, Mrψ(x) = 0. So we can suppose that r ≥ R.
Then:

Mrψ(x) =
1

µB(x, r)

∫

B(x,r)∩(X\B1)

∣

∣f(y)
∣

∣dµ(y) ≤
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≤
1

µB(x, r)

∫

B(x,r)∩(X\B1)

(

1 +
∣

∣f(y)
∣

∣

p0
)

dµ(y) ≤

≤
µB(x, r) + 1

µB(x, r)
= 1 +

1

µB(x, r)
.

As x ∈ B0 and r ≥ R, by virtue of Lemma 1 µB(x, r) ≥ k > 0 and

Mψ(x) ≤ 1 +
1

k
= m,

which immediately gives
∫

B0

(

Mψ(x)
)p(x)

dµ(x) ≤ mpµB0 = c3 <∞. (12)

As a last step we are going to estimate
∫

X\B0

(

Mψ(x)
)p(x)

dµ(x):

∫

X\B0

(

Mψ(x)
)p(x)

dµ(x) =

∫

X\B0

(

Mψ(x)
)p0

dµ(x) ≤

∫

X

(

Mψ(x)
)p0

dµ(x) ≤

≤ c

∫

X

∣

∣ψ(x)
)p0

dµ(x) ≤ c

∫

X

∣

∣f(x)
∣

∣

p(x)
dµ(x) ≤ c4 <∞. (13)

From (12) and (13) follows that
∫

X

(

Mψ(x)
)p(x)

dµ(x) ≤ c3 + c4 (14)

and (11) and (14) gives
∫

X

(

Mf(x)
)p(x)

dµ(x) ≤

≤ 2p

(
∫

X

(

Mϕ(x)
)p(x)

dµ(x) +

∫

X

(

Mψ(x)
)p(x)

dµ(x)

)

≤

≤ 2p(c1 + c2 + c3 + c4) = c.

Thus, |Mf |p(·) ≤ c when ‖f‖p(·) ≤ 1, which signifies the boundedness of the
operator M and the proof of Theorem 2 is completed. �
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