THE MAXIMAL OPERATOR ON SPACES OF HOMOGENOUS TYPE

M. KHABAZI

Abstract

We study the boundedness of the maximal operator in the spaces $L^{p(\cdot)}(\Omega)$ over a measurable subset of a space of homogenous type with an exponent $p(x)$ satisfying the Dini-Lipschitz condition.

In the last years the Lebesgue spaces $L^{p(\cdot)}$ with variable exponent have become an object of intensive investigation, see [1]-[4] for basic properties of the spaces $L^{p(\cdot)}$. One of the main results in this field was Diening's theorem [1] about the boundedness of the Hardy-Littlewood maximal operator in $L^{p(\cdot)}(\Omega)$ when Ω is a mesuareble bounded set in R^{n}, under certain conditions on p. Later Diening has extended this result to the whole R^{n} with the aditional assumption that p is constant outside of a fixed ball. Our goal was to expand this research on the spaces of homogenous type. We have to mention that for that case our Theorem 1 independently was proved by P. Harjulento, P. Hástó amd M. Pere [5] for bounded metric measure spaces.

We start with the definition of the space of homogenous type (see e.g. [6]).
Definition 1. A space of homogenous type (SHT in following) (X, ρ, μ) is a topological space with a measure μ such that the space of compactly supported continuous functions is dense in $L^{1}(X, \mu)$ and there exists a nonnegative real-valued function $\rho: X \times X \rightarrow R^{1}$ satisfying:
(i) $\rho(x, x)=0$ for all $x \in X$.
(ii) $\rho(x, y)>0$ for all $x \neq y, x, y \in X$.
(iii) There is a constant $a_{0}>0$ such that $\rho(x, y) \leq a_{0} \rho(y, x)$ for all $x, y \in X$.

[^0](iv) There is a constant $a_{1}>0$ such that $\rho(x, y) \leq a_{1}(\rho(x, z)+\rho(z, y))$ for all.
(v) For every neighbourhood V of $x \in X$ there is $r>0$ such that the ball $B(x, r)=\{y \in X: \rho(x, y)<r\}$ is contained in V.
(vi) Balls $B(x, r)$ are measurable for every $x \in X$ and every $r>0$.
(vii) There is a constant $b>0$ such that $\mu B(x, 2 r) \leq b \mu B(x, r)<\infty$ for every $x \in X$ and every $r>0$.

One can find many interesting examples of SHT in [6].
Suppose that Ω is a mesuareble bounded set in X and p is a measurable function on Ω such that $1 \leq p(x) \leq \bar{p}<\infty, x \in \Omega$. By $L^{p(\cdot)}(\Omega)$ we denote the space of measurable functions $f(x)$ on Ω such that

$$
|f|_{p(\cdot)}=\int_{\Omega}|f(x)|^{p(x)} d \mu(x)<\infty
$$

$L^{p(\cdot)}(\Omega)$ is a Banach space with the norm:

$$
\|f\|_{p(\cdot)}=\inf \left\{\lambda>0:\left|\frac{f}{\lambda}\right|_{p(\cdot)} \leq 1\right\} .
$$

In this paper we consider the Hardy-Littlewood maximal operator,

$$
M f(x)=\sup _{r>0} \frac{1}{\mu B(x, r)} \int_{B(x, r) \cap \Omega}|f(y)| d \mu(y)
$$

We will use also the following notations:

$$
\begin{aligned}
& p_{B}=\operatorname{essinf}_{x \in B} p(x), \bar{p}_{B}=\operatorname{esssup}_{x \in B} p(x), \underline{p}_{\Omega}=\underline{p}, \bar{p}_{\Omega}=\bar{p} \\
& M_{r} f(x)=\frac{1}{\mu B(x, r)} \underset{B(x, r) \cap \Omega}{ }|f(y)| d \mu(y) . \text { We also assume that } \rho \text { is a metric. }
\end{aligned}
$$

Theorem 1. Let Ω be a bounded set in a homogenous type space X and $p: \Omega \rightarrow[1, \infty)$ satisfy the following conditions:
a) $1<\underline{p} \leq \bar{p}<\infty$
b) there exists a positive number c_{0}, such that for every pair $x, y \in \Omega$

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{c_{0}}{\log \frac{1}{\rho(x, y)}}, \quad \text { when } \quad \rho(x, y)<\frac{1}{2} \tag{2}
\end{equation*}
$$

Then the maximal operator M is bounded in $L^{p(\cdot)}$ space.
We need some lemmas to prove this theorem.

Lemma 1. Let Ω be a bounded set and $r_{0}>0$. Then there exist positive numbers s, α and β, such that
a) $\mu B(x, r) \leq \beta r^{s}$, when $x \in \Omega$ and $r \geq r_{0}$;
b) $\mu B(x, r) \geq \alpha r^{s}$, when $x \in \Omega$ and $r<r_{0}$.

Proof. Let us suppose that $r_{0}=1$ and $k(x)=\mu B(x, 1), x \in \Omega$. As Ω is a bounded set there exists a ball B_{0}, such that $\Omega \subset B_{0}$. We can suppose that B_{0} is sufficiently large so that $B(x, 1) \subset 2 B_{0}$ for every $x \in \Omega$. Consequently

$$
k(x) \leq \mu\left(2 B_{0}\right)=K<\infty
$$

For the other side, it's easy to show that there exists a natural number N, independent of x, such that $\Omega \subset B(x, N)$. Thus $\mu \Omega \leq \mu B(x, N) \leq$ $c_{1} \mu B(x, 1)$ and $k(x) \geq \frac{\mu \Omega}{c_{1}}=k>0$. So we have

$$
0<k \leq k(x) \leq K<\infty, \quad x \in \Omega .
$$

Using the doubling condition several times we get:

$$
\begin{gathered}
\mu B\left(x, 2^{n}\right) \leq c^{n} \mu B(x, 1)=k(x)\left(2^{n}\right)^{\log _{2} c} \leq K\left(2^{n}\right)^{s} \\
\mu B\left(x, \frac{1}{2^{n}}\right) \geq c^{-n} \mu B(x, 1)=k(x)\left(2^{-n}\right)^{\log _{2} c} \geq k\left(2^{-n}\right)^{s}
\end{gathered}
$$

where $s=\log _{2} c$.
Now let $r \geq r_{0}=1$. There exists a natural number n, such that $2^{n-1} \leq r<2^{n}$.
Then

$$
\mu B(x, r) \leq \mu B\left(x, 2^{n}\right) \leq K\left(2^{n}\right)^{s} \leq K(2 r)^{s}=K 2^{s} r^{s}=\beta r^{s}
$$

In the same way, if $r<r_{0}=1$, there exists a natural number n, such that $2^{-n} \leq r<2^{-n+1}$ and

$$
\mu B(x, r) \geq \mu B\left(x, 2^{-n}\right) \geq k\left(\frac{r}{2}\right)^{s}=k 2^{-s} r^{s}=\alpha r^{s}
$$

In the case of an arbitrary r_{0} the proof is analogous. The lemma is proved.

Lemma 2. Let Ω be a bounded set and the condition (2) holds. Then there exists a positive number c_{1}, such that for every ball B

$$
\begin{equation*}
(\mu B)^{\underline{p}_{B}-\bar{p}_{B}} \leq c_{1} \tag{3}
\end{equation*}
$$

when $\mu(\Omega \cap B)>0$.
Proof. As Ω is a bounded and (2) holds, it is obvious that $1 \leq \underline{p} \leq \underline{p}_{B} \leq$ $\bar{p}_{B} \leq \bar{p}<\infty$. If $\mu B \geq 1$ then $(\mu B)^{\underline{p}_{B}}{ }^{-\bar{p}_{B}} \leq 1$ and (3) holds. Let $\mu B<1$ and $\operatorname{diam}(B) \geq \frac{1}{2}$. As we have seen in the proof of Lemma 1, in this case $\mu B \geq k>0$. Hence, $(\mu B)^{\underline{p}_{B}} \bar{p}_{B} \leq k^{\underline{p}-\bar{p}}$. Thus we can assume that
$\operatorname{diam}(B)<\frac{1}{2}$. Let us choose a pair $u, \nu \in \Omega \cap B$, so that $0 \leq \frac{1}{2}\left(\underline{p}_{B}-\bar{p}_{B}\right) \leq$ $p(u)-p(\nu)$. Since $\rho(u, \nu)<\frac{1}{2}$,

$$
|p(u)-p(\nu)| \leq c_{0} \log ^{-1} \frac{1}{\rho(u, \nu)}
$$

Hence,

$$
e^{c_{0}} \geq(\rho(u, \nu))^{-|p(u)-p(v)|} \geq(\rho(u, v))^{\frac{1}{2}\left(\underline{p}_{B}-\bar{p}_{B}\right)}
$$

By Lemma $1 \rho(u, \nu) \leq 2 r(B) \leq c(\mu B)^{\frac{1}{s}}$. So,

$$
e^{2 c_{0}} \geq(\rho(u, \nu))^{\underline{p}_{B}-\bar{p}_{B}} \geq c(\mu B)^{\frac{1}{s}\left(\underline{p}_{B}-\bar{p}_{B}\right)}
$$

or

$$
(\mu, B)^{\underline{p}_{B}-\bar{p}_{B}} \leq c e^{2 c_{0} s}=c_{1}
$$

and the lemma is proved.
Lemma 3. Let Ω be a bounded set and the conditions (1) and (2) hold. Then there exists a positive number c such that for every $f \in L^{p(\cdot)}(\Omega)$, with $\|f\|_{p(\cdot)} \leq 1$

$$
\begin{gather*}
\left|M_{r} f(x)\right|^{p(x)} \leq c\left(1+M_{r}\left(|f(\cdot)|^{p(\cdot)}(x)\right)\right), \quad r>0 \tag{4}\\
|M f(x)|^{p(x)} \leq c\left(1+M\left(|f(\cdot)|^{p(\cdot)}(x)\right)\right) . \tag{5}
\end{gather*}
$$

Proof. Let $r \geq \frac{1}{2}$:

$$
\begin{gathered}
\left|M_{r} f(x)\right|^{p(x)}=\left(\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap \Omega}|f(y)| d \mu(y)\right)^{p(x)} \leq \\
\quad \leq\left(\frac{1}{\mu B(x, r)} \int_{B(x, r)}\left(1+|f(y)|^{p(y)}\right) d \mu(y)\right)^{p(x)}
\end{gathered}
$$

As we have seen while proving the Lemma $1 \mu B(x, 1) \geq k$. Hence,

$$
\mu B(x, r) \geq \mu B\left(x, \frac{1}{2}\right) \geq c \mu B(x, 1) \geq c k
$$

and

$$
\left|M_{r} f(x)\right|^{p(x)} \leq\left(\frac{1}{c k}+1\right)^{p(x)}<\left(\frac{1}{c k}+1\right)^{\bar{p}}
$$

Now let $0<r<\frac{1}{2}$:

$$
\begin{aligned}
& \left|M_{r} f(x)\right|^{p(x)}=\left(\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap \Omega}|f(y)| d \mu(y)\right)^{p(x)} \leq \\
& \quad \leq\left(\frac{1}{\mu B(x, r)} \int_{B(x, r)}|f(y)|^{\underline{p}_{B(x, r)}} d \mu(y)\right)^{\frac{p(x)}{\underline{p}_{B(x, r)}}} \leq
\end{aligned}
$$

$$
\begin{gathered}
\leq\left(\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap \Omega}\left(1+|f(y)|^{p(y)}\right) d \mu(y)\right)^{\frac{p(x)}{\underline{p}_{B(x, r)}}} \leq \\
\leq(\mu B(x, r))^{\frac{p(x)}{\underline{p}_{B}(x, r)}}\left(\int_{B(x, r) \cap \Omega}|f(y)|^{p(y)} d \mu(y)+\mu B(x, r)\right)^{\frac{p(x)}{\underline{p}_{B(x, r)}}} .
\end{gathered}
$$

Since $\mu B(x, r) \leq \mu B(x, 1) \leq k$,

$$
\int_{B(x, r) \cap \Omega}|f(y)|^{p(y)} d \mu(y)+\mu B(x, r) \leq 1+K
$$

Thus,

$$
\begin{gathered}
\left|M_{r} f(x)\right|^{p(x)} \leq \\
\leq(\mu B(x, r))^{-\frac{p(x)}{p_{B(x, r)}}}(1+K)^{\frac{\bar{p}}{\underline{p}}}\left(\frac{1}{1+K} \int_{B(x, y) \cap \Omega}|f(y)|^{p(y)} d \mu(y)+\frac{\mu B(x, r)}{1+K}\right)^{\frac{\bar{p}}{\underline{p}}} \leq \\
\leq(\mu B(x, r))^{\frac{p(x)}{\underline{p}_{B(x, r)}}}(1+K)^{\frac{\bar{p}}{\underline{p}}}\left(\frac{1}{1+K} \int_{B(x, y) \cap \Omega}|f(y)|^{p(y)} d \mu(y)+\frac{\mu B(x, r)}{1+K}\right)= \\
=(\mu B(x, r))^{1-\frac{p(x)}{\underline{p}_{B(x, r)}}}(1+K)^{\frac{\bar{p}}{\underline{p}}-1}\left(\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap \Omega}|f(y)|^{p(y)} d \mu(y)+1\right) \leq \\
\leq(\mu B(x, r))^{\frac{\underline{p}_{B(x, r)}-\bar{p}_{B(x, r)}}{\bar{p}_{B(x, r)}}}(1+K)^{\frac{\bar{p}}{\underline{p}}-1}\left(1+M_{r}\left(|f(\cdot)|^{p(\cdot)}(x)\right)\right) .
\end{gathered}
$$

By virtue of Lemma $2,(\mu B(x, r))^{\underline{p}_{B}} \bar{p}_{B} \leq c_{1}$. Hence,

$$
(\mu B(x, r))^{\frac{\underline{\underline{p}}_{B}-\bar{p}_{B}}{\underline{p_{B}}}} \leq \max \left(1, c_{1}^{\frac{1}{\underline{p}}}\right)
$$

and

$$
\left(M_{r} f(x)\right)^{p(x)} \leq c\left(1+M_{r}\left(|f(\cdot)|^{p(\cdot)}(x)\right)\right)
$$

The inequality (4) is proved. Taking the supremum by r we obtain (5).
Proof of Theorem 1. First of all we should mention that if $f \in L^{p(\cdot)}(\Omega)$ then $f \in L^{1}(\Omega)$, as Ω is bounded. Define a function q by the quality $q(x)=\frac{p(x)}{\underline{p}}$. It is obvious that $1 \leq q(x) \leq p(x) \leq \bar{p}<\infty$ and there exists a positive number A, such that $\|f\|_{q(\cdot)} \leq A\|f\|_{p(\cdot)}$ for every $f \in L^{p(\cdot)}(\Omega)$. Let $\|f\|_{p(\cdot)} \leq \frac{1}{A}$. Then $\|f\|_{q(\cdot)} \leq 1$ and by virtue of Lemma 3

$$
\begin{gathered}
|M f|=\left\|(M f)^{q(\cdot)}\right\|_{L^{\underline{p}}(\Omega)} \leq\left\|c\left(M\left(|f(\cdot)|^{q(\cdot)}\right)+1\right)\right\|_{\frac{\underline{p}^{\underline{p}}(\Omega)}{} \leq}^{\leq c\left(c^{\prime}\left\||f(\cdot)|^{q(\cdot)}\right\|_{L^{\underline{p}}(\Omega)}+\|1\|_{L_{\underline{\underline{p}}(\Omega)}}\right)^{\underline{\underline{p}}} \leq c\left(c^{\prime}\left\||f(\cdot)|^{q(\cdot)}\right\|_{L^{\underline{p}}(\Omega)}+\|1\|_{L_{\underline{\underline{p}}(\Omega)}}\right)^{\underline{p}}=}
\end{gathered}
$$

$$
=c\left(c^{\prime}\left(|f|_{p(\cdot)}\right)^{\frac{1}{\underline{p}}}+\|1\|_{L \underline{\underline{p}}(\Omega)}\right)^{\underline{p}}<c_{1}<\infty
$$

Thus, $|M f|_{p(\cdot)}<c_{1}$ when $|f|_{p(\cdot)}<\frac{1}{A}$. Then $|M f|_{p(\cdot)}<c_{2}$ when $|f|_{p(\cdot)}<\frac{1}{A}$. But this means that the operator M is bounded in $L^{p(\cdot)}$. The theorem is proved.

Theorem 2. Let X be a homogenous type space, $p: X \rightarrow[1, \infty)$ satisfy the conditions (1) and (2) and p be a constant outside some ball. Then the operator M is bounded in $L^{p(\cdot)}(\Omega)$:

$$
\|M f\|_{L^{p(\cdot)}(X)}<c\|f\|_{L^{\underline{p} \cdot()}(x)}
$$

Proof. Let us suppose that $p(x)=p_{0}$ when $x \notin B_{0}=B\left(x_{0}, R\right)$ and $B_{1}=$ $B\left(x_{0}, 2 r\right)$. Let $\varphi(x)=f(x) 1_{B_{1}}(x)$ and $\psi(x)=f(x) 1_{X \backslash B_{1}}(x)$. It is obvious that $M f \leq M \varphi+M \psi$. We are going to show that $|M f|_{p(\cdot)}<c<\infty$ when $|f|_{p(\cdot)} \leq 1$. We will do it separately for $|M \varphi|_{p(\cdot)}$ and $|M \psi|_{p(\cdot)}$. We start with $|M \varphi|_{p(\cdot)}$. Let $x \in B_{1}$. Then

$$
\begin{gathered}
M \varphi(x)=\sup _{r} \frac{1}{\mu B(x, r)} \int_{B(x, r)}|\varphi(y)| d \mu(y)= \\
\sup _{r} \frac{1}{\mu B(x, r)} \int_{B(x, r) \cap B_{1}}|f(y)| d \mu(y)=M_{B_{1}} f(x)
\end{gathered}
$$

and by virtue of Theorem 1

$$
\begin{equation*}
\int_{B_{1}}(M \varphi(x))^{p(x)} d \mu(x)=\int_{B_{1}}\left(M_{B_{1}} f(x)\right)^{p(x)} d \mu(x)<c_{1} \tag{6}
\end{equation*}
$$

as $\|f\|_{p(\cdot), B_{1}} \leq\|f\|_{p(\cdot)} \leq 1$.
Now let $x \in X \backslash B_{1}$ and $B(x, r) \cap B_{0}=\varnothing$:

$$
\begin{gather*}
M_{r} \varphi(x)=\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap\left(B_{1} \backslash B_{0}\right)}|\varphi(y)| d \mu(y)= \\
=\frac{1}{\mu B(x, r)} \int_{B(x, r)}\left|f(y) \cdot 1_{B_{1} \backslash B_{0}}(y)\right| d \mu(y) \leq M\left(f \cdot 1_{B_{1} \backslash B_{0}}\right)(x) \tag{7}
\end{gather*}
$$

Now suppose that $x \in X \backslash B_{1}$ and $B(x, r) \cap B_{0} \neq \varnothing$. It is not difficult to check that in this case $B_{1} \subset B(x, 9 r)$. Let $h=|f|_{B_{1}} \cdot 1_{B_{1}}$, where $|f|_{B_{1}}=$ $\frac{1}{\mu B_{1}} \int_{B_{1}}|f| d \mu$. It is obvious that $h \in L^{p_{0}}(X)$ and

$$
\|h\|_{L^{p_{0}}(x)}=\left(\mu B_{1}\right)^{\frac{1}{p_{0}}}|f|_{B_{1}}=\left(\mu B_{1}\right)^{\frac{1}{p_{0}}-1} \int_{B_{1}}|f| d \mu(y) \leq
$$

$$
\begin{equation*}
\leq\left(\mu B_{1}\right)^{\frac{1}{p_{0}}-1}\left(\int_{B_{1}}|f|^{p_{0}} d \mu\right)^{\frac{1}{p_{0}}}\left(\mu B_{1}\right)^{\frac{1}{q_{0}}} \leq\left(\int_{B_{1}}|f(y)|^{p(y)} d \mu(y)\right)^{\frac{1}{p_{0}}} \leq 1 \tag{8}
\end{equation*}
$$

Now we estimate $M_{r} \varphi(x)$:

$$
\begin{gather*}
M_{r} \varphi(x)=\frac{1}{\mu B(x, r)} \int_{B(x, r)}|\varphi(y)| d \mu(y) \leq \frac{1}{\mu B(x, r)} \int_{B_{1}}|f(y)| d \mu(y) \leq \\
\leq \frac{c}{\mu B(x, 9 r)} \int_{B_{1}}|f(y)| d \mu(y) \leq \frac{c}{\mu B(x, 9 r)} \mu B_{1} \frac{1}{\mu B_{1}} \int_{B_{1}}|f(y)| d \mu(y)= \\
=\frac{c}{\mu B(x, 9 r)} \int_{B_{1}}|h(y)| d \mu(y)=\frac{c}{\mu B(x, 9 r)} \int_{B(x, 9 r)}|h(y)| d \mu(y) \leq \\
\leq C M h(x) . \tag{9}
\end{gather*}
$$

From (7) and (9) follows that

$$
M \varphi(x) \leq M\left(f \cdot 1_{B_{1} \backslash B_{0}}\right)(x)+c M h(x), \quad x \in X \backslash B_{1} .
$$

Taking into consideration (8) we get:

$$
\begin{gather*}
\int_{X \backslash B_{1}}(M \varphi(x))^{p(x)} d \mu(x)=\int_{X \backslash B_{1}}(M \varphi(x))^{p_{0}} d \mu(x) \leq \\
\leq c \int_{X \backslash B_{1}}\left(M\left(f \cdot 1_{B_{1} \backslash B_{0}}\right)(x)\right)^{p_{0}} d \mu(x)+c \int_{X \backslash B_{1}}(M h(x))^{p_{0}} d \mu(x) \leq \\
\leq c \int_{X \backslash B_{1}}\left(\left(f \cdot 1_{B_{1} \backslash B_{0}}\right)(x)\right)^{p_{0}} d \mu(x)+c \int_{X \backslash B_{1}}(h(x))^{p_{0}} d \mu(x) \leq \\
\leq c \int_{X \backslash B_{1}}|f(x)|^{p(x)} d \mu(x)+c \leq c_{2}<\infty . \tag{10}
\end{gather*}
$$

Combining (6) and (10) we have:

$$
\begin{equation*}
\int_{X}(M \varphi(x))^{p(x)} d \mu(x) \leq c_{1}+c_{2}<\infty . \tag{11}
\end{equation*}
$$

Now we start to estimate $|M \psi|_{p(\cdot)}$. Let $x \in B_{0}$. If $r<R$ then $B(x, r) \cap$ $\left(X \backslash B_{1}\right)=\varnothing$ and, therefore, $M_{r} \psi(x)=0$. So we can suppose that $r \geq R$. Then:

$$
M_{r} \psi(x)=\frac{1}{\mu B(x, r)} \int_{B(x, r) \cap\left(X \backslash B_{1}\right)}|f(y)| d \mu(y) \leq
$$

$$
\begin{gathered}
\leq \frac{1}{\mu B(x, r)} \int_{B(x, r) \cap\left(X \backslash B_{1}\right)}\left(1+|f(y)|^{p_{0}}\right) d \mu(y) \leq \\
\leq \frac{\mu B(x, r)+1}{\mu B(x, r)}=1+\frac{1}{\mu B(x, r)}
\end{gathered}
$$

As $x \in B_{0}$ and $r \geq R$, by virtue of Lemma $1 \mu B(x, r) \geq k>0$ and

$$
M \psi(x) \leq 1+\frac{1}{k}=m
$$

which immediately gives

$$
\begin{equation*}
\int_{B_{0}}(M \psi(x))^{p(x)} d \mu(x) \leq m^{\bar{p}} \mu B_{0}=c_{3}<\infty \tag{12}
\end{equation*}
$$

As a last step we are going to estimate $\int_{X \backslash B_{0}}(M \psi(x))^{p(x)} d \mu(x)$:

$$
\begin{gather*}
\int_{X \backslash B_{0}}(M \psi(x))^{p(x)} d \mu(x)=\int_{X \backslash B_{0}}(M \psi(x))^{p_{0}} d \mu(x) \leq \int_{X}(M \psi(x))^{p_{0}} d \mu(x) \leq \\
\left.\leq c \int_{X} \mid \psi(x)\right)^{p_{0}} d \mu(x) \leq c \int_{X}|f(x)|^{p(x)} d \mu(x) \leq c_{4}<\infty \tag{13}
\end{gather*}
$$

From (12) and (13) follows that

$$
\begin{equation*}
\int_{X}(M \psi(x))^{p(x)} d \mu(x) \leq c_{3}+c_{4} \tag{14}
\end{equation*}
$$

and (11) and (14) gives

$$
\begin{gathered}
\int_{X}(M f(x))^{p(x)} d \mu(x) \leq \\
\leq 2^{\bar{p}}\left(\int_{X}(M \varphi(x))^{p(x)} d \mu(x)+\int_{X}(M \psi(x))^{p(x)} d \mu(x)\right) \leq \\
\leq 2^{\bar{p}}\left(c_{1}+c_{2}+c_{3}+c_{4}\right)=c .
\end{gathered}
$$

Thus, $|M f|_{p(\cdot)} \leq c$ when $\|f\|_{p(\cdot)} \leq 1$, which signifies the boundedness of the operator M and the proof of Theorem 2 is completed.

Acknowledgements

I would like to express my gratitude to Prof. V. Kokilashvili for helpful suggestions and discussions.

References

1. L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), No. 2, 245-253.
2. V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoamericana 20(2004), No. 2, 493-515.
3. D.E. Edmunds, J. Lang, and A. Nekvinda, On $L^{p(x)}$ norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1999), No. 1981, 219-225.
4. I. I. Sarapudinov, The topology of the space $\mathcal{L}^{p(t)}([0,1])$. (Russian) Mat. Zametki 26(1979), No. 4, 613-632, 655.
5. P. Harjulento, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator. University of Helsinki, Department of Mathematics. Preprint 371, October 2003.
6. I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type. Pitman Monographs and Surveys in Pure and Applied Mathematics, 92. Longman, Harlow, 1998.
7. M. Khabazi, Maximal Functions in $L^{p(x)}$ Spaces. Proc. A. Pazmadze Math. Inst. 135(2004), 145-146.
(Received 20.04.2004)
Author's address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193
Georgia

[^0]: 2000 Mathematics Subject Classification. 42B20, 47B37, 45P05.
 Key words and phrases. Spaces of homogeneous type, Lebesgue spases with variable exponent, maximal operator.

