
Proceedings of A. Razmadze
Mathematical Institute
Vol. 138 (2005), 1–15

TWO-WEIGHTED INEQUALITY FOR SINGULAR

INTEGRALS IN LEBESGUE SPACES, ASSOCIATED WITH

THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR

A. D. GADJIEV AND E. V. GULIYEV

Abstract. In this paper, the authors establish several general the-
orems for the boundedness of singular integrals, associated with the
Laplace-Bessel differential operator on a weighted Lebesgue space.

îâäæñéâ. ïð�ðæ�öæ á�éðçæùâ�ñèæ� åâëîâéâ�æ èâ�âàæï ïæãîùâ-

â�öæ æé ïæêàñè�îñèæ æêðâàî�èâ�æï öâéëï�ä�ãîñèë�æï öâï�ýâ�,

îëéèâ�æù éæç�ãöæîâ�ñèæ �îæ�ê è�ìè�ï{�âïâèæï áæòâîâêùæ�èñî

ëìâî�ðëîå�ê.

1. Introduction

The classical Calderon and Zygmund singular integral operators are an
important technical tool in harmonic analysis, theory of functions and par-
tial differential equations. The maximal functions, singular integrals, po-
tentials and related topics associated with the Laplace-Bessel differential
operator

∆Bn
=

n−1
∑

k=1

∂2

∂x2
k

+Bn, Bn =
∂2

∂x2
n

+
γ

xn

∂

∂xn
, γ > 0,

which is known as an important differential operator in analysis and its
applications, have been the research areas many mathematicans such as B.
Muckenhoupt and E. Stein [22], I. Kipriyanov and M. Klyuchantsev [21, 20],
K. Trimeche [30], L. Lyakhov [25, 26], K. Stemlak [27, 28], A. D. Gadjiev
and I. A. Aliev [5, 6, 7, 8], V. S. Guliyev [9, 10, 11, 12] and others.

In this paper we consider the generalized shift operator, generated by
Laplace-Bessel differential operator ∆Bn

by means of which singular inte-
grals (Bn singular integral) are investigated.
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The singular integral operators that have been considered by Mihlin [23],
and Calderon and Zygmund [3] are playing an important role in the the-
ory Harmonic Analysis and in particular, in the theory partial differential
equations. Klyuchantsev [20] and Kipriyanov and Klyuchantsev [21] have
firstly introduced and investigated by the boundedness in Lp-spaces of mul-
tidimensional singular integrals generated by the ∆Bn

Laplace-Bessel differ-
ential operator (Bn singular integral). Aliev and Gadziev [8] have studied
the boundedness of Bn singular integrals in weighted Lp-spaces with radial
weights.

In this paper, the author establishes the boundedness of Bn singular
integral operators in weighted Lp spaces on R

n
+. Sufficient conditions on

weighted functions ω and ω1 are given so that Bn singular integral operator
is bounded from the weighted Lebesgue spaces Lp,ω,γ(Rn

+) into Lp,ω1,γ(Rn
+).

2. Notations and Background

Suppose that R
n is the n-dimensional Euclidean space, x = (x1, . . . , xn),

ξ = (ξ1, . . . , ξn) are vectors in R
n, (x, ξ) = x1ξ1 + . . .+ xnξn, |x| =

√

(x, x).
Let R

n
+ = {x = (x1, . . . xn) : xn > 0}, γ > 0. E(x, r) = {y ∈ Rn

+ : |x−y| <
r}, Σ+ = {x ∈ R

n
+ : |x| = 1}.

For measurable set E ⊂ R
n
+ let |E|γ =

∫

E x
γ
ndx, then |E(0, r)|γ =

ω(n, γ)rn+γ , where ω(n, γ) = |E(0, 1)|γ .
An almost everywhere positive and locally integrable function ω : R

n
+ →

R will be called a weight. We shall denote by Lp,ω,γ(Rn
+) the set of all

measurable function f on R
n
+ such that the norm

‖f‖Lp,ω,γ
≡ ‖f‖p,ω,γ =

(
∫

R
n
+

|f(x)|pω(x)xγ
ndx

)1/p

, 1 ≤ p <∞

is finite. For ω = 1 the space Lp,ω,γ(Rn
+) is denoted by Lp,γ(Rn

+), and the
norm ‖f‖Lp,ω,γ

by ‖f‖Lp,γ
.

The operator of generalized shift (Bn shift operator) is defined by the
following way (see [24], [20]):

T yf(x) = Cγ

π
∫

0

f
(

x′ − y′,
√

x2
n − 2xnyn cosαn + y2

n

)

sinγ−1 αdα,

where Cγ = π− 1
2 Γ

(

γ + 1
2

)

Γ−1(γ).
Note that this generalized shift operator is closely connected with ∆Bn

Laplace-Bessel differential operator (see [24], [20]).
The translation operator T y generated the corresponding Bn-convolution

(f ⊗ g)(x) =

∫

R
n
+

f(y)[T yf(x)]yγ
ndy,
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for which the Young inequality

‖f ⊗ g‖Lr,γ
≤ ‖f‖Lp,γ

‖g‖Lq,γ
, 1 ≤ p, q, r ≤ ∞,

1

p
+

1

q
=

1

r
+ 1

holds.

Lemma 1. [8] Let 1 ≤ p ≤ ∞. Then

‖T yf(·)‖Lp,γ
≤ ‖f‖Lp,γ

, ∀y ∈ R
n
+. (1)

The main goal of this paper is to establish weighted Lp-estimates for
the norms of the singular integral operator generated by a generalized shift
operator ( Bn singular integral operator ) :

Tf(x) = p.v.

∫

R
n
+

Ω(θ)

|y|n+γ
[T yf(x)]yγ

ndy =

= lim
ε→0

∫

R
n
+
\E(0,ε)

Ω(θ)

|y|n+γ
[T yf(x)]yγ

ndy = lim
ε→0

Tεf(x), (2)

where θ = y/|y|, and the characteristic Ω(θ) belong to some function space
on the hemisphere S+ = {x ∈ R

n
+ : |x| = 1} and satisfying the ”cancella-

tion” condition
∫

S+

Ω(θ)θγ
ndσ(θ) = 0 (3)

(dσ(θ) is the area element of the sphere |θ| = 1). The existence of the
limit (2) for all x ∈ R

n
+ and for Schwartz test functions f(x) can be

proved in the standard way if we take into account the well-known esti-
mate |T yf(x) − f(x)| ≤ c(x)|y|.

The theorem below is known about the behavior of the Bn singular in-
tegral operator T in Lp,γ (see [20, 21] ).

Theorem 1. Suppose that the characteristic Ω(θ) of the Bn singular inte-

gral (2) satisfies the conditions

∫

S+

Ω(θ)θγ
ndσ(θ) = 0,

(
∫

S+

|Ω(θ)|qθγ
ndσ(θ)

)
1
q

= Rq <∞ (4)

for some q > 1. Then

‖Tf‖Lp,γ
≤ CRq ‖f‖Lp,γ

, 1 < p <∞.
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3. Weighted Estimates For The Bn Singular Integral

Operator

The aim of this paper is the following assertion about the behavior of the
Bn singular integral operator (2) in weighted spaces.

We establish the boundedness in weighted Lp spaces for the Bn singular
integrals.

Theorem 2. Suppose that the characteristic Ω(θ) of the Bn singular inte-

gral (2) satisfies the conditions
∫

S+

Ω(θ)θγ
ndσ(θ) = 0, sup

θ∈S+

|Ω(θ)| <∞. (5)

Moreover, let ω(x), ω1(x) be weight functions on R
n
+ and the following

three conditions are satisfied:

(a) there exist b > 0 such that

sup
|x|/4<|y|≤4|x|

ω1(y) ≤ b ω(x) for a.e. x ∈ R
n
+,

(b) A≡sup
r>0

(
∫

R
n
+
\E(0,2r)

ω1(x)|x|
−(n+γ)pxγ

ndx

)(
∫

E(0,r)

ω1−p′

(x)xγ
ndx

)p−1

<∞,

(c) B≡sup
r>0

(
∫

E(0,r)

ω1(x)x
γ
ndx

)(
∫

R
n
+
\E(0,2r)

ω1−p′

(x)|x|−(n+γ)p′

xγ
ndx

)p−1

<∞,

where 1 < p <∞, pp′ = p+ p′. Then,

i) There exists a constant K1, independent of f and ε such that for all

f ∈ Lp,ω(Rn
+)

∫

R
n
+

|Tεf(x)|pω1(x)x
γ
ndx ≤ K1

∫

R
n
+

|f(x)|pω(x)xγ
ndx. (6)

ii) The limit lim
ε→0

Tεf , which will be denoted by Tf , exists in the sense of

Lp,ω,γ(Rn
+), and

∫

R
n
+

|Tf(x)|pω1(x)x
γ
ndx ≤ K1

∫

R
n
+

|f(x)|pω(x)xγ
ndx. (7)

Moreover, condition (a) can be replaced by the condition

(a’) there exist b > 0 such that

ω1(x)
(

sup
|x|/4≤|y|≤4|x|

1

ω(y)

)

≤ b for a.e., x ∈ R
n.
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Proof. We note that the coefficients ck in the estimates below depend in
general on the parameters n, p and γ, but not the function f and the
parameter ε > 0. We first prove part i) of the theorem. Part ii) follows
from part i). Without loss of generality we assume that f(x) is an infinitely
differentiable function, because such functions are dense in Lp,ω,γ(Rn

+).
Note that

Tεf(x) =

∫

R
n
+

χε(y)
Ω(y/|y|)

|y|n+γ
[T yf(x)]yγ

ndy =

∫

R
n
+

T y
[

χε(x)
Ω(x/|x|)

|x|n+γ

]

f(y)yγ
ndy,

where χε is the characteristic function of the set R
n
+ \ E+(0, ε).

For simplicity we let Kε(x) = χε(x)
Ω(x/|x|)
|x|n+γ .

For k ∈ Z we define Ek = {x ∈ Rn : 2k < |x| ≤ 2k+1}, Ek,1 = {x ∈ Rn :
|x| ≤ 2k−1}, Ek,2 = {x ∈ Rn : 2k−1 < |x| ≤ 2k+2}, Ek,3 = {x ∈ Rn : |x| >
2k+2}. Then Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the multiplicity of the covering
{Ek,2}k∈Z is equal to 3.

Given f ∈ Lp,ω,γ(Rn
+), we write

|Tεf(x)| =
∑

k∈Z

|Tεf(x)|χEk
(x) ≤

∑

k∈Z

|Tεfk,1(x)|χEk
(x)+

+
∑

k∈Z

|Tεfk,2(x)|χEk
(x) +

∑

k∈Z

|Tεfk,3(x)|χEk
(x) ≡

≡ T1,εf(x) + T2,εf(x) + T3,εf(x), (8)

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

, i =
1, 2, 3.

First we shall estimate ‖T1,εf‖Lp,ω1,γ
. Note that for x ∈ Ek, y ∈ Ek,1 we

have |y| ≤ 2k−1 ≤ |x|/2. Moreover, Ek ∩ supp fk,1 = ∅ and |x − y| ≥ |x|/2.
Hence by (5)

T1,εf(x) ≤ K0

∑

k∈Z

(
∫

R
n
+

T y|x|−n−γ |fk,1(y)|y
γ
ndy

)

χEk
≤

≤ K0

∫

{y∈R
n
+

: |y|≤|x|/2}

|x− y|−n−γ |f(y)| yγ
ndy ≤

≤ 2n+γK0|x|
−n−γ

∫

{y∈R
n
+

: |y|≤|x|/2}

|f(y)| yγ
ndy

for any x ∈ Ek, where K0 = sup
θ∈S+

|Ω(θ)|. Hence we have

∫

R
n
+

∣

∣T1,εf(x)
∣

∣

p
ω1(x) x

γ
ndx ≤
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≤
(

2n+γK0

)p
∫

R
n
+

(
∫

{y∈R
n
+

: |y|<|x|/2}

∣

∣f(y)
∣

∣ yγ
ndy

)p

|x|−(n+γ)pω1(x) x
γ
ndx.

Since A <∞, the Hardy inequality
∫

R
n
+

ω1(x)
∣

∣x
∣

∣

−(n+γ)p
(

∫

{y∈R
n
+

: |y|<|x|/2}

∣

∣f(y)
∣

∣ yγ
ndy

)p

xγ
ndx ≤

≤ C

∫

R
n
+

∣

∣f(x)
∣

∣

p
ω(x) xγ

ndx

holds and C ≤ c′A, where c′ depends only on n and p. In fact the condition
A <∞ is necessary and sufficient for the validity of this inequality (see [1],
[16]). Hence, we obtain

∫

R
n
+

|T1,εf(x)|pω1(x) x
γ
ndx ≤ c1

∫

R
n
+

|f(x)|pω(x) xγ
ndx, (9)

where c1 is independent of f and ε.
Next we estimate ‖T3,εf‖Lp,ω1,γ

. As is easy to verify, for x ∈ Ek, y ∈ Ek,3

we have |y| > 2|x| and |x− y| ≥ |y|/2. Since Ek ∩ suppfk,3 = ∅, for x ∈ Ek

by (5) we obtain

T3,εf(x) ≤ K0

∫

{y∈R
n
+

: |y|>2|x|}

T y|x|−n−γ |f(y)| yγ
ndy ≤

≤ 2n+γK0

∫

{y∈R
n
+

: |y|>2|x|}

|f(y)||x− y|−n−γ yγ
ndy ≤

≤ 2n+γK0

∫

{y∈R
n
+

: |y|>2|x|}

|f(y)||y|−n−γ yγ
ndy.

Hence we have
∫

R
n
+

|T3,εf(x)|pω1(x) x
γ
ndx ≤

≤
(

2n+γK0

)p
∫

R
n
+

(
∫

{y∈R
n
+

: |y|>|2x|}

|f(y)||y|−n−γ yγ
ndy

)p

ω1(x) x
γ
ndx.

Since B <∞, the Hardy inequality
∫

R
n
+

ω1(x)

(
∫

{y∈R
n
+

: |y|>|2x|}

|f(y)||y|−n−γ yγ
ndy

)p

xγ
ndx≤C

∫

R
n
+

|f(x)|pω(x)xγ
ndx
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holds and C ≤ c′B, where c′ depends only on n and p. In fact the condition
B <∞ is necessary and sufficient for the validity of this inequality (see [1],
[16]). Hence, we obtain

∫

R
n
+

|T3,εf(x)|pω1(x) x
γ
ndx ≤ c2

∫

R
n
+

|f(x)|pω(x) xγ
ndx, (10)

where c2 is independent of f and ε.
Finally, we estimate ‖T2,εf‖Lp,ω1,γ

. By the Lp,γ(Rn
+) boundedness of Tε

and condition (a) we have
∫

R
n
+

|T2,εf(x)|pω1(x) x
γ
ndx =

∫

R
n
+

(

∑

k∈Z

|Tεfk,2(x)|χEk
(x)

)p

ω1(x)x
γ
ndx =

=

∫

R
n
+

(

∑

k∈Z

|Tεfk,2(x)|
p
χEk

(x)
)

ω1(x)x
γ
ndx=

∑

k∈Z

∫

Ek

|Tεfk,2(x)|
p
ω1(x) x

γ
ndx≤

≤
∑

k∈Z

sup
x∈Ek

ω1(x)

∫

R
n
+

|Tεfk,2(x)|
p
xγ

ndx≤c2
∑

k∈Z

sup
x∈Ek

ω1(x)

∫

R
n
+

|fk,2(x)|
p
xγ

ndx=

= c2
∑

k∈Z

sup
y∈Ek

ω1(y)

∫

Ek,2

|f(x)|p xγ
ndx.

Since, for x ∈ Ek,2, 2k−1 < |x| ≤ 2k+2, we have by condition (a)

sup
y∈Ek

ω1(y) = sup
2k−1<|y|≤2k+2

ω1(y) ≤ sup
|x|/4<|y|≤4|x|

ω1(y) ≤ b ω(x)

for almost all x ∈ Ek,2. Therefore
∫

R
n
+

|T2,εf(x)|p ω1(x)x
γ
ndx ≤

≤ c2b
∑

k∈Z

∫

Ek,2

|f(x)|pω(x)xγ
ndx ≤ c3

∫

R
n
+

|f(x)|pω(x)xγ
ndx, (11)

where c3 = 3c2b, since the multiplicity of covering {Ek,2}k∈Z is equal to 3.
Inequalities (3), (9), (10), (11) imply (2) which completes the proof of the

first part of the theorem. Now let us proceed to the second part. We prove
that the limit lim

ε→0
Tεf = Tf exists in the sense of Lp,ω,γ(Rn

+) and hence

the estimate (7) hold for Tf . It suffices to prove that the limit exists for
functions that have compact support, are smooth, and are even with respect
to the variable xn. Indeed, representing any function f in Lp,ω,γ(Rn

+) in the
form of a sum f = f1 +f2, where f1 is a function that has compact support,
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is smooth, and is even with respect to xn and f2 is such that ‖f‖Lp,ω,γ
is

sufficiently small, we have from the equality Tεf = Tεf1 +Tεf2 and (6) that

‖Tεf − Tεf1‖Lp,ω1,γ
≤ c‖f‖Lp,ω,γ

≤ δ,

where δ is a sufficiently small number.
Therefore, it suffices to prove the existence of the limit lim

ε→0
Tεf = Tf

(in the sense of Lp,ω,γ(Rn
+) ) for smooth compacly supported functions that

is even with respect to the variable xn. Taking f(x) as such a function and
using the ”cancellation” condition (5), we have

Tε2
f(x) − Tε1

f(x) =

∫

{y∈R
n
+

:ε1<|y|<ε2}

Ω(y/|y|)

|y|n+γ
[T yf(x)]yγ

ndy =

=

∫

{y∈R
n
+

:ε1<|y|<ε2}

Ω(y/|y|)

|y|n+γ
[T yf(x) − f(x)] yγ

ndy,

where x ∈ R
n
+.

By using the Taylor-Delsarte formula [24] for T yf(x) is not hard to show
that

‖T yf(x) − f(x)‖Lp,ω,γ
≤ c|y|.

Therefore,

‖Tε2
f − Tε1

f‖Lp,ω1,γ
≤

∫

{y∈R
n
+

:ε1<|y|<ε2}

c|y|

|y|n+γ
yγ

ndy ≤

= c(ε2 − ε1).

Since the space Lp,ω,γ(Rn
+) is complete, this implies that the limit lim

ε→0
Tεf =

Tf exists and belongs to Lp,ω,γ(Rn
+). Thus the proof is complete. �

Theorem 3. Suppose that the characteristic Ω(θ) of the Bn singular in-

tegral (2) satisfies the conditions (5). Moreover, let p ∈ (1,∞), ω(t) be a

weight function on (0,∞), ω1(t) be a positive increasing function on (0,∞)
and ω(|x|), ω1(|x|) be satisfied the conditions (a), (b).

Then there exists a constant c > 0, such that for all f ∈ Lp,ω,γ(Rn
+)

∫

R
n
+

∣

∣Tf(x)
∣

∣

p
ω1

(

|x|
)

xγ
ndx ≤ c

∫

R
n
+

∣

∣f(x)
∣

∣

p
ω
(

|x|
)

xγ
ndx. (12)

Proof. Suppose that f ∈ Lp,ω,γ(Rn
+) and ω1 are positive increasing functions

on (0,∞) and ω(|x|), ω1(|x|) be satisfied the conditions (a), (b).
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Without loss of generality we can suppose that ω1 may be represented
by

ω1(t) = ω1(0+) +

t
∫

0

ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a
sequence of increasing absolutely continuous fuctions ̟n, such that ̟n(t) ≤
ω1(t) and lim

n→∞
̟n(t) = ω1(t) for any t ∈ (0,∞) (see [4],[13] for details).

We have
∫

R
n
+

∣

∣Tf(x)
∣

∣

p
ω1

(

|x|
)

xγ
ndx = ω1(0+)

∫

R
n
+

∣

∣Tf(x)
∣

∣

p
xγ

ndx+

+

∫

R
n
+

∣

∣Tf(x)
∣

∣

p
(

|x|
∫

0

ψ(λ)dλ

)

xγ
ndx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in
Lp,γ(Rn

+) thanks to (a)

J1 ≤ ‖T ‖pω1(0+)

∫

R
n
+

|f(x)|pxγ
ndx ≤

≤ ‖T ‖p

∫

R
n
+

|f(x)|pω1(|x|)x
γ
ndx ≤ b ‖T ‖p

∫

R
n
+

|f(x)|pω(|x|)xγ
ndx.

After changing the order of integration in J2 we have

J2 =

∞
∫

0

ψ(λ)

(
∫

|x|>λ

∣

∣Tf(x)
∣

∣

p
xγ

ndx

)

dλ ≤

≤ 2p−1

∞
∫

0

ψ(λ)

(
∫

|x|>λ

∣

∣T (fχ{|x|>λ/2})(x)
∣

∣

p
xγ

ndx+

∫

|x|>λ

∣

∣T (fχ{|x|≤λ/2})(x)
∣

∣

p
xγ

ndx

)

dλ=

= J21 + J22.

Using the boundeedness of T in Lp,γ(Rn
+) and condition (a) we have

J21 ≤
∥

∥T
∥

∥

p

∞
∫

0

ψ(t)

(
∫

{y∈R
n
+

:|y|>λ/2}

∣

∣f(y)
∣

∣

p
yγ

ndy

)

dt =

=
∥

∥T
∥

∥

p
∫

R
n
+

∣

∣f(y)
∣

∣

p
(

2|y|
∫

0

ψ(λ)dλ

)

yγ
ndy ≤
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≤
∥

∥T
∥

∥

p
∫

R
n
+

∣

∣f(y)
∣

∣

p
ω1

(

2|y|
)

yγ
ndy ≤ b

∥

∥T
∥

∥

p
∫

R
n
+

∣

∣f(y)
∣

∣

p
ω
(

|y|
)

yγ
ndy.

Let us estimate J22. For |x| > λ and |y| ≤ λ/2 we have |x|/2 ≤ |x− y| ≤
3|x|/2, and so

J22 ≤c4

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

:|x|>λ}

(
∫

{y∈R
n
+

:|y|≤λ/2}

T y
∣

∣x
∣

∣

−n−γ∣

∣f(y)
∣

∣yγ
ndy

)p

xγ
ndx

)

dλ≤

≤ c5

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

:|x|>λ}

(
∫

{y∈R
n
+

:|y|≤λ/2}

∣

∣f(y)
∣

∣yγ
ndy

)p
∣

∣x
∣

∣

−(n+γ)p
xγ

ndx

)

dλ =

= c6

∞
∫

0

ψ(λ)λ−(n+γ)(p−1)

(
∫

{y∈R
n
+

:|y|≤λ/2}

∣

∣f(y)
∣

∣yγ
ndy

)p

dλ.

The Hardy inequality

∞
∫

0

ψ(λ)λ−(n+γ)(p−1)

(
∫

{y∈R
n
+

:|y|≤λ/2}

∣

∣f(y)
∣

∣yγ
ndy

)p

dλ ≤

≤ C

∫

R
n
+

∣

∣f(y)
∣

∣

p
ω
(

|y|
)

yγ
ndy

for p ∈ (1,∞) is characterized by the condition C ≤ c′A′ ([1], [16], see also
[2], [17]), where

A′ ≡ sup
τ>0

(

∞
∫

2τ

ψ(t)t−(n+γ)(p−1)dτ

)(
∫

E(0,τ)

ω1−p′

(x)xγ
ndx

)p−1

<∞.

Note that

∞
∫

2t

ψ(τ)τ−(n+γ)(p−1)dτ =

= (n+ γ)(p− 1)

∞
∫

2t

ψ(τ)dτ

∞
∫

τ

λ−1−(n+γ)(p−1)dλ =

= (n+ γ)(p− 1)

∞
∫

2t

λ−1−(n+γ)(p−1)dλ

λ
∫

2t

ψ(τ)dτ ≤
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≤ (n+ γ)(p− 1)

∞
∫

2t

λ−1−(n+γ)(p−1)ω1(λ)dλ =

=
(n+ γ)(p− 1)

ω(n, γ)

∫

R
n
+
\E(0,2t)

ω1(|x|)|x|
−(n+γ)pxγ

ndx.

Condition (b) of the theorem guarantees that A′ ≤ (n+γ)(p−1)
ω(n,γ) A < ∞.

Hence, applying the Hardy inequality, we obtain

J22 ≤ c7

∫

R
n
+

∣

∣f(x)
∣

∣

p
ω
(

|x|
)

xγ
ndx.

Combining the estimates of J1 and J2, we get (12) for ω1(t) = ω1(0+) +
t
∫

0

ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (12). The theorem is proved. �

Example 1. Let

ω(t) =

{

t(n+γ)(p−1) lnp 1
t , for t ∈

(

0, 1
2

)

(

2β−p+1 lnp 2
)

tβ , for t ∈
[

1
2 ,∞

) ,

ω1(t) =

{

t(n+γ)(p−1), for t ∈
(

0, 1
2

)

2α−p+1tα, for t ∈
[

1
2 ,∞

) ,

where 0 < α ≤ β < (n + γ)(p − 1). Then the pair (ω, ω1) satisfies the

condition of Theorem 3.

Theorem 4. Suppose that the characteristic Ω(θ) of the Bn singular in-

tegral (2) satisfies the conditions (5). Moreover, let p ∈ (1,∞), ω(t) be a

weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞)
and ω(|x|), ω1(|x|) be satisfied the conditions (a), (c). Then inequality (12)
is valid.

Proof. Without loss of generality we can suppose that ω1 may be repre-
sented by

ω1(t) = ω1(+∞) +

∞
∫

t

ψ(τ)dτ,

where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a

sequence of decreasing absolutely continuous fuctions ̟n such that ̟n(t) ≤
ω1(t) and lim

n→∞
̟n(t) = ω1(t) for any t∈(0,∞) (see [4],[13] for details).

We have
∫

R
n
+

∣

∣Tf(x)
∣

∣

p
ω1

(

|x|
)

xγ
ndx = ω1(+∞)

∫

R
n
+

∣

∣Tf(x)
∣

∣

p
xγ

ndx+
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+

∫

R
n
+

∣

∣Tf(x)
∣

∣

p
(

∞
∫

|x|

ψ(τ)dτ

)

xγ
ndx = I1 + I2.

If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0, by the boundedness of T in
Lp,γ(Rn

+) and condition (a) we have

J1 ≤ ‖T ‖ω1(+∞)

∫

R
n
+

∣

∣f(x)
∣

∣

p
xγ

ndx ≤

≤ ‖T ‖

∫

R
n
+

∣

∣f(x)
∣

∣

p
ω1

(

|x|
)

xγ
ndx ≤ b ‖T ‖

∫

R
n
+

∣

∣f(x)
∣

∣

p
ω(|x|)xγ

ndx.

After changing the order of integration in J2 we have

J2 =

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

: |x|<λ}

∣

∣Tf(x)
∣

∣

p
xγ

ndx

)

dλ ≤

≤ 2p−1

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

: |x|<λ}

∣

∣T (fχ{|x|<2λ})(x)
∣

∣

p
xγ

ndx+

+

∫

{x∈R
n
+

: |x|<λ}

∣

∣T (fχ{|x|≥2λ})(x)
∣

∣

p
xγ

ndx

)

dλ = J21 + J22.

Using the boundeedness of T in Lp(R
n) and condition (a) we obtain

J21 ≤ ‖T ‖

∞
∫

0

ψ(t)

(
∫

|y|<2λ

|f(y)|pyγ
ndy

)

dt =

= ‖T ‖

∫

R
n
+

|f(y)|p
(

∞
∫

|y|/2

ψ(λ)dλ

)

yγ
ndy ≤

≤ ‖T ‖

∫

R
n
+

|f(y)|pω1(|y|/2)yγ
ndy ≤ b ‖T ‖

∫

R
n
+

|f(y)|pω(|y|)yγ
ndy.

Let us estimate J22. For |x| < λ and |y| ≥ 2λ we have |y|/2 ≤ |x − y| ≤
3|y|/2, and so

J22 ≤

≤ c8

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

: |x|<λ}

(
∫

{y∈R
n
+

: |y|≥2λ}

T y|x|−n−γ
∣

∣f(y)
∣

∣yγ
ndy

)p

xγ
ndx

)

dλ ≤
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≤ 2nc8

∞
∫

0

ψ(λ)

(
∫

{x∈R
n
+

: |x|<λ}

(
∫

{y∈R
n
+

: |y|≥2λ}

∣

∣y
∣

∣

−n−γ∣
∣f(y)

∣

∣yγ
ndy

)p

xγ
ndx

)

dλ=

= c9

∞
∫

0

ψ(λ)λn+γ

(
∫

{y∈R
n
+

: |y|≥2λ}

∣

∣y
∣

∣

−n−γ∣

∣f(y)
∣

∣yγ
ndy

)p

dλ.

The Hardy inequality

∞
∫

0

ψ(λ)λn+γ

(
∫

{y∈R
n
+

: |y|≥2λ}

∣

∣y
∣

∣

−n−γ∣

∣f(y)
∣

∣yγ
ndy

)p

dλ ≤

≤ C

∫

R
n
+

∣

∣f(y)
∣

∣

p
ω
(

|y|
)

yγ
ndy

for p ∈ (1,∞) is characterized by the condition C ≤ cB′ ([1], [16], see also
[2], [17]), where

B′ ≡ sup
τ>0

(

τ
∫

0

ψ(t)tn+γdτ

)(
∫

R
n
+
\E(0,2τ)

ω1−p′(

|x|
)
∣

∣x
∣

∣

−(n+γ)p′

xγ
ndx

)p−1

<∞.

Note that

τ
∫

0

ψ(t)tn+γdt = (n+ γ)

τ
∫

0

ψ(t)dt

t
∫

0

λn+γ−1dλ =

= (n+ γ)

τ
∫

0

λn+γ−1dλ

t
∫

λ

ψ(τ)dτ ≤ (n+ γ)

τ
∫

0

λn+γ−1ω(λ)dλ =

=
n+ γ

ω(n, γ)

∫

E(0,τ)

ω1(|x|)x
γ
ndx,

Condition (c) of the theorem guarantees that B′ ≤ n+γ
ω(n,γ)B <∞. Hence,

applying the Hardy inequality, we obtain

J22 ≤ c10

∫

R
n
+

|f(x)|pω(|x|)xγ
ndx.

Combining the estimates of J1 and J2, we get (12) for ω1(t) = ω1(+∞) +
∫ ∞

t
ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (12). The theorem is proved. �
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Example 2. Let

ω(t) =

{

1
tn+γ lnν 1

t , for t < d
(

d−n−γ−α lnν 1
d

)

tα, for t ≥ d
,

ω1(t) =

{

1
tn+γ lnβ 1

t , for t < d
(

d−n−γ−λ lnβ 1
d

)

tλ, for t ≥ d
,

where β < ν ≤ 0, −n − γ < λ < α < 0, d = e
β

n+γ . Then the pair (ω, ω1)
satisfies the condition of Theorem 4.
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