A. KIRTADZE

ON NONMEASURABILITY OF ADDITIVE FUNCTIONS

Let f be a real-valued function which is defined in \mathbf{R} and additive, i.e. satisfied Cauchy's classical functional equation

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbf{R}$, where, as usual, by \mathbf{R} is denoted the set of all real numbers. It is well known that every additive function

$$f: \mathbf{R} \to \mathbf{R}$$

which is not of the form

$$J(x) = \kappa \cdot x,$$

e()

for all $x \in \mathbf{R}$, satisfies the following conditions:

(a) f is nonmeasurable with respect to the standard Lebesgue measure on \mathbf{R} ;

(b) the graph of f is dense in the plane \mathbb{R}^2 .

There are many text-books, manuals and monographs devoted to this subject (see, [1], [2], [3]).

Let μ be a measure on E. As usual, we say that μ is diffused (or continuous) if it vanishes on all singletons in E (i.e., $\mu(\{x\}) = 0$ for each point $x \in E$).

For any set E, let M_E denote the class of all nonzero σ -finite diffused measures on E. Assuming some additional set-theoretical axioms, it is not difficult to demonstrate that there exists an absolutely nonmeasurable function $f : \mathbf{R} \to \mathbf{R}$ with respect to the class $M_{\mathbf{R}}$. Consequently, we can formulate the following statement.

Lemma 1. There exists a nontrivial solution of the Cauchy functional equation absolutely nonmeasurable with respect to the class $M_{\mathbf{R}}$.

The proof above-mentioned fact can be found in [4].

Theorem 1. Among the nontrivial solutions of the Cauchy functional equations one can meet those which are absolutely nonmeasurable with respect to the class of all translation invariant measures on \mathbf{R} , extending the Lebesgue measure.

²⁰¹⁰ Mathematics Subject Classification: 28A05, 28D05.

Key words and phrases. Additive functions, nonmeasurability of function, thick graph.

¹³⁶

Let (E_1, S_1, μ_1) and (E_2, S_2, μ_2) be two measurable spaces equipped with sigma-finite measures. We recall that a graph $\Gamma \subset E_1 \times E_2$ is $(\mu_1 \times \mu_2)$ thick in $E_1 \times E_2$ if for each $(\mu_1 \times \mu_2)$ -measurable set $Z \subset E_1 \times E_2$ with $(\mu_1 \times \mu_2)(Z) > 0$, the intersection $\Gamma \cap Z$ is not empty (see, [3]).

Theorem 2. There exists an additive function

 $f: \mathbf{R} \to \mathbf{R}$

having the following property: for any sigma-finite diffused Borel measure μ on **R** and for any sigma-finite measure ν on **R**, the graph of f is a $(\mu \times \nu)$ -thick subset of the Euclidean plane \mathbf{R}^2 .

Notice that Theorem 1 and Theorem 2 are generalizations of properties a) and b) from a certain point of view.

References

- M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. Second edition. Edited and with a preface by Attila Gilányi. *Birkhäuser Verlag, Basel*, 2009.
- V. G. Boltianskii, Hilbert's third problem. Translated from the Russian by Richard A. Silverman. With a foreword by Albert B. J. Novikoff. Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978.
- A. B. Kharazishvili, Topics in measure theory and real analysis. Atlantis Studies in Mathematics, 2. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
- 4. A. B. Kharazishvili and A. P. Kirtadze, On the measurability of functions with respect to certain classes of measures. *Georgian Math. J.* **11** (2004), No. 3, 489–494.

Author's addresses:

A. Razmadze Mathematical Institute
Iv. Javakhishvili Tbilisi State University
6, Tamarashvili St., Tbilisi 0177
Georgia
Georgian Technical University
77, M. Kostava, Tbilisi 0175

Georgia

E-mail: kirtadze2@yahoo.com