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A. KIRTADZE

ON NONMEASURABILITY OF ADDITIVE FUNCTIONS

Let f be a real-valued function which is defined in R and additive, i.e.
satisfied Cauchy’s classical functional equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ R, where, as usual, by R is denoted the set of all real numbers.
It is well known that every additive function

f : R → R
which is not of the form

f(x) = k · x,
for all x ∈ R, satisfies the following conditions:

(a) f is nonmeasurable with respect to the standard Lebesgue measure
on R;

(b) the graph of f is dense in the plane R2.
There are many text-books, manuals and monographs devoted to this

subject (see, [1], [2], [3]).
Let µ be a measure on E. As usual, we say that µ is diffused (or con-

tinuous) if it vanishes on all singletons in E (i.e., µ({x}) = 0 for each point
x ∈ E).

For any set E, let ME denote the class of all nonzero σ-finite diffused
measures on E. Assuming some additional set-theoretical axioms, it is
not difficult to demonstrate that there exists an absolutely nonmeasurable
function f : R → R with respect to the class MR. Consequently, we can
formulate the following statement.

Lemma 1. There exists a nontrivial solution of the Cauchy functional
equation absolutely nonmeasurable with respect to the class MR.

The proof above-mentioned fact can be found in [4].
Theorem 1. Among the nontrivial solutions of the Cauchy functional

equations one can meet those which are absolutely nonmeasurable with re-
spect to the class of all translation invariant measures on R, extending the
Lebesgue measure.
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Let (E1, S1, µ1) and (E2, S2, µ2) be two measurable spaces equipped with
sigma-finite measures. We recall that a graph Γ ⊂ E1 × E2 is (µ1 × µ2)-
thick in E1 × E2 if for each (µ1 × µ2)-measurable set Z ⊂ E1 × E2 with
(µ1 × µ2)(Z) > 0, the intersection Γ ∩ Z is not empty (see, [3]).

Theorem 2. There exists an additive function
f : R → R

having the following property: for any sigma-finite diffused Borel measure
µ on R and for any sigma-finite measure ν on R, the graph of f is a
(µ× ν)-thick subset of the Euclidean plane R2.

Notice that Theorem 1 and Theorem 2 are generalizations of properties
a) and b) from a certain point of view.
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