S. Kharibegashvili and O. Jokhadze

ON A ZAREMBA TYPE PROBLEM FOR NONLINEAR WAVE EQUATIONS IN THE ANGULAR DOMAINS

In a plane of independent variables x and t we consider a nonlinear wave equation

$$Lu := u_{tt} - u_{xx} + f(u) = F(x, t),$$
(1)

where f = f(s) is a given real nonlinear with respect to the variable $s \in \mathbb{R}$ function, F = F(x, t) is a given and u = u(x, t) is an unknown real function, and it is assumed that f and F are continuous functions of their arguments.

By $D: \gamma_2(t) < x < \gamma_1(t), t > 0$ we denote the angular domain lying inside of the characteristic angle $\Lambda: t > |x|$ and bounded by noncharacteristic curves $\gamma_i: x = \gamma_i(t), t \ge 0, i = 1, 2$, of the class C^2 , coming out of the origin O(0, 0).

Assume $D_T := D \cap \{t < T\}$ and $\gamma_{i,T} := \gamma_i \cap \{t \le T\}, T > 0, i = 1, 2.$

For equation (1) we consider the Darboux type problem when the oblique derivative of a solution is given on $\gamma_{1,T}$, while on $\gamma_{2,T}$ a solution itself of (1). The problem is formulated as follows: Find in the domain D_T a solution u = u(x,t) of that equation under the boundary conditions

$$(l_1 u_x + l_2 u_t)|_{\gamma_{1,T}} = 0, (2)$$

$$u|_{\gamma_{2,T}} = 0, \tag{3}$$

where l_1 and l_2 are the given continuous on γ_1 functions, and $(|l_1| + |l_2|)|_{\gamma_1} \neq 0$.

Note that in the linear case, that is, when the function f in equation (1) is linear with respect to s and instead of the boundary conditions (2), (3) there take place the conditions

$$(\alpha_i u_x + \beta_i u_t)|_{\gamma_{i,T}} = 0, \quad i = 1, 2; \quad u(0,0) = 0, \tag{4}$$

the problem (1), (4) in the domain D_T has been the subject of investigation in [1–6]. It should also be noted that the problem (1)–(3) is equivalent to the problem (1), (4) when direction (α_2, β_2) coincides with that of the tangent to the curve at every its point. In the case of equation (1) with power

²⁰¹⁰ Mathematics Subject Classification. 35L20, 35L71.

Key words and phrases. Zaremba type problem, nonlinear wave equation, existence, nonexistence and uniqueness.

¹³⁰

nonlinearity when homogeneous Dirichlet conditions are taken on γ_1 and γ_2 and one of these curves γ_1 , or γ_2 is a characteristic, this problem has been investigated in [7–9], but in the case where both curves are noncharacteristic rays, the problem has been studied in [10]. The particular case of boundary conditions (2), (3) of the type $u_x|_{\gamma_{1,T}} = 0$, $u|_{\gamma_{2,T}} = 0$, where $\gamma_{1,T} : x = 0$, $0 \le t \le T$, and $\gamma_{2,T} : x = -t$, $0 \le t \le T$ are the characteristics of equation (1) with power nonlinearity, is investigated in [11, 12], but when $\gamma_{2,T} : x = -kt$, $0 \le t \le T$, where 0 < k = const < 1, it is studied in [13]. In the case of equation (1) with power nonlinearity, when γ_1 and γ_2 are the noncharacteristic curves, the problem is considered in [14]. As is pointed out in [1, 6], analogous problems arise in mathematical modeling of small harmonic oscillations of a wedge in a supersonic flow, as well as of a string in a cylinder filled up with a viscous liquid.

In the present work we study a more general case of a nonlinear function f than the case of a power function $f = \lambda |s|^{\alpha} s$ considered in the abovementioned works, when $\gamma_i : x = -k_i t$, $t \ge 0$ are noncharacteristic rays and $k_i = \text{const}, i = 1, 2, 0 \le k_1 < k_2 < 1$.

Assume $\overset{\circ}{C}^{2}(\overline{D}_{T}, \gamma_{T}) := \{ v \in C^{2}(\overline{D}_{T}) : (l_{1}v_{x} + l_{2}v_{t})|_{\gamma_{1,T}} = 0, v|_{\gamma_{2,T}} = 0 \},$ $\gamma_{T} := \gamma_{1,T} \cup \gamma_{2,T}.$

Definition 1. Let $f \in C(\mathbb{R})$, $F \in C(\overline{D}_T)$; $l_1, l_2 \in C(\gamma_{1,T})$. The function u is said to be a strong generalized solution of the problem (1)–(3) of the class C in the domain D_T if $u \in C(\overline{D}_T)$ and there exists a sequence of functions $u_n \in \mathring{C}^2(\overline{D}_T, \gamma_T)$ such that $u_n \to u$ and $Lu_n \to F$ in the space $C(\overline{D}_T)$, as $n \to \infty$.

Remark 1. Obviously, a classical solution of the problem (1)–(3) from the space $\mathring{C}^2(\overline{D}_T, \gamma_T)$ is a strong generalized solution of that problem in the sense of Definition 1.

Definition 2. Let $f \in C(\mathbb{R})$, $F \in C(\overline{D}_{\infty})$; $l_1, l_2 \in C(\gamma_{1,\infty})$. We say that the problem (1)–(3) is globally solvable in the class C if for any finite T > 0this problem has at least one strong generalized solution of the class C in the domain D_T .

Definition 3. Let $f \in C(\mathbb{R})$, $F \in C(\overline{D}_{\infty})$; $l_1, l_2 \in C(\gamma_{1,\infty})$. The function $u \in C(\overline{D}_{\infty})$ is said to be a global strong generalized solution of the problem (1)–(3) of the class C in the domain D_{∞} , if for any finite T > 0 the function $u|_{D_T}$ is a strong generalized solution of that problem of the class C in the domain D_T .

Definition 4. Let $f \in C(\mathbb{R})$, $F \in C(\overline{D}_{\infty})$; $l_1, l_2 \in C(\gamma_{1,\infty})$. We say that the problem (1)–(3) is locally solvable in the class C if there exists a positive number $T_0 = T_0(F)$ such that for $T \leq T_0$ this problem has at least one strong generalized solution of the class C in the domain D_T . Remark 2. Below, it will be assumed that the direction (l_1, l_2) of the derivative appearing in the boundary condition (2) is not characteristic one, corresponding to a family of characteristics x + t = const of equation (1), that is,

$$(l_1+l_2)|_{\gamma_1}\neq 0.$$

By α we denote a nonobtuse angle which forms the ray γ_2 with the characteristic ray x + t = 0, $t \ge 0$, and by β we denote a nonobtuse angle lying between the directions of the vector $l = (l_1, l_2)$ and the characteristic ray x - t = 0, $t \ge 0$ at the point O(0, 0).

Theorem 1. Let $f \in C(\mathbb{R})$; $l_1, l_2 \in C^1(\gamma_{1,\infty})$. Then for any $F \in C(\overline{D}_{\infty})$, the problem (1)–(3) is locally solvable in the class C, i.e., there exists a positive number $T_0 = T_0(F)$ such that for $T \leq T_0$ this problem has at least one strong generalized solution of the class C in the domain D_T , and this problem in case $\alpha + \beta > \frac{\pi}{2}$ has an infinite set of linearly independent strong generalized solutions of the class C in the domain D_T for $T \leq T_0$.

Suppose

$$g(s) := \int_{0}^{s} f(s_1) ds_1, \quad s \in \mathbb{R}.$$

Consider the conditions

 $g(s) \ge -M_1 - M_2 s^2, \quad s \in \mathbb{R}, \quad M_i := \text{const} \ge 0, \quad i = 1, 2,$ (5)

and

$$[(l_1^2 + l_2^2)\nu_t + 2l_1l_2\nu_x](P) \ge 0, \quad P \in \gamma_1, \tag{6}$$

imposed, respectively, on the nonlinear function f and on the geometric characteristics of the curve γ_1 and the vector l, where (ν_x, ν_t) is the unit vector of the outer normal to ∂D_T at the point P.

Remark 3. Here we present certain classes of functions f appearing frequently in applications and satisfying the condition (5):

1. $f \in C(\mathbb{R}), f(s)sign \ s \ge 0, \ s \in \mathbb{R}$. In particular, when $f(s) = |s|^{\alpha}sign \ s, \ s \in \mathbb{R}$, where $\alpha = \text{const} > 0, \ \alpha \ne 1$. In this case $g(s) = \frac{|s|^{\alpha+1}}{\alpha+1}, \ s \in \mathbb{R}$.

2. $f = ce^s$, c = const > 0. In this case $g(s) = c(e^s - 1)$, $s \in \mathbb{R}$.

Remark 4. It can be easily verified that the inequality $\alpha + \beta < \frac{\pi}{2}$ follows from the validity of the condition (6) at the point O. It should also be noted that when (2) is a Neumann homogeneous boundary condition, i.e., $l = (\nu_x, \nu_t)$, then the condition (6) will be fulfilled.

Theorem 2. Let $f \in C(\mathbb{R})$; $l_1, l_2 \in C^1(\gamma_1)$ and the conditions (5), (6) be fulfilled. Then for any $F \in C(\overline{D}_T)$, the problem (1)–(3) has at least one strong generalized solution of the class C in the domain D_T .

Corollary 1. Let $f \in C(\mathbb{R})$; $l = (\nu_x, \nu_t)$ and the condition (5) be fulfilled. Then for any $F \in C(\overline{D}_T)$, the problem (1)–(3) has at least one strong generalized solution of the class C in the domain D_T .

Corollary 2. Let $f \in C(\mathbb{R})$; $l_1, l_2 \in C^1(\gamma_1)$ and the conditions (5), (6) be fulfilled. Then for any $F \in C(\overline{D}_{\infty})$, the problem (1)–(3) is globally solvable in the class C.

According to the definition, the function f satisfies the local Lipschitz condition on $\mathbb R$ if

$$|f(s_2) - f(s_1)| \le m(r)|s_2 - s_1|, \quad |s_i| \le r, \quad i = 1, 2, \tag{7}$$

where $m(r) := \text{const} \ge 0$.

Theorem 3. Let $f \in C(\mathbb{R})$ satisfy the condition (7), $F \in C(\overline{D}_T)$; $l_1, l_2 \in C(\gamma_1)$ and the condition (6) be fulfilled. Then the problem (1)–(3) may have no more than one strong generalized solution of the class C.

Corollary 3. If (7) holds and the conditions of Theorem 2 are fulfilled, then for any $F \in C(\overline{D}_T)$, the problem (1)–(3) has a unique strong generalized solution of the class C in the domain D_T , and in addition, this problem will have a unique global strong generalized solution of the class C in the domain D_T .

Theorem 4. If the conditions of Theorem 2 are fulfilled, then a strong generalized solution u of the problem (1)–(3) of the class C in the domain D_T belongs to the space $C^1(\overline{D}_T)$, and under additional requirement that $f \in C^1(\mathbb{R}), F \in C^1(\overline{D}_T)$ this solution belongs to the space $C^2(\overline{D}_T)$, i.e., it will be classical, and in both cases the conditions (2) and (3) are fulfilled pointwise.

Corollary 4. Let $f \in C^1(\mathbb{R})$; $l_1, l_2 \in C^1(\gamma_1)$ and the conditions (5), (6) be fulfilled. Then for any $F \in C^1(\overline{D}_T)$, the problem (1)–(3) in the domain D_T has a unique classical solution.

Corollary 5. Let $f \in C^1(\mathbb{R})$; $l_1, l_2 \in C^1(\gamma_1)$ and the conditions (5), (6) be fulfilled. Then for any $F \in C^1(\overline{D}_{\infty})$, the problem (1)–(3) has a unique global classical solution $u \in C^2(\overline{D}_{\infty})$.

Note that if the condition (5) is violated, the problem (1)-(3) may turn out to be globally unsolvable.

Theorem 5. Let $l_1, l_2 \in C(\gamma_1)$ and the function $f \in C(\mathbb{R})$ satisfy the condition

 $f(s) \leq -\lambda |s|^{\alpha+1}, \quad s \in \mathbb{R}; \quad \lambda, \ \alpha := \text{const} > 0.$

Then if $F \in C(\overline{D}_{\infty})$; $F \ge 0$ $F(x,t) \ge ct^{-m}$ and $t \ge 1$ for $t \ge 1$, where c := const > 0 and $0 < m := \text{const} \le 2$, then there exists the positive number $T_0 = T_0(F)$ such that for $T > T_0$, the problem (1)–(3) cannot have a strong generalized solution of the class C in the domain D_T .

Remark 5. In the case if in equation (1) instead of a nonlinear term f(u) there appears a nonlinear dissipative term of the type $g(u)u_t$, the scheme of investigation of the problem under consideration changes in principle. For example, it is not enough to have in the class C only one a priori estimate. On the basis of that eatimate, using the method of characteristics, we can get a priori estimate of solution now in the class C^1 . Next, proceeding from that a priori estimate and from the local solvability (see, for e.g., [15]), we will be able to prove global solvability of this problem in the class C^1 .

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation (Grant No 31/32).

References

- O. G. Goman, Equation of the reflected wave. Vestn. Mosk. Univ., Ser. I 23 (1968), No. 2, 84–87.
- Z. O. Mel'nik, Eexample of nonclassical boundary value problem for the vibrating string equation. (Russian) Ukrain. Mat. Zh. 32 (1980), No. 5, 671–674.
- S. S. Kharibegashvili, A boundary value problem for a second-order hyperbolic equation. (Russian) Dokl. Acad. Nauk SSSR 280 (1985), No. 6, 1313–1316.
- S. Kharibegashvili, Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. *Mem. Differential Equations Math. Phys.* 4 (1995), 1–127.
- S. D. Troitskaya, On a well-posed boundary-value problem for hyperbolic equations with two independent variables. Uspekhy Mat. Nauk 50 (1995), No. 4, 124–125; English transl.: Russian Math. Surveys 50 (1995), No. 4.
- S. D. Troitskaya, On a boundary value problem for hyperbolic equations. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), No. 2, 193–224; translation in Izv. Math. 62 (1998), No. 2, 399–428.
- G. K. Berikelashvili, O. M. Jokhadze, B. G. Midodashvili and S. S. Kharibegashvili, On the existence and onexistence of global solutions of the first Darboux problem for nonlinear wave equations. (Russian) *Differ. Uravn.* 44 (2008), No. 3, 359–372; translation in *Differ. Equ.* 44 (2008), No. 3, 374–389.
- 8. O. Jokhadze and B. Midodashvili, The first Darboux problem for wave equations with a nonlinear positive source term. *Nonlinear Anal.* **69** (2008), 3005–3015.
- O. M. Jokhadze and S. S. Kharibegashvili, On the first Darboux problem for secondorder nonlinear hyperbolic equations. (Russian) *Mat. Zametki* 84 (2008), No. 5, 693– 712; translation in Math. Notes 84 (2008), No. 5-6, 646–663.
- S. S. Kharibegashvili and O. M. Jokhadze, Second Darboux problem for the wave equation with a power-law nonlinearity. *Translation of Differ. Uravn.* 49 (2013), No. 12, 1623-1640. *Differ. Equ.* 49 (2013), No. 12, 1577–1595.
- O. Jokhadze, On existence and nonexistence of global solutions of Cauchy-Goursat problem for nonlinear wave equations. J. Math. Anal. Appl. 340 (2008), No. 2, 1033– 1045.
- O. Jokhadze, Cauchy-Goursat problem for one-dimensional semilinear wave equations. Comm. Partial Differential Equations 34 (2009), No. 4-6, 367–382.

- S. S. Kharibegashvili and O. M. Jokhadze, The Cauchy-Darboux problem for a onedimensional wave equation with power nonlinearity. (Russian) Sibirsk. Mat. Zh. 54 (2013), No. 6, 1407–1426; translation in Sib. Math. J. 54 (2013), No. 6, 1120–1136.
- S. Kharibegashvili and O. Jokhadze, Boundary value problem for a wave equation with power nonlinearity in the angular domain. Proc. A. Razmadze Math. Inst. 164 (2014), 116–120.
- 15. I. Segal, Non-linear semi-groups. Ann. of Math. (2) 78 (1963), 339-364.

Authors' address:

A. Razmadze Mathematical Institute Iv. Javakhishvili Tbilisi State University 6, Tamarashvili St., Tbilisi 0177 Georgia E-mail: khar@rmi.ge; jokha@rmi.ge