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D. Kapanadze

ON ELECTROMAGNETIC SCATTERING PROBLEMS FOR
SCREENS

1. Introduction and Formulation of the Problems

Abboud and Starling [1] studied the scattering of time–harmonic electro-
magnetic waves by a smooth screen type perfect conductor using techniques
from the theory of pseudo–differential operators. The case for Lipschitz
screens was investigated by Buffa and Christiansen [2]. They obtained re-
sults allowing us to reduce requirements from [1] on the given boundary
data. The purpose of the present paper is to continue this type of research
and study the screen type boundary value problems for Maxwell’s equations
with different boundary conditions on both sides of the screen.

The screen S is considered as a connected part of a smooth boundary
Γ of a bounded and connected domain Ω ⊂ R3 and denote by ν the unit
normal exterior with respect to Ω.

Let H1
loc(R3), H 1

2 (Γ), and H− 1
2 (Γ) be the usual Sobolev spaces (cf. [7])

and recall the definition of the following spaces
Hloc(curl;R\S) := {u ∈ (L2

loc(R\Γ))3 : curlu ∈ (L2
loc(R\Γ))3},

H− 1
2

t (Γ) := {u ∈ (H− 1
2 (Γ))3 : ν · u = 0 on Γ},

H− 1
2

div (Γ) := {u ∈ H− 1
2

t (Γ), divΓ u ∈ H− 1
2 (Γ)},

H− 1
2

curl(Γ) := {u ∈ H− 1
2

t (Γ), curlΓ u ∈ H− 1
2 (Γ)},

where divΓ and curlΓ denote the surface divergence and the surface scalar
curl operators, respectively. For detailed introduction of these spaces we
refer to [6], [8].

Note that H− 1
2

div (Γ) and H− 1
2

curl(Γ) are Hilbert spaces with respect to the
norms

||u||1/2,div =
(
||u||−1/2,Γ + ||divΓ u||−1/2,Γ

)1/2
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and
||u||1/2,curl =

(
||u||−1/2,Γ + || curlΓ u||−1/2,Γ

)1/2
,

respectively. Moreover, we have following duality and trace results (cf. [9],
[1]):

H− 1
2

curl(Γ) =
(
H− 1

2

div (Γ)
)′

= H− 1
2

t (Γ) + gradΓ

(
H− 1

2
t (Γ)

)
and

H− 1
2

div (Γ) =
(
H− 1

2

curl(Γ)
)′

= H− 1
2

t (Γ) + ⃗curlΓ
(
H− 1

2
t (Γ)

)
,

where gradΓ and ⃗curlΓ are the surface gradient and the surface vector curl
operators, respectively.

The mapping u ∈ C∞(Ω) 7→ u × ν|Γ can be uniquely extended to a
surjective continuous operator γτ : H(curl; Ω) → H− 1

2

div (Γ), while the map-
ping u ∈ C∞(Ω) 7→ (u − u · ν)|Γ can be uniquely extended to a surjective
continuous operator γt : H(curl; Ω) → H− 1

2

curl(Γ).
To define the traces on S we need the following spaces: H− 1

2

curl(S), which is
the range of the space H− 1

2

curl(Γ) ⊂ H− 1
2

t (Γ) by the mapping rS , and H− 1
2

div (S),
which is the range of the space H− 1

2

div (Γ) ⊂ H− 1
2

t (Γ) by the mapping rS . Here
rS is the canonical surjection from Hs(Γ) onto Hs(S).

The duality result stated above allow us to introduce H̃− 1
2

div (S) the dual
space of H− 1

2

curl(Γ). For more details cf. [1], [5], here we additionally note
that the normal trace of u ∈ H̃− 1

2

div (S) at ∂S is is well defined and is zero,
also u can be extended by zero to a function in H− 1

2

div (Γ).
The scattering of the electromagnetic waves by the open surface S leads

us to the following boundary value problem for the scattered electric field
E ∈ Hloc(curl;R\S) and magnetic field H ∈ Hloc(curl;R\S):

curlE − ikH = 0 in R\S, (1.1)

curlH + ikE = 0 in R\S, (1.2)

γτE
± = c± on S, (1.3)

where k > 0 is a the wave number and c± ∈ H− 1
2

div (S) are given data, such
that they satisfy the following compatibility condition

c+ − c− ∈ H̃− 1
2

div (S). (1.4)
Additionally, it is required that the scattered field E,H satisfies the Silver
Müller radiation condition

lim
|x|→∞

|x|(H × x̂− E) = 0 (1.5)

uniformly in x̂ = x/|x|.
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2. The Uniqueness and Existence Results

Theorem 2.1. Maxwell’s boundary value problem (1.1)–(1.5) has at most
one solution.

The proof is standard, for details cf. [1].
For the existence result let us recall that the rotation operator r from [3],

which corresponds to the geometric operation ν × ·, establishes connection
of γτ and γτ traces. Namely, for any E ∈ H(curl; Ω) we have γtE = r(γτE).
This allow us to rewrite (1.3) in the following equivalent form

γtE
± = r(c±) ∈ H− 1

2

curl(S). (2.6)
Furthermore, an application of Stratton–Chu’s formula in Ω and R3\Ω
which holds true also for H(curl; ·) spaces (cf. [4]), and using the conti-
nuity of the tangential components of E and curlE across Γ\S gives us
that a solution E ∈ Hloc(curl;R\S) can be represented as

E(x) = curl
∫
S

[E(y)× ν(y)]Φ(x, y)dsy −
∫
S

[ν(y)× curlE(y)]Φ(x, y)dsy−

− 1

k2
gradx

∫
S

divS [ν(y)× curlE(y)]Φ(x, y)dsy (2.7)

where Φ(x, y) := eik|x−y|

|x−y| and [·] denotes the jump across the screen S, thus
we have

[E × ν] = E+ × ν|S − E− × ν|S = c+ − c−

and therefore

g := curl
∫
S

[c+(y)− c−(y)]Φ(x, y)dsy ∈ Hloc(curl;R\S)

is a known datum, with well defined traces γ±
t g ∈ H− 1

2

curl(S). Note that, in
general, γ+

t g ̸= γ−
t g. Then from the representation formula (2.7) and the

boundary condition (2.6) we obtain
A(ν × curlE) = γ+

t g − r(c+) (2.8)
where the operator A defined by

Aφ(x) = γt

(∫
S

φ(y)Φ(x, y)dsy +
1

k2
gradx

∫
S

divS φ(y)Φ(x, y)dsy

)

and γ+
t − r(c+) ∈ H− 1

2

curl(S). Now using the known result [2, Corollary 3.6]
we have that the operator A : H̃− 1

2

div (S) → H− 1
2

curl(S) is an isomophism and
therefore the equation (2.8) is uniquely solvable.

Summing up we have the following result:
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Theorem 2.2. The electromagnetic scattering problem for screens
(1.1)–(1.5) has a unique solution E,H ∈ Hloc(curl;R\S), where E is given
by (2.7), ν × curlE is a unique solution of (2.8) and H = 1

ik curlE.
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