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ROTATION OF COORDINATE AXES AND
DIFFERENTIATION OF INTEGRALS WITH RESPECT TO

TRANSLATION INVARIANT BASES

A mapping B defined on Rn is said to be a differentiation basis if for
every x ∈ Rn, B(x) is a family of bounded measurable sets with positive
measure and containing x, such that there exists a sequence Rk ∈ B(x)
(k ∈ N) with lim

k→∞
diamRk = 0.

For f ∈ L(Rn), the upper and the lower limit of integral means 1
|R|

∫
R
f

as R ∈ B(x), diamR → 0, are called the upper and the lower derivative,
respectively, of the integral of f at a point x. If the upper and the lower
derivative coincide, then their common value is called the derivative of

∫
f at

a point x and denoted by DB(
∫
f, x). We say that the basis B differentiates∫

f (or
∫
f is differentiable with respect to B) if DB(

∫
f, x) = D B(

∫
f, x) =

f(x) for almost all x ∈ Rn. If this is true for each f in the class of functions
X we say that B differentiates X.

Denote by I = I(Rn) the basis of intervals, i.e., the basis for which I(x)
(x ∈ Rn) consists of all n-dimensional intervals containing x. Note that
differentiation with respect to I is called strong differentiation.

For a basis B, we denote by B the union of families B(x) (x ∈ Rn).
A basis B is called:
translation invariant (briefly, TI-basis) if B(x) = {x+ I : I ∈ B(0)} for

every x ∈ Rn;
homothecy invariant (briefly, HI-basis) if for every x ∈ Rn, R ∈ B(x)

and a homothethy H with the centre at x we have that H(R) ∈ B(x);
sub-basis of a basis B′(denoted as B ⊂ B′) if B(x) ⊂ B′(x) for every

x ∈ Rn;
formed of sets from the class ∆ if B ⊂ ∆;
Busemann–Feller basis if (x ∈ Rn, R ∈ B(x), y ∈ R) ⇒ R ∈ B(y).
Let us introduce the following notation:
BTI is the class of all translation invariant bases;
BHI is the class of all homothecy invariant bases;
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BBF is the class of all Busemann–Feller bases;
BB is the class of all subbases of a basis B;
BNL is the class of all bases which does not differentiate L(Rn).
Note that if B ∈ BBF ∩BHI, then B ∈ BTI.
For a basis B by FB (FB(x)) denote the class of all functions f ∈ L(Rn)

the integrals of which are differentiable with respect to B (are differentiable
with respect to B at a point x).

We say that a function f is reduced in the class F by a transformation
of a variable γ if f ◦ γ ∈ F .

A class of functions F is called invariant with respect to a class of trans-
formations of a variable Γ if (f ∈ F, γ ∈ Γ) ⇒ f ◦ γ ∈ F.

In what follows the dimension of the space Rn is assumed to be greater
than 1.

Denote by Γn the family of all rotations in the space Rn. Clearly, when
F = L(Rn), the question of invariance of the class F with respect to rota-
tions is trivial.

The dependence of the properties of functions of several variables on a
choice of coordinate axes (i.e. on a rotation of the standard orthogonal
coordinate system) were studied by different authors.

A. Zygmund posed the following problem (see [3, Ch. IV, §2]): Can
an arbitrary function f ∈ L(R2) be reduced in the class FI by means of
rotation of coordinate axes? J. Marstrand [7] gave the negative answer to
this question by constructing a function f ∈ L(R2), such that f ◦ γ /∈ FI for
any rotation γ ∈ Γ2. Various generalizations of this result are established
in the papers [6], [8] and [10].

In the works [5] by G. Lepsveridze, [9] by G. G. Oniani and [11] by A.
Stokolos it was proved that the class FI is not invariant with respect to linear
changes of a variable, in particular with respect to rotations. An analogous
result was established by O. Dragoshanski [1] for the class of continuous
functions of two variables, having an a.e. converging Fourier series (Fourier
integral) in Pringsheim sense.

G. Karagulyan [4] gave, in the two-dimensional case, a complete charac-
teristic of singularities from the standpoint of differentiability with respect
to a basis I which may have the integral of a fixed function for various choices
of a coordinate system. The multi-dimensional aspect of this question was
studied in [10].

M. Dyachenko [2] considered a problem of invariance with respect to Γ2

of two-dimensional classes of functions with bounded variation in various
senses.

For a basis B denote by SB the class of all non-negative functions
f ∈ L(Rn) such that DB(γ)

(∫
f, x

)
= ∞ almost everywhere for every

γ ∈ Γn.
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The theorem below extends the result of J. Marstrand to quite wide class
of bases.

Theorem 1. If B ∈ BBF ∩BHI ∩BNL, then the class SB is non-empty.

The result on the non-invariance of the class FI with respect to rotations
can be extended to bases from the class BI ∩BTI ∩BNL. In particular, the
following theorem is true.

Theorem 2. If B ∈ BI ∩BTI ∩BNL, then the class FB is not invariant
with respect to rotations, moreover, there exists a non-negative function
f ∈ FI such that f ◦ γ /∈ FB for some γ ∈ Γn.

Let us consider the problem: What kind of singularities from the stand-
point of differentiability with respect to a given basis B may have the integral
of a fixed function for various choices of coordinate axes?

Let B be a basis in Rn and γ ∈ Γn. The γ-rotated basis B is defined as
follows

B(γ)(x) = {x+ γ(I − x) : I ∈ B(x)} (x ∈ Rn).

Suppose B is translation invariant. Then it is easy to verify that the differ-
entiation of the integral of a “rotated” function f ◦ γ with respect to B at a
point x is equivalent to the differentiation of the integral of f with respect
to the “rotated” basis B(γ−1) at a point γ−1(x). Consequently, we can
reduce the study of the behavior of functions f ◦ γ (γ ∈ Γn) with respect to
the basis B to the study of the behavior of f with respect to rotated bases
B(γ) (γ ∈ Γn). This approach will be used in the sequel.

In connection to the posed problem let us introduce the following defini-
tions:

Let B and H are bases in Rn and E ⊂ Γn. Let us call E a WB,H -set
(W+

B,H -set), if there exists a function f ∈ L(Rn) (f ∈ L(Rn), f ≥ 0) such
that: 1) f /∈ FB(γ) for every γ ∈ E; and 2) f ∈ FH(γ) for every γ /∈ E;

Let B and H are bases in Rn and E ⊂ Γn. Let us call E an RB,H -set
(R+

B,H -set), if there exists a function f ∈ L(Rn) (f ∈ L(Rn), f ≥ 0) such
that: 1) f /∈ FB(γ)(x) almost everywhere for every γ ∈ E; and 2) f ∈ FH(γ)

for every γ /∈ E.
When B = H we will use terms WB(W+

B , RB, R
+
B)-set, and when B =

H = I - terms W (W+, R,R+)-set.
The definitions of R,R+ and W -sets were introduced in [9], [8] and [4],

respectively.
Now the problem can be formulated as follows: For a given basis B what

kind of sets E ⊂ Γn are WB(W+
B , RB , R

+
B)-sets?

The set of two-dimensional rotations Γ2 can be identified with the circum-
ference T = {z ∈ C : |z| = 1}, if to a rotation γ we put into correspondence
the complex number z(γ) from T, the argument of which is equal to the
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value of the angle by which the rotation about the origin takes place in the
positive direction under the action of γ.

The distance d(γ, σ) between points γ, σ ∈ Γ2 is assumed to be equal
to the length of the smallest arch of the circumference T connecting points
z(γ) and z(σ).

The set of the rotations γk(k ∈ 0, 3), where z(γk) = eiπk/2 is denoted
by Π.

For a non-empty set E ⊂ Γn, denote by B(E) the basis, for which
B(E)(x) (x ∈ Rn) is the union of all families B(γ)(x) where γ ∈ E.

The following theorems give necessary conditions for singularity sets.
Theorem 3. For arbitrary basis B in R2 each WB-set has Gδσ type.
Theorem 4. For arbitrary basis B in R2 each RB-set has Gδ type.
For non-empty sets E1 ⊂ Γ2 and E2 ⊂ Γ2 denote E1E2 = {γ1 ◦ γ2 : γ1 ∈

E1, γ2 ∈ E}. A set E ⊂ Γ2 let us call symmetric if E = ΠE.
A basis B ∈ BI(R2) ∩ BTI let us call symmetric, if R ∈ B(0) ⇒

s(R) ∈ B(0), where s is a symmetry of R2 with respect to the line {x ∈ R2 :
x1 = x2}.

G. Karagulyan [4] established the following characterization of two-di-
mensional W and R-sets: E ⊂ Γ2 is W -set (R-set) if and only if E is
symmetric and of Gδσ type (is symmetric and of Gδ type).

The results given below characterize WB and RB-sets for a quite wide
class of bases.

Theorem 5. If B ∈ BI(R2) ∩BBF ∩BHI ∩BNL, then:
1) every symmetric set E ⊂ Γ2 of Gδσ type is WB,I-set;
2) every symmetric set E ⊂ Γ2 of Gδ type is RB,I-set.
Corollary 1. If B is symmetric and B ∈ BI(R2) ∩BBF ∩BHI ∩BNL,

then:
1) a set E ⊂ Γ2 is WB,I(WB)-set if and only if E is symmetric and of

Gδσ type;
2) a set E ⊂ Γ2 is RB,I(RB)-set if and only if E is symmetric and of Gδ

type.
For bases from the class BI(R2)∩BTI ∩BNL there are valid the following

results.
Theorem 6. Let B ∈ BI(R2) ∩ BTI ∩ BNL. Then for every not more

than countable set E ⊂ Γ2 and for every sequence of its neighbourhoods (Vk)
there is a non-negative function f ∈ L(R2) such that:

1) for every γ ∈ E, DB(γ)(
∫
f, x) = ∞ almost everywhere;

2) for every k ∈ N, f ∈ FI(Γ2\ΠVk). Consequently, for every γ /∈
∞∩
k=1

ΠVk

we have that f ∈ FI(γ);
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3) If f /∈ FB(γ) for some γ ∈ Γ2, then f /∈ FB(γ)(x) almost everywhere.

Corollary 2. Let B ∈ BI(R2) ∩BTI ∩BNL. Then:
1) every not more than countable set E ⊂ Γ2 is W+

B,I-set;
2) every not more than countable symmetric set of Gδ type is R+

B,I-set;
3) there exists an R+

B,I-set of the second category and consequently, of
the continuum cardinality.

Corollary 3. Let B is a symmetric basis from the class BI(R2) ∩BTI ∩
BNL. Then:

1) not more than countable set E ⊂ Γ2 is a W+
B,I(WB,I, W

+
B ,WB)-set if

and only if E is symmetric;
2) not more than countable set E ⊂ Γ2 is an R+

B,I(RB,I, R
+
B, RB)-set if

and only if E is symmetric and of Gδ type.

Theorem 6 and it’s corollaries for the case B = I were proved in [9].
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