K. Chubinidze and G. Oniani

ROTATION OF COORDINATE AXES AND DIFFERENTIATION OF INTEGRALS WITH RESPECT TO TRANSLATION INVARIANT BASES

A mapping B defined on \mathbb{R}^n is said to be a *differentiation basis* if for every $x \in \mathbb{R}^n$, B(x) is a family of bounded measurable sets with positive measure and containing x, such that there exists a sequence $R_k \in B(x)$ $(k \in \mathbb{N})$ with $\lim_{k \to \infty} \operatorname{diam} R_k = 0$.

For $f \in L(\mathbb{R}^n)$, the upper and the lower limit of integral means $\frac{1}{|R|} \int_R f$ as $R \in B(x)$, diam $R \to 0$, are called the upper and the lower derivative, respectively, of the integral of f at a point x. If the upper and the lower derivative coincide, then their common value is called the *derivative of* $\int f$ at a point x and denoted by $D_B(\int f, x)$. We say that the basis B differentiates $\int f$ (or $\int f$ is differentiable with respect to B) if $\overline{D}_B(\int f, x) = \underline{D}_B(\int f, x) =$ f(x) for almost all $x \in \mathbb{R}^n$. If this is true for each f in the class of functions X we say that B differentiates X.

Denote by $\mathbf{I} = \mathbf{I}(\mathbb{R}^n)$ the basis of intervals, i.e., the basis for which $\mathbf{I}(x)$ $(x \in \mathbb{R}^n)$ consists of all *n*-dimensional intervals containing *x*. Note that differentiation with respect to \mathbf{I} is called *strong differentiation*.

For a basis B, we denote by \overline{B} the union of families B(x) $(x \in \mathbb{R}^n)$. A basis B is called:

translation invariant (briefly, TI-basis) if $B(x) = \{x + I : I \in B(0)\}$ for every $x \in \mathbb{R}^n$;

homothecy invariant (briefly, HI-basis) if for every $x \in \mathbb{R}^n, R \in B(x)$ and a homothethy H with the centre at x we have that $H(R) \in B(x)$;

sub-basis of a basis B' (denoted as $B \subset B'$) if $B(x) \subset B'(x)$ for every $x \in \mathbb{R}^n$:

formed of sets from the class Δ if $\overline{B} \subset \Delta$;

Busemann–Feller basis if $(x \in \mathbb{R}^n, R \in B(x), y \in R) \Rightarrow R \in B(y)$.

Let us introduce the following notation:

 $\mathfrak{B}_{\mathrm{TI}}$ is the class of all translation invariant bases;

 $\mathfrak{B}_{\mathrm{HI}}$ is the class of all homothecy invariant bases;

²⁰¹⁰ Mathematics Subject Classification: 28A15.

Key words and phrases. Differentiation basis, translation invariant basis, integral, rotation, coordinate system.

¹⁰⁷

 $\mathfrak{B}_{\mathrm{BF}}$ is the class of all Busemann–Feller bases;

 \mathfrak{B}_B is the class of all subbases of a basis B;

 $\mathfrak{B}_{\mathrm{NL}}$ is the class of all bases which does not differentiate $L(\mathbb{R}^n)$.

Note that if $B \in \mathfrak{B}_{BF} \cap \mathfrak{B}_{HI}$, then $B \in \mathfrak{B}_{TI}$.

For a basis B by $F_B(F_B(x))$ denote the class of all functions $f \in L(\mathbb{R}^n)$ the integrals of which are differentiable with respect to B (are differentiable with respect to B at a point x).

We say that a function f is reduced in the class F by a transformation of a variable γ if $f \circ \gamma \in F$.

A class of functions F is called *invariant with respect to a class of trans*formations of a variable Γ if $(f \in F, \gamma \in \Gamma) \Rightarrow f \circ \gamma \in F$.

In what follows the dimension of the space \mathbb{R}^n is assumed to be greater than 1.

Denote by Γ_n the family of all rotations in the space \mathbb{R}^n . Clearly, when $F = L(\mathbb{R}^n)$, the question of invariance of the class F with respect to rotations is trivial.

The dependence of the properties of functions of several variables on a choice of coordinate axes (i.e. on a rotation of the standard orthogonal coordinate system) were studied by different authors.

A. Zygmund posed the following problem (see [3, Ch. IV, §2]): Can an arbitrary function $f \in L(\mathbb{R}^2)$ be reduced in the class $F_{\mathbf{I}}$ by means of rotation of coordinate axes? J. Marstrand [7] gave the negative answer to this question by constructing a function $f \in L(\mathbb{R}^2)$, such that $f \circ \gamma \notin F_{\mathbf{I}}$ for any rotation $\gamma \in \Gamma_2$. Various generalizations of this result are established in the papers [6], [8] and [10].

In the works [5] by G. Lepsveridze, [9] by G. G. Oniani and [11] by A. Stokolos it was proved that the class $F_{\mathbf{I}}$ is not invariant with respect to linear changes of a variable, in particular with respect to rotations. An analogous result was established by O. Dragoshanski [1] for the class of continuous functions of two variables, having an a.e. converging Fourier series (Fourier integral) in Pringsheim sense.

G. Karagulyan [4] gave, in the two-dimensional case, a complete characteristic of singularities from the standpoint of differentiability with respect to a basis I which may have the integral of a fixed function for various choices of a coordinate system. The multi-dimensional aspect of this question was studied in [10].

M. Dyachenko [2] considered a problem of invariance with respect to Γ_2 of two-dimensional classes of functions with bounded variation in various senses.

For a basis B denote by S_B the class of all non-negative functions $f \in L(\mathbb{R}^n)$ such that $\overline{D}_{B(\gamma)}(\int f, x) = \infty$ almost everywhere for every $\gamma \in \Gamma_n$.

The theorem below extends the result of J. Marstrand to quite wide class of bases.

Theorem 1. If $B \in \mathfrak{B}_{BF} \cap \mathfrak{B}_{HI} \cap \mathfrak{B}_{NL}$, then the class S_B is non-empty.

The result on the non-invariance of the class $F_{\mathbf{I}}$ with respect to rotations can be extended to bases from the class $\mathfrak{B}_{\mathbf{I}} \cap \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{NL}}$. In particular, the following theorem is true.

Theorem 2. If $B \in \mathfrak{B}_{\mathbf{I}} \cap \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{NL}}$, then the class F_B is not invariant with respect to rotations, moreover, there exists a non-negative function $f \in F_{\mathbf{I}}$ such that $f \circ \gamma \notin F_B$ for some $\gamma \in \Gamma_n$.

Let us consider the problem: What kind of singularities from the standpoint of differentiability with respect to a given basis B may have the integral of a fixed function for various choices of coordinate axes?

Let B be a basis in \mathbb{R}^n and $\gamma \in \Gamma_n$. The γ -rotated basis B is defined as follows

$$B(\gamma)(x) = \{x + \gamma(I - x) : I \in B(x)\} \quad (x \in \mathbb{R}^n).$$

Suppose *B* is translation invariant. Then it is easy to verify that the differentiation of the integral of a "rotated" function $f \circ \gamma$ with respect to *B* at a point *x* is equivalent to the differentiation of the integral of *f* with respect to the "rotated" basis $B(\gamma^{-1})$ at a point $\gamma^{-1}(x)$. Consequently, we can reduce the study of the behavior of functions $f \circ \gamma$ ($\gamma \in \Gamma_n$) with respect to the basis *B* to the study of the behavior of *f* with respect to rotated bases $B(\gamma)$ ($\gamma \in \Gamma_n$). This approach will be used in the sequel.

In connection to the posed problem let us introduce the following definitions:

Let B and H are bases in \mathbb{R}^n and $E \subset \Gamma_n$. Let us call E a $W_{B,H}$ -set $(W_{B,H}^+$ -set), if there exists a function $f \in L(\mathbb{R}^n)$ $(f \in L(\mathbb{R}^n), f \ge 0)$ such that: 1) $f \notin F_{B(\gamma)}$ for every $\gamma \in E$; and 2) $f \in F_{H(\gamma)}$ for every $\gamma \notin E$;

Let *B* and *H* are bases in \mathbb{R}^n and $E \subset \Gamma_n$. Let us call *E* an $R_{B,H}$ -set $(R_{B,H}^+$ -set), if there exists a function $f \in L(\mathbb{R}^n)$ $(f \in L(\mathbb{R}^n), f \ge 0)$ such that: 1) $f \notin F_{B(\gamma)}(x)$ almost everywhere for every $\gamma \in E$; and 2) $f \in F_{H(\gamma)}$ for every $\gamma \notin E$.

When B = H we will use terms $W_B(W_B^+, R_B, R_B^+)$ -set, and when $B = H = \mathbf{I}$ - terms $W(W^+, R, R^+)$ -set.

The definitions of R, R^+ and W-sets were introduced in [9], [8] and [4], respectively.

Now the problem can be formulated as follows: For a given basis B what kind of sets $E \subset \Gamma_n$ are $W_B(W_B^+, R_B, R_B^+)$ -sets?

The set of two-dimensional rotations Γ_2 can be identified with the circumference $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, if to a rotation γ we put into correspondence the complex number $z(\gamma)$ from \mathbb{T} , the argument of which is equal to the value of the angle by which the rotation about the origin takes place in the positive direction under the action of γ .

The distance $d(\gamma, \sigma)$ between points $\gamma, \sigma \in \Gamma_2$ is assumed to be equal to the length of the smallest arch of the circumference \mathbb{T} connecting points $z(\gamma)$ and $z(\sigma)$.

The set of the rotations $\gamma_k (k \in \overline{0,3})$, where $z(\gamma_k) = e^{i\pi k/2}$ is denoted by Π .

For a non-empty set $E \subset \Gamma_n$, denote by B(E) the basis, for which B(E)(x) $(x \in \mathbb{R}^n)$ is the union of all families $B(\gamma)(x)$ where $\gamma \in E$.

The following theorems give necessary conditions for singularity sets.

Theorem 3. For arbitrary basis B in \mathbb{R}^2 each W_B -set has $G_{\delta\sigma}$ type.

Theorem 4. For arbitrary basis B in \mathbb{R}^2 each R_B -set has G_{δ} type.

For non-empty sets $E_1 \subset \Gamma_2$ and $E_2 \subset \Gamma_2$ denote $E_1E_2 = \{\gamma_1 \circ \gamma_2 : \gamma_1 \in E_1, \gamma_2 \in E\}$. A set $E \subset \Gamma_2$ let us call symmetric if $E = \Pi E$.

A basis $B \in \mathfrak{B}_{\mathbf{I}(\mathbb{R}^2)} \cap \mathfrak{B}_{\mathrm{TI}}$ let us call symmetric, if $R \in B(0) \Rightarrow s(R) \in B(0)$, where s is a symmetry of \mathbb{R}^2 with respect to the line $\{x \in \mathbb{R}^2 : x_1 = x_2\}$.

G. Karagulyan [4] established the following characterization of two-dimensional W and R-sets: $E \subset \Gamma_2$ is W-set (R-set) if and only if E is symmetric and of $G_{\delta\sigma}$ type (is symmetric and of G_{δ} type).

The results given below characterize W_B and R_B -sets for a quite wide class of bases.

Theorem 5. If $B \in \mathfrak{B}_{I(\mathbb{R}^2)} \cap \mathfrak{B}_{BF} \cap \mathfrak{B}_{HI} \cap \mathfrak{B}_{NL}$, then:

1) every symmetric set $E \subset \Gamma_2$ of $G_{\delta\sigma}$ type is $W_{B,\mathbf{I}}$ -set;

2) every symmetric set $E \subset \Gamma_2$ of G_{δ} type is $R_{B,\mathbf{I}}$ -set.

Corollary 1. If B is symmetric and $B \in \mathfrak{B}_{I(\mathbb{R}^2)} \cap \mathfrak{B}_{BF} \cap \mathfrak{B}_{HI} \cap \mathfrak{B}_{NL}$, then:

1) a set $E \subset \Gamma_2$ is $W_{B,\mathbf{I}}(W_B)$ -set if and only if E is symmetric and of $G_{\delta\sigma}$ type;

2) a set $E \subset \Gamma_2$ is $R_{B,\mathbf{I}}(R_B)$ -set if and only if E is symmetric and of G_{δ} type.

For bases from the class $\mathfrak{B}_{\mathbf{I}(\mathbb{R}^2)}\cap\mathfrak{B}_{\mathrm{TI}}\cap\mathfrak{B}_{\mathrm{NL}}$ there are valid the following results.

Theorem 6. Let $B \in \mathfrak{B}_{\mathbf{I}(\mathbb{R}^2)} \cap \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{NL}}$. Then for every not more than countable set $E \subset \Gamma_2$ and for every sequence of its neighbourhoods (V_k) there is a non-negative function $f \in L(\mathbb{R}^2)$ such that:

1) for every $\gamma \in E$, $\overline{D}_{B(\gamma)}(\int f, x) = \infty$ almost everywhere;

2) for every $k \in \mathbb{N}$, $f \in F_{\mathbf{I}(\Gamma_2 \setminus \Pi V_k)}$. Consequently, for every $\gamma \notin \bigcap_{k=1}^{\infty} \Pi V_k$ we have that $f \in F_{\mathbf{I}(\gamma)}$;

- 3) If $f \notin F_{B(\gamma)}$ for some $\gamma \in \Gamma_2$, then $f \notin F_{B(\gamma)}(x)$ almost everywhere.
- Corollary 2. Let $B \in \mathfrak{B}_{\mathbf{I}(\mathbb{R}^2)} \cap \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{NL}}$. Then:
- 1) every not more than countable set $E \subset \Gamma_2$ is $W_{B,I}^+$ -set;
- 2) every not more than countable symmetric set of G_{δ} type is $R_{B,\mathbf{I}}^+$ -set;

3) there exists an $R_{B,I}^+$ -set of the second category and consequently, of the continuum cardinality.

Corollary 3. Let B is a symmetric basis from the class $\mathfrak{B}_{\mathbf{I}(\mathbb{R}^2)} \cap \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{NL}}$. Then:

1) not more than countable set $E \subset \Gamma_2$ is a $W^+_{B,\mathbf{I}}(W_{B,\mathbf{I}}, W^+_B, W_B)$ -set if and only if E is symmetric;

2) not more than countable set $E \subset \Gamma_2$ is an $R_{B,\mathbf{I}}^+(R_{B,\mathbf{I}}, R_B^+, R_B)$ -set if and only if E is symmetric and of G_{δ} type.

Theorem 6 and it's corollaries for the case $B = \mathbf{I}$ were proved in [9].

Acknowledgement

The second author was supported by Shota Rustaveli National Science Foundation (project no. 31/48).

References

- O. S. Dragoshanskii, On the convergence of double Fourier series and Fourier integrals of functions on T² and ℝ² under rotations of the coordinate system. (Russian) Mat. Sb. **191** (2000), No. 11, 3–20; translation in Sb. Math. **191** (2000), No. 11-12, 1587–1606.
- M. I. Dyachenko, The rotation of a coordinate system and two-dimensional classes of functions of generalized bounded variation. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2008, No. 3, 26–29, 71; translation in Moscow Univ. Math. Bull. 63 (2008), No. 3, 107–110.
- M. de Guzmán, Differentiation of integrals in Rⁿ. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. Lecture Notes in Mathematics, Vol. 481. Springer-Verlag, Berlin-New York, 1975.
- G. A. Karagulyan, A complete characterization of *R*-sets in the theory of differentiation of integrals. *Studia Math.* 181 (2007), No. 1, 17–32.
- G. L. Lepsveridze, On strong differentiability of integrals along different directions. Georgian Math. J. 2 (1995), No. 6, 613–630.
- B. López Melero, A negative result in differentiation theory. *Studia Math.* 72 (1982), No. 2, 173–182.
- J. Marstrand, A counter-example in the theory of strong differentiation. Bull. London Math. Soc. 9 (1977), No. 2, 209–211.
- G. G. Oniani, Differentiation of Lebesgue integrals. (Russian) Tbilisi Univ. Press, Tbilisi, 1998.
- G. G. Oniani, On the differentiability of integrals with respect to the bases B₂(θ). East J. Approx. 3 (1997), No. 3, 275–301.
- G. G. Oniani, On the strong differentiation of multiple integrals along different frames. *Georgian Math. J.* **12** (2005), No. 2, 349–368.

- A. M. Stokolos, An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals. *Anal. Math.* 9 (1983), No. 2, 133–146.
- 12. A. M. Stokolos, On a problem of A. Zygmund. (Russian) Mat. Zametki 64 (1998),
 - No. 5, 749–762; translation in Math. Notes 64 (1998), No. 5-6, 646–657 (1999).

Authors' address:

Department of Mathematics Akaki Tsereteli State University 59 Tamar Mepe St., Kutaisi 4600, Georgia E-mail: kaxachubi@gmail.com; oniani@atsu.edu.ge

112