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NON-ABELIAN HOMOLOGY OF HOM-LIE ALGEBRAS
AND APPLICATIONS

Introduction

A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map,
in which the skew-symmetric bracket satisfies an α-twisted version of the
Jacobi identity, called the Hom-Jacobi identity. When α is the identity
map, the Hom-Jacobi identity reduces to the usual Jacobi identity, and
L is a Lie algebra. Hom-Lie algebras were introduced in [4] to construct
deformations of the Witt algebra, which is the Lie algebra of derivations on
the Laurent polynomial algebra C[z±]. Since the introduction, there have
been several works dealing generalizations of known theories from Lie to
Hom-Lie algebras (see [1], [6]–[12]).

In this paper we introduce the zero and first non-abelian homology of
Hom-Lie algebras generalizing the zero and first non-abelian homology of Lie
algebras developed in [3, 5], as well as the low dimensional homology of Hom-
Lie algebras given in [10, 12]. We use the non-abelian homology of Hom-
Lie algebras in the description of a relationship between cyclic and Milnor
cyclic homologies of Hom-associative algebras satisfying certain additional
condition.

Throughout this paper we fix a ground field K. Vector spaces are con-
sidered over K and linear maps are K-linear maps. We write ⊗ (resp. ∧)
for the tensor product ⊗K (resp. exterion product ∧K).

1. Preliminaries on Hom-Lie Algebras

We start by reviewing some notions and terminology.
Definition 1.1. A Hom-Lie algebra (L,αL) is a non-associative algebra

L together with a linear map αL : L→ L satisfying
[x, y] = −[y, x], (skew-symmetry)
[αL(x), [y, z]] + [αL(z), [x, y]] + [αL(y), [z, x]] = 0 (Hom-Jacobi identity)
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for all x, y, z ∈ L, where [−,−] denotes the product in L.

In this paper we deal only with (the so called multiplicative) Hom-Lie
algebras (L,αL) such that αL[x, y] = [αL(x), αL(y)], x, y ∈ L.

It is clear that any Lie algebra L can be considered as a Hom-Lie algebra
(L, idL). Moreover, any Hom-associative algebra [7] becomes a Hom-Lie
algebra (see Section 4 below).

A homorphism of Hom-Lie algebras f : (L,αL) → (L′, αL′) is an algebra
homomorphism f : L→ L′ such that f ◦ αL = αL′ ◦ f .

Definition 1.2. A Hom-Lie subalgebra (H,αH) of (L,αL) is a vector
subspace H of L closed under the product, together with the endomorphism
αH : H → H = αL|H . In such a case we write αL| for αH .

A Hom-Lie subalgebra (H,αL|) of (L,αL) is said to be an ideal if [x, y] ∈
H for any x ∈ H, y ∈ L.

Let (H,αL|) and (K,αL|) be ideals of a Hom-Lie algebra (L,αL). The
commutator of (H,αL|) and (K,αL|), denoted by ([H,K], αL|), is the Hom-
Lie subalgebra of (L,αL) spanned by all [h, k], h ∈ H, k ∈ K.

Definition 1.3. Let (L,αL), (M,αM ) be Hom-Lie algebras. A Hom-
action of (L,αL) on (M,αM ) is a linear map L ⊗M → M, x ⊗m 7→ xm
satisfying, for all x, y ∈ L and m,m′ ∈M , the following equalities:

[x,y]αM (m) = αL(x)(ym)− αL(y)(xm),
αL(x)[m,m′] = [xm,αM (m′)] + [αM (m), xm′],
αM (xm) = αL(x)αM (m).

For example, if (L,αL) is a Hom-subalgebra of a Hom-Lie algebra (K,αK)
and (H,αH) is an ideal of (K,αK), then there is a Hom-action of (L,αL)
on (H,αH) given by the product in K.

Remark 1.4. If (M,αM ) is an abelian Hom-Lie algebra (i. e. [m,m’]=0
for all m,m′ ∈M) enriched with a Hom-action of (L,αL), then (M,αM ) is
nothing else but a Hom-module over (L,αL) (see [10]).

2. Non-Abelian Tensor Product of Hom-Lie Algebras

In this section we introduce a Hom-Lie algebra version of the non-abelian
tensor product of Lie algebras [2], and study its properties.

Definition 2.1. Let (M,αM ) and (N,αN ) be Hom-Lie algebras with
Hom-actions on each other. The Hom-actions are said to be compatible if,
for all m,m′ ∈M and n, n′ ∈ N ,

(mn)m′ = [m′,nm] and (nm)n′ = [n′,m n].

Let (M,αM ) and (N,αN ) be Hom-Lie algebras acting on each other com-
patibly. Consider the Hom-vector space (M⊗N,αM⊗N ), where αM⊗N (m⊗
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n) = αM (m) ⊗ αN (n). Denote by D(M,N) subspace of M ⊗N generated
by all elements of the form

[m,m′]⊗ αN (n)− αM (m)⊗ m′
n+ αM (m′)⊗ mn,

αM (m)⊗ [n, n′]− n′
m⊗ αN (n) + nm⊗ αN (n′),

nm⊗ mn,

nm⊗ m′
n′ + n′

m′ ⊗ mn,

[nm, n
′
m′]⊗αN (m

′′
n′′) + [n

′
m′, n

′′
m′′]⊗αN (mn) + [n

′′
m′′, nm]⊗αN (m

′
n′),

for m,m′,m′′ ∈M and n, n′, n′′ ∈ N .

Proposition 2.2. The quotient vector space (M⊗N)/D(M,N) with the
product

[m⊗ n,m′ ⊗ n′] = −nm⊗ m′
n′ (1)

and the endomorphism (M ⊗N)/D(M,N) → (M ⊗N)/D(M,N) induced
by αM⊗N , is a Hom-Lie algebra.

Proof. It is clear that αM⊗N preserves the elements of D(M,N) and the
product given by (1). This product is compatible with the defining relations
of (M ⊗ N)/D(M,N) and can be extended to any elements. Since the
actions are compatible, direct calculations show that the skew-symmetry
and Hom-Jacobi identity are satisfied. �

Definition 2.3. The above described Hom-Lie algebra structure on (M⊗
N)/D(M,N) is called the non-abelian tensor product of Hom-Lie algebras
(M,αM ) and (N,αN ). It will be denoted by (M � N,αM�N ) and the
equivalence class of m⊗ n will be denoted by m� n.

Remark 2.4. If αM = idM and αN = idN then M �N is the non-abelian
tensor product of Lie algebras developed in [2] (see also [5]).

The Hom-Lie tensor product is symmetric in the sense of the following
isomorphism of Hom-Lie algebras

(M �N,αM�N )
≈−→ (N �M,αN�M ), m� n 7→ n�m.

Sometimes the non-abelian tensor product of Hom-Lie algebras can be
described as the tensor product of vector spaces.

Proposition 2.5. If the Hom-Lie algebras (M,αM ) and (N,αN ) act
trivially on each other and both αM , αN are epimorphisms, then there is an
isomorphism of abelian Hom-Lie algebras

(M �N,αM�N ) ≈ (Mab ⊗Nab, αMab⊗Nab),

where Mab =M/[M,M ], Nab = N/[N,N ] and αMab⊗Nab is induced by αM
and αN .
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Proof. Since the Hom-actions are trivial, (1) enables us to see that (M �
N,αM�N ) is abelian. Further, since αM , αN are epimorphisms, the vector
space M �N is the quotient of M ⊗N by the relations [m,m′]⊗ n = 0 =
m⊗ [n, n′]. The later is isomorphic to Mab ⊗Nab. �

The Hom-Lie tensor product is functorial in the following sense: if
f : (M,αM ) → (M ′, αM ′) and g : (N,αN ) → (N ′, αN ′) are homomorphisms
of Hom-Lie algebras together with compatible Hom-actions of (M,αM )
(resp. (M ′, αM ′) ) and (N,αN ) (resp. (N ′, αN ′)) on each other such that
f , g preserve these Hom-actions, i.e. f(nm) = g(n)f(m), g(mn) = f(m)g(n)
for m ∈M , n ∈ N , then there is a homomorphism
f � g : (M �N,αM�N ) → (M ′ �N ′, αM ′�N ′), (m� n) 7→ f(m)� g(n).

Proposition 2.6. Let 0→(M1, αM1)
f→(M2, αM2)

g→(M3, αM3)→0 be a
short exact sequence of Hom-Lie algebras. Let (N,αN ) be a Hom-Lie algebra
together with compatible Hom-actions of (N,αN ) and (Mi, αMi) (i = 1, 2, 3)
on each other and f , g preserve these Hom-actions. Then there is an exact
sequence of Hom-Lie algebras

(M1 �N,αM1�N )
f�idN−→ (M2 �N,αM2�N )

g�idN−→ (M3 �N,αM3�N ) −→ 0.

Proof. Clearly g� idN is an epimorphism and Im(f � idN ) ⊆ Ker(g� idN ).
Now Im(f � idN ) is generated by elements of the form f(m1) � n1 with
m1 ∈M1, n1 ∈ N . It is an ideal in (M2 �N,αM2�N ) since

[f(m1)� n1,m2 � n2] = −f(n1m1)� m2n2 ∈ Im(f � idN )

for any generator m2 � n2 ∈M2 �N . Thus, g � idN yields a factorization
ξ :

(
(M2 �N)/ Im(f � idN ), αM2�N

)
→ (M3 �N,αM3�N ).

In fact this is an isomorphism of Hom-Lie algebras with the inverse
ξ′ : (M3 �N,αM3�N ) →

(
(M2 �N)/ Im(f � idN ), αM2�N

)
given by ξ′(m3�n) = m2 � n, where m2 ∈M2 such that g(m2) = m3. The
remaining details are straightforward. �

3. Zero and First Non-Abelian Homologies.

In this section we extend the zero and first non-abelian homology of Lie
algebras [5] to Hom-Lie algebras. The following lemma will be needed.

Lemma 3.1. Let (M,αM ) and (N,αN ) be Hom-Lie algebras with com-
patible actions on each other.

(a) There is a Hom-action of (M,αM ) on (M �N,αM�N ) given by
m′

(m� n) = [m′,m]� αN (n) + αM (m)� m′
n.

And the induced Hom-action of Im(ψ) on Ker(ψ) is trivial.
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(b) There is a homomorphisms of Hom-Lie algebras

ψ : (M �N,αM�N ) → (M,αM ), ψM (m� n) = −nm

satisfying the following equalities
ψ(m

′
(m� n)) = [αM (m′), ψ(m� n)],

ψ(m�n)(m′ � n′) = [αM�N (m� n),m′ � n′].

Proof. Everything can be readily checked thanks to the compatibility con-
ditions and the relation (1). �

Definition 3.2. Let (M,αM ) and (N,αN ) be Hom-Lie algebras with
compatible actions on each other. We define the zero and first non-abelian
homology of (M,αM ) with coefficients in (N,αN ) by setting

Hα
0 (M,N) = Cokerψ, Hα

1 (M,N) = Kerψ.

Remark 3.3. (a) If αM = idM and αN = idN , then ψ is a Lie crossed
module [2] and Hα

0 (M,N), Hα
1 (M,N) are zero and first non-abelian ho-

mologies of the Lie algebra M with coefficients in N [5], respectively.
(b) If (N,αN ) is a Hom-module over (M,αM ) together with the trivial

Hom-action of (N,αN ) on (M,αM ), then Hα
0 (M,N) and Hα

1 (M,N) coincide
with the zero and first Chevalley-Eilenberg homologies of Hom-Lie algebras
(see [10, 12]), respectively.

Theorem 3.4. Let 0 → (N1, αN1)
f→ (N2, αN2)

g→ (N3, αN3) → 0 be
a short exact sequence of Hom-Lie algebras. Let (M,αM ) be a Hom-Lie
algebra together with compatible Hom-actions of (M,αM ) and (Ni, αNi

)
(i = 1, 2, 3) on each other and f , g preserve these Hom-actions. Then there
is a six-term exact non-abelian homology sequence

Hα
1 (M,N1) →Hα

1 (M,N2) → Hα
1 (M,N3) →

→ Hα
0 (M,N1) → Hα

0 (M,N2) → Hα
0 (M,N3) → 0.

Proof. This is a consequence of Proposition 2.6 and Snake Lemma. �

4. Application in Cyclic Homology of Hom-Associative
Algebras

In this section we assume that K is a field of characteristic 0.

Definition 4.1. A Hom-associative algebra (see e.g. [7]) is a pair (A,αA)
consisting of a vector space A and a linear map αA : A→ A, together with
a linear map (multiplication) A ⊗ A → A, a ⊗ b 7→ ab, such that, for all
a, b, c ∈ A,

αA(a)(bc) = (ab)αA(c), αA(ab) = αA(a)αA(b).
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The Hom version of the classical cyclic bicomplex is constructed in [10]
and the cyclic homology of a Hom-associative algebra is defined as the ho-
mology of its total complex. A reformulation of this cyclic homology via
Connes’s complex for Hom-associative algebras is also given in [10, Propo-
sition 4.7]. It follows that, given a Hom-associative algebra (A,αA), the
first cyclic homology HCα1 (A) is the kernel of the homomorphism of vector
spaces

ψ : A⊗A/J(A,α) → [A,A], a⊗ b 7→ ab− ba,

where [A,A] is the subspace of A generated by the elements ab − ba, and
J(A,α) is the subspace of A⊗A generated by the elements

a⊗ b+ b⊗ a and ab⊗ αA(c)− αA(a)⊗ bc+ ca⊗ αA(b).

Any Hom-associative algebra (A,αA) is endowed with a Hom-Lie algebra
structure by the induced product [a, b] = ab − ba and the endomorphism
αA. Moreover, there is a Hom-Lie algebra structure on (Lα(A), αA) =
A⊗A/J(A,α) given by the product

[a⊗ b, a′ ⊗ b′] = [a, b]⊗ [a′, b′]

and the endomorphism αA induced by αA.

Definition 4.2. We say that a Hom-associative algebra (A,αA) satisfies
the α-identity condition if

[A, Im(αA − idA)] = 0, (2)

where [A, Im(αA− idA)] is the subspace of A spanned by all elements ab−ba
with a ∈ A and b ∈ Im(αA − idA).

Example 4.3. (i) Any Hom-associative algebra (A,αA) with αA = idA
(i.e. an associative algebra) satisfies α-identity condition.
(ii) Any commutative Hom-associative algebra (A,αA) (i.e. ab = ba for all
a, b ∈ A) with αA = 0 satisfies α-identity condition.
(iii) Consider the Hom-associative algebra (A,αA), where as vector space
A is 2-dimensional with basis {e1, e2}, the multiplication is given by e1e1 =

e2 and zero elsewhere, αA is represented by the matrix
(

1 0
1 1

)
. Then

(A,αA) satisfies α-identity condition.
(iv) Consider the Hom-associative algebra (A,αA), where as vector space
A is 3-dimensional with basis {e1, e2, e3}, the multiplication is given by
e1e1 = e2, e1e2 = e3, e2e1 = e3 and zero elsewhere, αA is represented by 1 0 0

1 0 0
1 0 0

. Then (A,αA) satisfies α-identity condition.

Lemma 4.4. Let (A,αA) be a Hom-associative algebra.
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(a) There are Hom-actions of Hom-Lie algebras (A,αA) and (Lα(A), αA) on
each other. Moreover, these Hom-actions are compatible if (A,αA) satisfies
the α-identity condition (2).
(b) There is a short exact sequence of Hom-Lie algebras

0 −→ (HCα1 (A), αHC)
i−→ (Lα(A), αA)

ψ−→
(
[A,A], αA|

)
−→ 0,

where (HCα1 (A), αHC) is an abelian Hom-Lie algebra with αHC induced by
αA, αA| is the restriction of αA and ψ(a⊗ b) = [a, b].
(c) The induced Hom-action of (A,αA) on (HCα1 (A), αHC) is trivial. More-
over, if (A,αA) satisfies the α-identity condition (2), then both i and ψ
preserve the Hom-actions of the Hom-Lie algebra (A,αA).

Proof. (a) The Hom-action of (A,αA) on (Lα(A), αA) is given by
a′(a⊗ b) = [a′, a]⊗ αA(b) + αA(a)⊗ [a′, b],

while the Hom-action of (Lα(A), αA) on (A,αA) is defined by
(a⊗b)a′ = [[a, b], a′]

for all a′, a, b ∈ A. Straightforward calculations show that these are indeed
Hom-actions of Hom-Lie algebras, which are compatible if (A,αA) satisfies
α-identity condition (2).

(b) and (c) are immediate consequences of the definitions above. �

Definition 4.5. Let (A,αA) be a Hom-associative algebra. The first
Milnor cyclic homology HCM1 (A,αA) is the quotient vector space of A⊗A
by the relations

a⊗ b+ b⊗ a = 0,

ab⊗ αA(c)− αA(a)⊗ bc+ ca⊗ αA(b) = 0,

αA(a)⊗ bc− αA(a)⊗ cb = 0.

Of course, for αA = idA this is the definition of the first Milnor cyclic
homology of the associative algebra A (see e.x. [5]).

Theorem 4.6. Let (A,αA) be a Hom-associative (non-commutative) al-
gebra satisfying the α-identity condition (2). Then there is an exact sequence
of vector spaces

A/[A,A]⊗HCα1 (A) → Hα
1 (A,L

α(A)) → Hα
1 (A, [A,A]) →

→ HCα1 (A) → HCM1 (A,αA) → [A,A]/[A, [A,A]] → 0.

Proof. This is an easy consequence of Theorem 3.4. �

Let us remark that if αA = idA, the exact sequence in Theorem 4.6
coincides with that of [3, Theorem 5.7].
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