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THE NOETHERITY CRITERIA OF THE
RIEMANN-HILBERT PROBLEM FOR VARIABLE

EXPONENT SMIRNOV CLASSES IN DOMAINS WITH
PIECEWISE SMOOTH BOUNDARIES

The Riemann-Hilbert boundary value problem

Re
[
a(t)Φ+(t)

]
= b(t) (1)

is well-studied under different assumptions for the given and unknown ele-
ments of the problem (see [1]–[4]).

The present paper is devoted to the investigation of the problem (1)
when the unknown function Φ is required to belong to Smirnov class and
the condition (1) is assigned on the boundary of the domain G. In addition,
it is assumed that Φ+(t) denotes an angular boundary value of the function
Φ at the point t, and equality (1) holds for almost all t on Γ.

10. We assume that the domain G is bounded by a simple piecewise-
smooth curve Γ, the function a(t) is continuous and different from zero on
Γ, and b(t) belongs to the Lebesgue space Lp(t)(Γ) with a variable exponent
p(t).

As for the function p(t), it is assumed that it belongs to the class Q(Γ).
This means that p(t) ∈ P̃(Γ) and `(τ) = p(z(τ)) ∈ P̃(γ), where z = z(w)
is the conformal mapping of the circle U = {w : |w| < 1} onto G, and
γ = {τ : |τ | = 1}.
P̃(γ) denotes a class of functions p = p(t) defined on Γ for which there

exist positive numbers B(p) and E(p) such that: (i) for any t1 and t2 from
Γ, we have |p(t1) = p(t2)| < B)p)| ln(t− t0)|1+E ; (ii) min p(t) = p > 1.

If in the above definition instead of a positive ε we take ε = 0, then we
obtain a class which we denote by P(Γ).

Let ω(w) be a measurable, almost everywhere different from zero function
on Γ.
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Definition 1 (See either [5], or [6], p. 72). The Smirnov class Ep(t)(G, ω)
is a set of analytic in G functions Φ for which

sup
0<r<1

2π∫

0

∣∣Φ(z(reiϑ))ω(z(reiϑ))
∣∣p(z(eiϑ))∣∣z′(reiϑ)

∣∣dϑ < ∞.

Assume Ep(t)(G) : Ep(t)(G; 1).
By Lp(t)(Γ) we denote a set of measurable on Γ functions f for which

‖f‖p(·) = inf
{

λ > 0 :

`∫

0

∣∣∣∣
f(t(s))

λ

∣∣∣∣
p(t(s))

ds ≤ 1
}

< ∞,

where t = t(s), 0 ≤ s ≤ ` is the equation of Γ with respect to the arc
abscissa s.

Assume Lp(t)(Γ; ω) = {f : ‖fω‖p(·) < ∞}.
Lp(t)(Γ; ω) is the Banach space. For the conjugate space [Lp(t)(Γ; ω)]∗,

we have
[
Lp(t)(Γ;ω)

]∗ = Lq(t)
(
Γ;

1
ω

)
, p′(t) = q(t) = p(t)[p(t)− 1]−1

([7]).

Definition 2. By Kp(t)(G; ω) we denote a set of analytic in G functions
Φ for which

Φ(z) = (KΓϕ)(z) =
1

2πi

∫

G

ϕ(t) dt

t− z
, z ∈ G, ϕ ∈ Lp(t)(Γ;ω).

Assume Kp(t)(G) := Kp(t)(G; 1).
We denote a set of simple closed Carleson curves by R.

20. If the boundary Γ of the domain G belongs to R, and p ∈ P(Γ),
then Ep(t)(G) ⊂ Kp(t)(G), but if Γ is a piecewise-smooth curve, free from
external peaks, then Ep(t)(G) = Kp(t)(G) ([6], Ch. 3).

If Φ ∈ Ep(t)(G), then for almost all t ∈ Γ there exists a non-tangential
angular limit Φ+(t), and

Φ+(t) =
1
2
(
ϕ(t) + (S ϕ)(t)

)
,

where

(S ϕ)(t) =
1
πi

∫

Γ

ϕ(τ) dτ

τ − t
, t ∈ Γ.

If p ∈ P(Γ), then the operator S : ϕ → S ϕ is continuous in the space
Lp(t)(Γ), if and only if Γ ∈ R ([9], see also [6], p. 44).
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When Γ is an arbitrary piecewise-smooth curve and p ∈ Q(Γ), then the
problem (1) reduces equivalently to the singular integral equation M ϕ = f
in L`(τ)(γ), where `(τ) = p(z(r)), and z = z(w) is the conformal mapping
of the circle U = {w : |w| < 1} onto G. In proving this statement, we
have used both the method of Muskhelishvi reducing the problem (1) in
the domain U to the Riemann problem ([1], Ch.2) and the results of item

6.7 from [6] (pp.216-8]) dealt with the fact that the function |z′(w)|
1

p(eiϑ) ,
w = r eiϑ in the above assumptions is equivalent to the function

z′(w) =
n∏

k=1

(w − ak)
νk−1
p(Ak) exp

(
1
πi

∫

γ

α(τ)dτ

τ − w

)
, (2)

where Ak, k = 1, n are angular points on Γ, z(ak) = Ak and νkπ is the
size of inner with respect to G angle at the point Ak, and α(τ) is the real
continuous function on γ ([12], p.146); (it is assumed here that the function
f is equivalent to g if 0 < m ≤ essinf

∣∣ f
g

∣∣ (
g ≤ esssup

(∣∣ f
g

∣∣ = M < ∞)
.

30.

Definition 3. We say that the problem (1) is Noetherian in the class
Ep(t)(G), if the operator M : ϕ → M ϕ is Noetherian in the space L`(τ)(γ).

When a(t) = 1, the problem (1) turns into the following Dirichlet prob-
lem: find the function Φ, satisfying the conditions

{
Φ ∈ Ep(t)(G),
Re[Φ+(t)] = b(t).

(3)

It is not difficult to state that in this case M = Sγ . The conjugate to it
operator M∗ is equal to (−Sγ), and this operator is considered in the space
L`′(·)(γ).

The problem, corresponding to this operator, has again the form (2) when
p(t) is replaced by q(t). Therefore the condition of normal solvability will
be ∫

Γ

g(t)Ψ(t) dt = 0. (4)

where Ψ is the narrowing on Γ of an arbitrary solution of the homogeneous
Dirichlet problem of the class Eq(t)(G).

40. In deriving the basic results which will be presented in Sections 50

and 60, we have used the following

Theorem A. Let Γ ∈ C1(A, ν), that is, Γ is the piecewise-smooth curve
with only one angular point A at which the angle size equals πν(A)(= πν),
p ∈ Q(Γ), then: (i) if 0 < ν(A) < p(A), the problem is uniquely solvable;
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(ii) if ν(A) > p(A), then the problem is solvable ambiguously, and a general
solution is given by the equality

Φ(z) = Φb(z)± C
w(z) + w(A)
w(z)− w(A)

,

where Φb is a particular solution of the inhomogeneous problem, C is an
arbitrary constant, and w(z) is the inverse function to z = z(w); (iii) if
νk = p(Ak), or νk = 0, then for the problem to be solvable, it is necessary
and sufficient that the condition

w+(t)
∫

Γ

b(z(τ)) dτ

ω+(t)(τ − t)
∈ Lp(t)(Γ) (5)

is fulfilled, where ω(w) = (w−w(A))−
1

p(A) ω0(w), and ω0(w) = exp
∫
γ

α(τ)dτ
τ−w

is the function from the representation (2).

z′(w) =
n∏

k=1

(w − ak)−
1

`(ak) exp
∫

γ

α(τ)dτ

τ − w
.

Theorem A is a consequence of the results from [10]–[11] (see also [6], p.
221).

50. By C1(A1, . . . , An; ν1, . . . , νn) we denote a set of piecewise-smooth
curves with angular points A1, . . . , An at which the angle sizes are equal to
π ν(Ak), 0 ≤ ν(Ak) ≤ 2. The set of the same piecewise-Lyapunov curves we
denote by C1,2(A1, . . . , An; ν1, . . . , νn).

Lemma 1. If

Γ ∈ C1(A1, . . . , An; ν1, . . . , νn), p(t) ∈ Q(Γ), (6)

and either
ν(Ak) = p(Ak) or ν(Ak) = 0, (7)

then the Dirichlet problem (3) is not normally solvable and, consequently, it
is not Noetherian one.

The proof runs as follows: for any curve with the conditions (6)–(7), we
construct the function bk(t) for which equalities (4) are fulfilled, but the
condition (5) is violated.

Lemma 2. If the condition (5) holds and either

T =
{
Ak : ν(Ak) = p(Ak) or ν(Ak) = 0

}
= ∅, (8)

then the problem (2) is Noetherian in Ep(·)(G).

From Lemmas 1 and 2 we arrive at
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Theorem 1. The Dirichlet problem (3) in the conditions (5) is Noetherian
in Ep(·)(G), if and only if T = ∅, and its index κ is defined by the equality

κ = card T = card
{
Ak : ν(Ak) > p(Ak)

}−

− card
{

Ak : max
(
0,

p(Ak)− 2
p(Ak)− 1

)
< ν(Ak) < 2

}
. (9)

Lemma 3. If the operator M corresponds to the Riemann-Hilbert problem
(1) in the class Ep(t)(G), where a(t) ∈ C(Γ), a(t) 6= 0, b ∈ Lp(t)(Γ), then

M = D + V, (10)

where D is the operator corresponding to the Dirichlet problem (3), and V
is the compact operator in Lp(t)(Γ).

Theorem 2. For the Riemann-Hilbert problem to be Noetherian in the
class Ep(t)(G), it is necessary and sufficient that the condition (8) is fulfilled;
if it is fulfilled, its index is calculated by the equality (9).

The proof of this theorem follows from Theorem 1 and Lemma 3 with the
use of Atkinson’s theorem according to which by adding to the Noetherian
operator the compact one we get the Noetherian operator with the same
index ([13]).

As for the condition a(t) ∈ C(Γ), a(t) 6= 0 from (10), the following
theorem is valid.

Theorem 3. If Γ ∈ R, p ∈ P(Γ), then for the Riemann-Hilbert problem
to be Noetherian in Ep(t)(G), it is necessary that the condition

essinf |a(t)| > 0 (11)

is fulfilled.

This theorem (and the more general one) for p = const has been proved
in [14] (pp.256-8). Following this proof and using the properties of functions
from Ep(t)(G), we state that Theorem 3 is valid.
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