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ON A THEOREM OF LUZIN AND SIERPINSKI

In this report three classical constructions of Lebesgue nonmeasurable
sets on the real line R are envisaged from the point of view of the thickness
of those sets with respect to the standard Lebesgue measure λ on R.

Very soon after Lebesgue’s invention of λ, nontrivial constructions of
extra-ordinary point sets in R have followed. They were done, respectively,
by Vitali [16], Hamel [3], and Bernstein [1]. An important by-product of
each of these constructions is the statement of the existence of a Lebesgue
nonmeasurable subset of R. In this connection, it is reasonable to stress that
the above-mentioned three constructions differ essentially from each other.
Also, it is needless to say that these constructions are based on appropriate
uncountable forms of the Axiom of Choice (AC), which were radically re-
jected by Lebesgue in that time. Many years later, it was demonstrated by
Solovay [15] that some uncountable version of AC is absolutely necessary
for obtaining Lebesgue nonmeasurable point sets in R.

Denote by c the cardinality of the continuum. By using the method
of transfinite recursion, Luzin and Sierpiński [10] extended Bernstein’s con-
struction for obtaining a partition of the unit interval [0, 1] (or, equivalently,
of R) into continuum many Lebesgue nonmeasurable sets. Actually, they
have proved the following statement.

Theorem 1. The real line R admits a partition {Bi : i ∈ I} such that:
(1) card(I) = c;
(2) every set Bi (i ∈ I) meets any nonempty perfect subset of R;
In particular, all Bi (i ∈ I) are Bernstein subsets of R and, consequently,

are nonmeasurable in the Lebesgue sense.

Further generalization of Bernstein’s construction looks as follows (see,
e.g., [7], [11]).

Theorem 2. There exists a covering {Bj : j ∈ J} of the real line R with
its subsets, satisfying these three conditions:

(1) card(J) > c;
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(2) every set Bj (j ∈ J) meets each nonempty perfect set in R;
(3) the family {Bj : j ∈ J} is almost disjoint, i.e., card(Bj ∩ Bj′) < c

for any two distinct indices j ∈ J and j′ ∈ J .

The conditions (2) and (3) of Theorem 2 readily imply that every set
Bj (j ∈ J) is a Bernstein subset of R.

The role of Bernstein sets in general topology, the theory of Boolean
algebras, and measure theory is well known (see, for instance, [9], [11],
[12]). In classical measure theory, the significance of these sets is primarily
caused by providing various counterexamples for seemingly valid statements
in real analysis and by constructions of measures lacking various regularity
properties (see, e.g., [6], [7]).

Let E be a ground set and let µ be a measure defined on some σ-algebra
of subsets of E.

Recall that µ is said to be diffused (or continuous) if all singletons in E
belong to the domain of µ and µ vanishes at all of them.

A set Z ⊂ E is said to be µ-thick in E if the equality µ∗(E \Z) = 0 holds
true, where µ∗ denotes the inner measure associated with µ.

Example 1. Let M denote the class of the completions of all nonzero
σ-finite diffused Borel measures on R. It is easy to show that if B is any
Bernstein set in R and µ is any measure from the class M, then both B and
R \ B are µ-thick subsets of R and, consequently, they are nonmeasurable
with respect to µ. In fact, this property completely characterizes Bernstein
sets in R (see, e.g., [2], [7]).

We thus conclude that Bernstein’s construction directly yields the par-
tition {B,R \ B} of R into two λ-thick subsets. In this connection, let us
demonstrate that Hamel’s construction directly leads to a partitions of R
into countably many λ-thick subsets of R. For this purpose, consider R as
a vector space over the field Q of all rational numbers. Let {ei : i ∈ I} be a
Hamel basis for this space containing 1, i.e., ei0 = 1 for some index i0 ∈ I.
Denote by V the vector space over Q generated by {ei : i ∈ I \ {i0}}. It is
not difficult to check that V is a special kind of a Vitali set in R. Actually,
V is a selector of R/Q but the choice of this selector is done so carefully
that V turns out to be able to carry the vector structure over Q induced by
R. We now assert that V is λ-thick in R. Indeed, suppose otherwise, i.e.,
there exists a λ-measurable set C ⊂ R such that

λ(C) > 0, C ∩ V = ∅.
It is easy to see that V is everywhere dense in R (because any uncountable
subgroup of (R, +) is necessarily everywhere dense in R). So we may take
a countable family {vi : i ∈ I} ⊂ V which is everywhere dense in R, too.
Obviously, for this family, we may write

V ∩ ({vi : i ∈ I}+ C) = ∅.



111

Taking into account the metrical transitivity (ergodicity) of λ with respect
to any everywhere dense subset of R, we get

λ(R \ ({vi : i ∈ I}+ C)) = 0.

Therefore, λ(V ) = 0, which is impossible in view of the translation invari-
ance of λ and of the relations

R = Q + V = ∪{q + V : q ∈ Q}, λ(R) = +∞.

The obtained contradiction yields the desired result. We thus come to the
countable partition {q + V : q ∈ Q} of R into λ-thick sets. It follows
from this fact that, for any natural number n ≥ 2, there exists a partition
{A1, A2, . . . , An} of R into λ-thick sets, and so all Ak (1 ≤ k ≤ n) are
nonmeasurable with respect to λ.

Remark 1. In general, Vitali’s construction does not lead to a λ-thick
subset of R. Indeed, fix a real ε > 0 and take an arbitrary nonempty open
interval ∆ in R with λ(∆) < ε. For any x ∈ R, the set x+Q is everywhere
dense in R, so has nonempty intersection with ∆. This circumstance im-
mediately implies that there exists a Vitali set W entirely contained in ∆
and, consequently, λ∗(W ) < ε, where λ∗ denotes the outer measure asso-
ciated with λ. We thus see that there are Vitali sets in R with arbitrarily
small outer Lebesgue measure. Some other unexpected and extra-ordinary
properties of Vitali sets are discussed in [8].

Our goal now is to obtain (within a certain weak fragment of set theory) a
partition of R into continuum many λ-thick sets, by starting with a partition
{A,A′} of R consisting of two λ-thick sets. As shown above, Bernstein’s
and Hamel’s constructions give such a partition {A,A′}.

We need the following two auxiliary propositions which both belong to
ZF & DC theory, where DC stands, as usual, for the Principle of Dependent
Choices (see [4], [5], [15]). This principle is stronger than the Axiom of
Countable Choice (CC) and much weaker than AC. Moreover, according
to Solovay’s famous result [15], under the assumption of the existence of a
strongly inaccessible cardinal there is a model of ZF & DC, in which all
subsets of R are measurable in the Lebesgue sense.

Lemma 1. Let E1 and E2 be two Polish spaces, let µ1 be a Borel prob-
ability diffused measure on E1, and let µ2 be a Borel probability diffused
measure on E2. Then there exists a Borel isomorphism φ : E1 → E2

which is simultaneously an isomorphism between µ1 and µ2, i.e., we have
µ2(φ(X)) = µ1(X) for every Borel subset X of E1.

This lemma is well known (for the proof, within ZF & DC theory, see
e.g. [2] or [6]).
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Lemma 2. Let {En : n = 1, 2, . . . , n, . . . } be a countable family of sepa-
rable metric spaces and let, for each natural number n ≥ 1, the space En be
equipped with a probability Borel measure µn. Further, let us denote:

E =
∏
{En : n = 1, 2, . . . , n, . . . }, µ = ⊗{µn : n = 1, 2, . . . , n, . . . }.

Suppose also that a sequence of sets Xn ⊂ En (n = 1, 2, . . . , n, . . . ) is given.
Then the following two assertions are equivalent:
(1) the product set X =

∏{Xn : n = 1, 2, . . . , n, . . . } is µ-thick in E;
(2) the set Xn is µn-thick in En for each index n = 1, 2, . . . .

Remark 2. In Lemma 2, the assumption that all spaces En are separable
and metrizable is not necessary. The conclusion of this lemma remains valid
under much weaker assumptions, but the above formulation suffices for our
further purposes.

Remark 3. Preserving the notation of Lemma 2, let Z be an arbitrary
µ-thick set in E. Then it is easy to verify that, for every natural number
n ≥ 1, the set prn(Z) is µn-thick in En. The converse assertion is not true,
in general. Indeed, simple examples show that the equalities prn(Z) = En

may be valid simultaneously for all natural numbers n ≥ 1 but, at the same
time, the set Z may be of µ-measure zero.

Remark 4. Let k ≥ 1 be a natural number, {En : n = 1, 2, . . . , k} be a fi-
nite family of ground sets and let, for each natural number n ∈ {1, 2, . . . , k},
the set En be equipped with a probability measure µn. Further, let us de-
note:

E =
∏
{En : n = 1, 2, . . . , k}, µ = ⊗{µn : n = 1, 2, . . . , k}.

Suppose also that a finite sequence of sets Xn ⊂ En (n = 1, 2, . . . , k) is
given. Then the following two assertions are equivalent:

(a) the product set X =
∏{Xn : n = 1, 2, . . . , k} is µ-thick in E;

(b) the set Xn is µn-thick in En for each index n ∈ {1, 2, . . . , k}.
We thus see that in the case of a finite sequence of probability measure

spaces (or, more generally, of nonzero σ-finite measure spaces) the analogue
of Lemma 2 is valid in ZF & DC theory without assuming any regularity
properties of the measures.

In what follows we denote by the same symbol λ the restriction of the
Lebesgue measure to the unit interval [0, 1]. Using Lemmas 1 and 2, we
obtain

Theorem 3. Working in ZF & DC theory, suppose that there exists a
partition {A,A′} of the unit interval [0, 1] into two subsets such that

λ∗(A) = λ∗(A′) = 1.
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Then there exists a partition {Zi : i ∈ I} of the same interval, which satisfies
the following two relations:

(1) card(I) = c;
(2) λ∗(Zi) = 1 for each index i ∈ I.

Nontrivial (i.e., discontinuous) endomorphisms of the additive group
(R, +) were first exhibited in [3] and all of them turned out to be non-
measurable in the Lebesgue sense. In connection with this fact, it is worth
noticing that some of such endomorphisms can be measurable with respect
to certain measures belonging to the class M introduced in Example 1.

Example 2. There exists a function f : R → R satisfying the following
three conditions:

(a) the range ran(f) of f is contained in the field Q (consequently, ran(f)
is at most countable);

(b) f is measurable with respect to some measure from the class M;
(c) f is a nontrivial endomorphism of the additive group (R, +).

To obtain such an f , consider a nonempty perfect subset P of R linearly
independent over the field Q (the existence of P is a well-known fact of
classical point set theory; cf. [6], [11]). Let {ei : i ∈ I} stand for some
Hamel basis of R containing P . We define f : R → Q as follows. Every
real number x admits a unique representation in the form

x = qi1ei1 + qi2ei2 + · · ·+ qinein ,

where n = n(x) is a natural number, {i1, i2, . . . , in} is a finite injective
family of indices from I, and {qi1 , qi2 , . . . , qin} is a finite family of nonzero
rational numbers. We put

f(x) = qi1 + qi2 + · · ·+ qin .

Obviously, f is an additive function acting from R into Q, so conditions (a)
and (c) are valid. Further, the restriction f |P is identically equal to 1. Let
µ be a Borel diffused probability measure on R whose support is P , i.e.,
µ(R\P ) = 0, and let µ′ denote the completion of µ. It is clear that µ′ ∈M
and f turns out to be µ′-measurable. Thus condition (b) is satisfied, too.

Remark 5. It can be shown that:
(a) there exists a subset of R which is simultaneously a Vitali set and a

Bernstein set;
(b) there exists a subset of R which is simultaneously a Hamel basis and

a Bernstein set;
(c) there exists no subset of R which is simultaneously a Hamel basis

and a Vitali set.

Remark 6. Let µ be an arbitrary measure from the class M. By using
Lemma 1, it is not difficult to prove within ZF & DC theory that if there
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exists a µ-nonmeasurable subset of R, then there exists a partition of R into
two µ-thick subsets. So, taking into account Lemma 1 and Theorem 3, we
may conclude that the following four assertions are equivalent in ZF & DC
theory:

(a) there exists a µ-nonmeasurable subset of R;
(b) there exists a partition of R into two µ-thick subsets;
(c) there exists a partition of R into continuum many µ-thick subsets;
(d) there exists a function g : R → R such that ran(g|X) = R for every

µ-measurable set X with µ(X) > 0.

In this context, the transfinite construction given in [10] becomes super-
fluous. At the same time, it seems that the natural analogue of Theorem 2
cannot be deduced within ZF & DC theory by assuming that there exists
a λ-nonmeasurable subset of R.

Remark 7. Consider the theory ZF & DC & (ω1 ≤ c), where ω1 de-
notes, as usual, the least uncountable cardinal. It was proved in this theory
that there exists a λ-nonmeasurable subset of R (see [13] and [14]). Conse-
quently, within the same theory, there exists a partition of R into continuum
many λ-thick subsets.

Remark 8. Supposing that c is a regular cardinal number, the assertion
of Theorem 1 readily follows from the assertion of Theorem 2.

Theorem 4. Assume the Continuum Hypothesis. Then:
(1) there exists a partition of R into continuum many Sierpiński sets all

of which are λ-thick;
(2) there exists a partition of R into continuum many Luzin sets all of

which are thick in the sense of category.
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