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NOTE ON SINGULAR LEBESGUE–STIELTJES MEASURES

1. Definitions and Notation. A mapping B defined on Rn is said to be
a differentiation basis (briefly: basis) if for every x ∈ Rn, B(x) is a family
of open sets containing x such that there exists a sequence {Rk} ⊂ B(x)
with diamRk → 0 (k →∞).

By |E| we will denote the Lebesgue measure of a Lebesgue measurable
set E ⊂ Rn.

For a Lebesgue-Stieltjes measure µ and a basis B, the numbers

DB(µ, x) = lim
R∈B(x),diam R→0

µ(R)
|R| , D B(µ, x) = lim

R∈B(x),diam R→0

µ(R)
|R|

are called the upper and the lower derivative with respect to B, respectively,
of µ at a point x. If the upper and the lower derivative coincide, then their
common value is called the derivative with respect to B of µ at a point x
and is denoted by DB(µ, x).

A basis B is said to differentiate a Lebesgue–Stieltjes measure µ if DB(µ, x)
exists for almost all x ∈ Rn.

For f ∈ L(Rn) a basis B is said to differentiate
∫

f if DB(
∫

f, x) = f(x)
for almost all x ∈ Rn.

A basis B is said to differentiate a class X ⊂ L(Rn) if B differentiates∫
f for every f ∈ X.
A basis B is called translation invariant if B(x) = {x + R : R ∈ B(0)}

for every x ∈ Rn.
Let B1 and B2 be bases in Rn. B1 is said to be a sub-basis of B2 (entry:

B1 ⊂ B2) if B1(x) ⊂ B2(x) for every x ∈ Rn.
Below everywhere we will assume that dimension n is greater then 1.
Denote by Q and I, the bases defined as follows:
Q(x) (x ∈ Rn) consists of all n-dimensional cubic intervals containing x;
I(x) (x ∈ Rn) consists of all n-dimensional intervals containing x.
Note that according to the classical theorem of Lebesgue (see e.g. [1,

Ch. V, §5]) the basis Q differentiates every Lebesgue–Stieltjes measure and
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furthermore Q differentiates L(Rn). On the other hand by virtue of results
of Saks and of Busemann and Feller (see e.g. [2, Ch. IV, § 2]) the basis I
does not differentiate L(Rn). Here we note also that by Stokolos [3, 4] it
was given a geometrical characterization of translation invariant sub-bases
of I that does not differentiate L(Rn).

A Lebesgue–Stieltjes measure µ is called singular if there is a Borel set
E such that: |E| = 0 and µ(A) = µ(A ∩ E) for every Borel set A.

2. Result. It is known that (see e.g. [1,Ch.V,§7]) if µ is a singular
Lebesgue–Stieltjes measure, then

DQ(µ, x) = 0 almost everywhere.

The similar essertion is not valid for the basis I, moreover it is true the
following result.

Theorem. Let B be a translation invariant sub-bases of I that does not
differentiate L(Rn). Then there exists a singular Lebesgue-Stieltjes measure
µ such that

DB(µ, x) = ∞ almost everywhere.

Corollary. There exists a singular Lebesgue–Stieltjes measure µ such that

DI(µ, x) = ∞ almost everywhere.
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