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Let T be the interval [−π, π]. Let P be the class of measurable functions
p : T → (1,∞) such that 1 < p∗ := essinf

x∈T
p (x) ≤ p∗ := esssup

x∈T
p (x) < ∞.

The conjugate exponent of p (x) is defined as p′ (x) := p (x) / (p (x)− 1). We
define a class L

p(·)
2π of 2π-periodic measurable functions f : T → R satisfying

the condition ∫

T

|f (x)|p(x)
dx < ∞

for p ∈ P.
The class L

p(·)
2π is a Banach function space with the norm

‖f‖T ,p(·) := inf
{

α > 0 :
∫

T

∣∣∣∣
f (x)

α

∣∣∣∣
p(x)

dx ≤ 1
}

.

A function ω : T→ [0,∞] will be called a weight if ω is measurable
and almost everywhere positive. By L

p(·)
ω we denote the class of Lebesgue

measurable functions f : T → R for which ωf ∈ L
p(·)
2π . L

p(·)
ω is called

weighted Lebesgue spaces with variable exponent and is a Banach function
space with the norm ‖f‖p(·),ω := ‖ωf‖T ,p(·).

For given p ∈ P the class of weights ω satisfying the condition
∥∥∥ωp(x)

∥∥∥
Ap(·)

:= sup
B∈B

1
|B|pB

∥∥∥ωp(x)
∥∥∥

L1(B)

∥∥∥∥
1

ωp(x)

∥∥∥∥
B,(p′(·)/p(·))

< ∞

will be denoted by Ap(·). Here pB :=
(

1
|B|

∫
B

1
p(x)dx

)−1

and B is the class

of all intervals in T .
The variable exponent p(x) is said to be satisfy the log-Hölder continuity

condition if there is a positive constant c such that

|p (x1)− p (x2)| ≤ c

log 1/|x1 − x2| for all x1, x2 ∈ T . (1)
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We will denote by P log the class of those p ∈ P satisfying (1).
We set En (f)p(·),ω := inf

{
‖f − T‖p(·),ω : T ∈ Tn

}
for f ∈ L

p(·)
ω , where

Tn is the class of trigonometric polynomials of degree not greater than n,
f ∈ Lp (T ) .

Let {λ(n)
k }, (k = 0, 1, 2, . . . , n, n + 1; k = 1, 2, . . . ; λ(n)

0 = 1, λ
(n)
n+1 = 0) be

an arbitrary triangle matrix of numbers. For any function f ∈ LLp(·)
w (T ).

We consider a sequence of linear operators

Un(f ; x; λ) =
n∑

k=0

λ
(n)
k Ak(x),

where A0(x) = a0
2 , Ak(x) = ak cos kx + bk sin kx and ak, bk be the Fourier

coefficients of function f .
Our aim is to estimate the norm deviation

Rn(f ; λ)
L

p(·)
w

= ‖f(x)− Un(f ; x;λ)‖
L

p(·)
w

by the best approximation of function f ∈ L
p(·)
w .

Theorem 1. Let {λ(n)
k } be a nondecreasing sequence of numbers. Let us

suppose, that p ∈ P log, ω−p0 ∈ A(
p(·)
p0

)′ for some p0 ∈ (1, p∗).

Then the following estimate holds

Rn(f ; λ)
L

p(·)
w

≤ cp(·),w

{
m∑

ν=0

µ
(n)γ
2ν+1E

γ
2ν−1(f)

L
p(·)
w

}1/γ

,

where γ := min {2, p∗} and

µ(n)
ν = 1− λ(n)

ν , (ν = 0, 1, 2, . . . , n, n + 1).

From Theorem 1 we can deduce the following corollary’s:

Corollary 1. Let

λ
(n)
k = 1−

(
k

n + 1

)r

, (k = 0, 1, 2, . . . , n; r ≥ 1)

be the Zygmund’s means of summability. Then we have the following esti-
mate

Rn(f ;λ)
L

p(·)
w

≤ cp(·),w
nr

{
n∑

ν=0

νγr−1Eγ
ν−1(f)

L
p(·)
w

}1/γ

when γ := min {2, p∗}.
Corollary 2. For the Bernstein-Rogozinsky means

λ
(n)
k = cos

kπ

2n + 1
, (k = 0, . . . n)
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we obtain the following inequality

Rn(f ; λ)
L

p(·)
w

≤ cp(·),w
n2

{
n∑

ν=0

ν2γ−1Eγ
ν−1(f)

L
p(·)
w

}1/γ

,

where γ := min {2, p∗}.
In particular, for the Fejer means when

En(f) ≤ c1

n

we obtain the estimate

Rn(f ; λ)
L

p(·)
w

≤ 1
n

(ln)1/γ

where γ := min {2, p∗}.
Moreover, we are able to estimate from below the norm of deviation by

linear summability means in weighted variable exponent Lebesgue spaces.
Namely, the following assertions are valid:

Theorem 2. Let

λ
(n)
k = 1−

(
k

n + 1

)r

, (k = 0, 1, 2, . . . , n; r ≥ 1)

be the Zygmund’s means of summability. Then we have the following esti-
mate

Rn(f ; λ)
L

p(·)
w

≥
c′p(·),w

nr

{
n∑

ν=0

νβr−1Eβ
ν−1(f)

L
p(·)
w

}1/β

when β := max {2, p∗}.
Theorem 3. For the Bernstein-Rogozinsky means

λ
(n)
k = cos

kπ

2n + 1
, (k = 0, . . . n)

we obtain the following inequality

Rn(f ; λ)
L

p(·)
w

≥
c′′p(·),w

n2

{
n∑

ν=0

ν2β−1Eβ
ν−1(f)

L
p(·)
w

}1/β

,

where β := max {2, p∗}.
When p(x) is a constant, 1 < p < ∞ and weight w(x) = 1, for these

estimates we refer the readers to the paper [3].
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