L. Kokilashvili and Ts. Tsanava

BOUNDEDNESS OF MULTIPLE CONJUGATE FUNCTIONS AND STRONG MAXIMAL FUNCTIONS IN WEIGHTED GRAND $L^{p)}$ SPACES

(Reported on 11.02.2010)

Let $T^n = T \times T \times \cdots \times T$, where $T = [-\pi, \pi]$.

The weighted grand Lebesgue space $L_w^{p)}(T^n)$, $1 is a Banach function space of <math>2\pi$ -periodic with respect to each variable function $f : T^n \to R^1$ defined by the norm

$$\|f\|_{L^{p)}_{w}(T^{n})} = \sup_{0 < \varepsilon < p-1} \left(\frac{\varepsilon}{(2\pi)^{n}} \int_{T^{n}} |f(x)|^{p-\varepsilon} w(x) dx \right)^{\frac{1}{p-\varepsilon}}$$

The grand Lebesgue space L^{p} was introduced by T. Iwaniec and C. Sbordone [1].

We discuss the boundedness problem of the following integral operators:

$$\widetilde{f}(x) = \frac{1}{(2\pi)^n} \int_{T^n} f(x_1 + s_1, \dots, x_n + s_n) \prod_{j=1}^n \operatorname{ctg} \frac{s_j}{2} ds, \ x = (x_1, \dots, x_n)$$

-the multiple conjugate function and

$$M_s f(x) = \sup_{J \ni x} \frac{1}{|J|} \int_J |f(y)| dy$$

-the strong maximal function. By J we denote *n*-dimensional rectangles with sides parallel to the coordinate axis and edges with length not greater than 2π .

Definition 1. A almost everywhere positive measurable function w: $R^n \to R^1$ is said to be class $\widetilde{A_p}(T^n)$ if

$$\sup_{J} \frac{1}{|J|} \int_{J} w(x) dx \left(\frac{1}{|J|} \int_{J} w^{1-p'}(x) dx \right)^{p-1} < \infty.$$

²⁰¹⁰ Mathematics Subject Classification: 42B05, 42B20, 42B25.

Key words and phrases. Lebesgue space with a variable exponent, weights, Fourier series, convergence and summability.

¹⁴¹

Theorem 1. Let 1 . Then the following conditions are equivalent:

- (i) \widetilde{f} is bounded in L_w^{p}
- (ii) M_s is bounded in $L_w^{p}(T^n)$
- (iii) $w \in \widetilde{A_n}(T^n)$.

Let σ_m^{α} , $m = (m_1, \ldots, m_n)$, $\alpha = (\alpha_1, \ldots, \alpha_n)$, $\alpha_j > 0$ $(j = 1, \ldots, n)$ be the Cesaro means of multiple trigonometric Fourier series:

$$\sigma_m^{\alpha}(f,x) = \frac{\sum_{j=0}^{m_1} \cdots \sum_{j=0}^{m_n} A_{m_1-j_1}^{\alpha_1-1} \cdots A_{m_n-j}^{\alpha_n-1} S_{j,\dots,j_n}(f,x)}{\prod_{j=1}^n A_{m_j}^{\alpha_j}}$$

where $A_k^{\beta} = \begin{pmatrix} k \\ \beta \end{pmatrix}$ and S_{j_1,\dots,j_n} are the rectangle partial sums of Fourier series.

Then we have

Theorem 2. Let
$$1 and $w \in A_p(T^n)$. Then
$$\lim_{m \to \infty} \|\sigma_m^{\alpha}(f) - f\|_{p),w} = 0$$$$

for arbitrary $f \in L^{p)}_w(T^n)$.

Note that it is known $L_w^p \subset L_w^{p)} \subset L^{p-\varepsilon}$ with $0 < \varepsilon < p-1$. For the boundedness of Hardy-Littlewood maximal function in weighted grand L^{p} spaces we refer to [2]. For boundedness of Hilbert transform and Cauchy singular integral in L_w^{p} spaces was studied in [3] and [4] respectively.

Analogous problems in weighted Orlicz classes were investigated in [5].

Acknowledgement

The work of second author was supported by the GNSF grant ST07/3-169.

References

- 1. T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119(1992), No. 2, 129-143.
- 2. A. Fiorenza, B. Gupta and P. Jain, The maximal theorem for weighted grand Lebesgue spaces. Studia Math. 188(2008), No. 2, 123–133.
- 3. V. Kokilashvili and A. Meskhi, On the boundedness of the Hilbert transform in weighted grand Lebesgue spaces. Georgian Math. J. 16(2009), No. 3, 547-551.
- 4. V. Kokilashvili, Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem. Proc. A. Razmadze Math. Inst. 151(2009), 129-133.

142

 L. V. Kokilashvili, Criteria of weighted inequalities for maximal functions and Multiple singular integrals in Orlicz classes. Doklady Math. RAN. 58(1998), No. 2, 194–196.

Authors' addresses:

L. Kokilashvili Georgian American University, Business School, 17a, Chavchavadze Ave., Tbilisi, Georgia

Ts. Tsanava Georgian Technical University 77, M. Kostava, Tbilisi 0175 Georgia