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In the present article we present the results concerning the weighted estimate for
Bellman’s transform of trigonometric Fourier series in the Lebesgue spaces with a variable
exponent.

For the classical Lebesgue spaces, an analogous problem has been considered in [1],
[2], [3], [4] and [5].

Let T = (−π, π). Below we will consider a measurable function p : T → R1, such that

0 < p− := ess inf
T

p(x) ≤ p(x) ≤ p+ := ess sup
T

p(x) < ∞. (1)

By Lp(·)(T ) we denote a set of all measurable functions on T for which

Ip(f) =

∫

T

|f(x)|p(x)dx < ∞.

When p(x) is a measurable bounded function with values in [1,∞) then Lp(·)(T ) is
the Banach function space with respect to the norm

‖f‖
Lp(·) = inf

{

λ > 0 : Ip

( f

λ

)

≤ 1
}

.

Definition. By P0(T ) is denoted a set of functions satisfying the condition (1) for

which are fulfilled the following conditions:
(i) p(0) = lim

x→0
p(x):

(ii) |p(x) − p(0)| ≤ c
ln |x|

for |x| ≤ 1
2
.

Let

bn =

π
∫

−π

f(x)sinnxdx (2)

be the Fourier coefficients of 2π-periodic summable function. Using the sequence {bn},
we construct a new sequence

Bk =
∞
∑

k=n+1

bk

k
+

bn

2n
, n ≥ 1.

The following theorem is valid.
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Theorem 1. Let the functions p : T → R1 and β : T → R1 belong to the set P0(t),
p− > 1 and

0 ≤ β(0) <
1

p(0)
.

Further, we assume that the function q : T → R1 belongs to the class P0(t) with the
condition

1

q(0)
=

1

p(0)
− β(0).

Let (2) be the Fourier coefficients of the function f ∈ Lp(·). Then the trigonometric series

∞
∑

k=1

Bksinkx

is the Fourier series of the function F for which the inequality

‖tβ(t)F (t)‖
Lq(·)(T )

≤ c‖f‖
Lp(·)(T )

holds.

Theorem 2. Let the functions p : T → R1 and β : T → R1 belong to the set P0(t),
p− > 1 and

0 ≤ β(0) <
1

p(0)
.

Further, we assume that the function q : T → R1 belongs to the class P0(t), q− > 1
with the condition

1

q(0)
=

1

p(0)
− β(0).

Let (2) be the Fourier coefficients of the function f ∈ Lp(·). Then the trigonometric series

∞
∑

k=1

Aksinkx,

where

Ak =
1

k

( k−1
∑

j=1

bj +
bk

2

)

,

is the Fourier series of the function Φ for which the inequality

‖tβ(t)Φ(t)‖
Lq(·)(T )

≤ c‖f‖
Lp(·)(T )

holds.
The analogous statements are true for cosine Fourier series.
The proofs of presented theorems are is based on the result obtained in [6].
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