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Let J be a subinterval of R. Suppose that p is measurable function on J with the
condition

1 < p−(J) ≤ p(x) ≤ p+(J) < ∞,

where

p−(J) := inf
J

p; p+(J) := sup
J

p.

Suppose also that ρ is an almost everywhere positive locally integrable function on J ,

i.e. ρ is a weight. We say that a measurable function f : J → R, belongs to L
p(·)
ρ (J) (or

L
p(x)
ρ (J)) if

Sp,ρ(f) =

∫

J

∣∣f(x)ρ(x)
∣∣p(x)

dx < ∞.

It is known that L
p(x)
ρ (J) is a Banach space with the norm

‖f‖
L

p(x)
ρ (J)

= inf
{
λ > 0 : Sp,ρ

(
f/λ

)
≤ 1

}
.

If p = const, then L
p(·)
ρ (J) coincides with the classical Lebesgue space with the weight

ρ. Further, if ρ ≡ 1, then we use the symbol Lp(·)(J) for L
p(·)
ρ (J).

For some basic properties of Lp(·) spaces we refer, e.g., to [4-6].
We say that p : J → R satisfies the Dini-Lipschitz (log-Hölder continuity) condition

on J ( p ∈ DL(J)) if there exists a positive constant A such that

|p(x) − p(y)| ≤
A

− ln |x − y|
; x, y ∈ J ; |x − y| ≤ 1/2.

A weight function ρ satisfies the doubling condition on J (ρ ∈ DC(J)) if there exists
a positive constant b such that

∫

I(x,2r)

ρ ≤ b

∫

I(x,r)

ρ

for all x ∈ J and r > 0, where I(x, r) := (x − r, x + r).
Let T := [−π, π] and let

f(x) ∼
a0

2
+

∞∑

k=1

(akcoskx + bksinkx)

be the Fourier series of the function f ∈ L1(T ).
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The Cesàro mean of order α > 0, σα
n , is defined as

σα
n (f, x) =

1(
n + α

n

)
n∑

k=0

(
n − k + α

n − k

)
Ak(x), α > 0

where

A0 =
a0

2
and Ak(x) = akcoskx + bksinkx.

Let also

ur(f, x) =
a0

2
+

∞∑

k=1

Ak(x)rk

be the Abel-Poisson means of function f(x).
The following statements are true:

Theorem 1. Let 1 < p−(T ) ≤ p(x) ≤ p+(T ) < ∞ and let p ∈ DL(T ). If (w(·))−p′(·)

satisfies the doubling condition on T , then the following conditions are equivalent:

i) ‖ supn σα
n (f, ·)‖

L
p(·)
v (T )

≤ c‖f‖
L

p(·)
w (T )

ii) ‖ sup0<r<1 ur(f, ·)‖
L

p(·)
v (T )

≤ c‖f‖
L

p(·)
w (T )

iii) there exists a constant c > 0 such that

∫

I

(v(x))p(x)
(
M

(
w−p′(·)(·)χI(·)

)
(x)

)p(x)
dx ≤ c

∫

I

w−p′(x)dx (1)

for an arbitrary interval I ⊂ T .

Theorem 2. Let 1 < p−(T ) ≤ p(x) ≤ p+(T ) < ∞ and let p ∈ DL(T ). Suppose

that (w(·))−p′(·) ∈ DC(T ) and the condition (1) holds with v = w. Then for arbitrary

f ∈ Lp
w(T ) we have

lim
n→∞

‖σα
n (f, ·) − f(·)‖

L
p(·)
w (T )

= 0

and

lim
r→1

‖ur(f, ·) − f(·)‖L
p

w(T ) = 0.

Two-weight estimates for the Cesàro means enable us to obtain the extended Bern-
stein inequality for the derivative of trigonometric polynomial and its conjugate in two-
weighted setting.

Theorem 3. Let 1 < p−(T ) ≤ p(x) ≤ p+(T ) < ∞ and let p ∈ DL(T ). Suppose that

(w(·))−p′(·) ∈ DC(T ) and condition (1) is satisfied. Then for an arbitrary trigonometric

polynomial tn(x) and its conjugate t̃n(x) we have

‖t′nv‖
Lp(·)(T ) ≤ cn‖tnw‖

Lp(·)(T )

and

‖t̃′nv‖
Lp(·)(T ) ≤ cn‖tnw‖

Lp(·)(T ).

For special pairs (v, w) the above mentioned results were obtained in [1]. For the
constant p we refer to [2].

Now we discuss the Hardy-Littlewood maximal operators.
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Let MR+
and MR be maximal operators given by

(
MR+

f
)
(x) = sup

r>0

1

2r

∫

(x−r,x+r)∩R+

|f(t)|dt, x ∈ R+,

(
MRf

)
(x) = sup

r>0

1

2r

x+r∫

x−r

|f(t)|dt, x ∈ R

respectively.
We have the following statements:

Theorem 4. Let 1 < p−(R+) ≤ p(x) ≤ p+(R+) < ∞ and let p ∈ DL(R+). Suppose

that there is a bounded interval [0, a] such that (w(·))−p′(·) ∈ DC([0, a]) and p is constant

outside [0, a]. Then MR+
is bounded from L

p(·)
w (R+) to L

p(·)
v (R+) if and only if there

is a positive constant c such that for all bounded subintervals I of R+,

‖MR+
(w−p′(·)χI)‖

L
p(·)
v (I)

≤ c‖w1−p′(·)(·)‖
Lp(·)(I) < ∞.

Theorem 5. Let 1 < p−(R) ≤ p(x) ≤ p+(R) < ∞ and let p ∈ DL(R). Suppose

that there is positive number a such that (w(·))−p′(·) ∈ DC([−a, a]) and p := pc =

const outside [−a, a]. Then for the boundedness of MR from L
p(·)
w (R) to L

p(·)
v (R) it is

necessary and sufficent that there exists a positive constant c such that for all bounded

subintervals I of R,

‖MR(w−p′(·)χI)‖
L

p(·)
v (R)

≤ c‖w1−p′(·)‖
Lp(·)(I) < ∞.

Finally we notice that two-weight Sawyer-type criteria for maximal functions in Lebesgue
spaces defined on finite intervals were announced in [3].

In the sequel by V we denote the class of all measurable functions
f : R1 −→ R1 for which

∞∫

−∞

f(x)

(1 + |x|)2
dx < ∞.

Theorem 6. Let the conditions of Theorem 5 hold with v = w. Then for arbitrary

f ∈ Lp
w(R1)

⋂
V we have

lim
t−→0

‖f − Ut(·, f)‖
L

p(·)
w

= 0

where

Ut(x, f) =
1

π

∞∫

−∞

f(y)t

t2 + (x − y)2
dy.
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