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Let P be a closed set of the space Rn and δ(y) be a distance from the point y to the
set P . J. Marcinkiewicz was the first who studied the following integral transforms [1]:

Jf(x) =

∫

P

(δ(y))λ

|x− y|n+λ
f(y) dy, λ > 0 (1.1)

and

Jf(x) =

∫

{y:δ(y)≤δ0<1}

(log 1
δ(y)

)−1

|x− y|n
f(y) dy. (1.2)

These integrals are of importance in the theory of Fourier series. Modification of the above
integrals have been considered by L. Carleson [2] and A. Zygmund [3]. For example, A.
Zygmund studied the following integral transformations:

(J∗f)(x) =

∫

Rn

[δ(y)]λ

(|x− y| + δ(y))n+λ
f(y) dy, (1.3)

(J∗f)(x) =

∫

{δ(y)≤δ0<1}

[lg 1
δ(y)

]−1

(|x− y| + δ(y))n
f(y) dy. (1.4)

It is evident that if x ∈ P , then (J∗f)(x) and (J∗f)(x) = (Jf)(x). In the theory of
singular and hypersingular integrals the most important turned out to be the integrals
written in the form (1.3) and (1.4). In this section we present the two-weight inequality for
generalized Marcinkiewicz integrals in weighted Lebesque spaces with variable exponent.
This generalization has been considered by Calderon [4] who proved the one-weighted
inequality for the Muckenhoupt Ap classes in Lebesque spaces with constant exponent.

Let on the set (0,∞) × [0,∞) be defined the nonnegative function ϕ(ρ, t) satisfying
the following conditions:

(1) for every fixed t, t ∈ [0,∞) the function (ρ + t)−nϕ(ρ, t) is nonincreasing with
respect to ρ, and

lim
ρ→∞

(ρ+ t)−nϕ(ρ, t) = 0;

(2) there exists the positive constant c such that

∞∫

0

ρn−1(ρ+ t)−nϕ(ρ, t) dρ ≤ c,

for every nonnegative t.
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Let ψ(y)≥0 be a measurable function such that the function ϕ(|x−y|, ψ(y)) is measurable.
Consider the integral

Kf(x) =

∫

Rn

ϕ(|x− y|, ψ(y))

(|x− y| + ψ(y))n
ϕ

(
|x− y|, ψ(y)

)
f(y) dy. (1.5)

Obviously, when

ϕ(ρ, t) =
t2

(ρ+ t)2
, ψ(y) = δ(y),

we obtain Kf(x) = J∗f(x).
let q be a measurable function on R

n such that 1 ≤ q(x) ≤ ess sup
x∈Rn

q(x) <∞. Suppose

that ρ is a weight function on R
n, i.e. ρ is a non-negative, almost everywhere positive

function on R
n. By Lq(·)(Rn) we denote the space of all measurable functions f on R

n

such that

Sq(·)(f) :=

∫

Rn

|f(x)|q(x)dx <∞.

This is a Banach space with respect to the norm

‖f‖
Lq(·)(Rn) := inf

{
λ > 0 : Sq(·) (f/λ) ≤ 1

}
.

The weighted variable Lebesque space Lq(·)ρ(R
n) is defined by the norm

‖f‖
L

q(·)
ρ

= ‖fρ‖
Lq(·) .

For the variable Lebesque spaces we refer to [6], [7].
In the sequel we will use the following notation:

p−(E) := ess inf
x∈E

p(x); p+(E) := ess sup
x∈E

p(x),

where p(·) is a measurable function on R
n and E is a measurable set in R

n.
Further, we denote:

p0(x) := p−({y : |y| < |x|}), p̃0(x) :=

{
p0(x) if |x| ≤ 1

pc = const if |x| > 1,

and p̃0(x) =
p̃0(x)

p̃0(x) − 1
In the sequel we assume that K and M are the Calderón-Zygmund and the Hardy-

Littlewood maximal operator respectively defined on R
n.

Definition. We say that a function p(·) satisfies the Dini-Lipschitz condition on R
n

(p(·) ∈ DL(Rn)) if

|p(x) − p(y)| ≤
A

ln 1
|x−y|

; 0 < |x− y| ≤ 1/2; x, y ∈ R
n.

Based on two-weighted estimate for maximal function, obtained in [5] we come to the
following

Theorem. Let 1 < p− ≤ p(x) ≤ p+ < ∞. Suppose that p(·) ∈ DL(Rn) and

p(x) ≡ pc ≡ const for |x| > 1. Suppose that v and w are functions increasing on R+

and satisfying the condition

B := sup
t>0

( ∫

|x|>t

(v(|x|)/|x|n)p(x)

( ∫

|y|<t

w−(p̃0)′(x)(|y|)dy

) p(x)

(p̃0)′(x)
dx

)
<∞.
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Then there exists a positive constant c such that

‖(Kf)(·)v(| · |)‖
Lp(·)(Rn) ≤ c‖f(·)w(| · |)‖

Lp(·)(Rn)

holds.
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