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In the sequel, the interval (π, π) will be denoted by T . Let a 2π-periodic function p

satisfy the conditions

1 < p− := essinf
x∈T

p(x) ≤ p(x) ≤ esssup
x∈T

p(x) =: p+ < ∞ (1)

and
∣∣p(x) − p(y)

∣∣ ≤ A

ln 1
|x−y|

, x, y ∈ T, |x − y| ≤
1

2
, (2)

and let the function β(x) satisfy the condition

∣∣β(x) − β(x0)
∣∣ ≤ A

ln 1
|x−x0|

, x0 ∈ T, |x − x0| ≤
1

2
. (3)

Almost everywhere, a finite nonnegative function w will be called a weight.
The weighted Lebesgue space with a variable exponent is defined through the modular

I
p
T

(fw) :=

∫

T

∣∣f(x)w(x)
∣∣p(x)

dx

by means of the norm

∥∥f
∥∥

p(·),w
= inf

{
λ > 0 : I

p
T

( fw

λ

)
≤ 1

}
. (4)

By L
p(·)
w (T ) we denote the weighted Banach space of all 2π-periodic functions for

which (4) is finite.

In what follows, we will consider weights of power-exponential w(x) = |x − x0|β(x),
where x0 is an arbitrary point on the interval (−π, π).

Let

f(x) ∼
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) (5)

be the trigonometric Fourier series of the function f .
In the sequel, by Snf we will denote a partial sum of the Fourier series of the function

f(x),

Snf(x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx).
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We will also consider the Cesaro α-means and the Abelian-Poisson means of the series
(5):

σα
n f(x) =

n∑

k=0

An−1
n−k

Aα
n

Skf(x), Aα
n =

(α + 1)(α + 2) · · · (α + n)

n!

and

uf (r, x) =
1

2
a0 +

∞∑

k=1

(ak cos kx + bk sinkx)rk, 0 < r < 1.

In [13], we investigated the mean convergence of trigonometric series by using the
method due to Cesaro in weighted Lebesgue spaces with a constant exponent p.

Our investigation will be based on the criteria of boundedness of maximal functions
and singular integrals in the variable Lebesgue spaces with weight (see [3] and [4]). As
for the Lebesgue spaces with a variable exponent and for integral operators, we refer the
reader to [6] and [7].

The given lemma allows one to prove the theorems below.

Lemma A (see [8]). Let p(x) satisfy the conditions (1) and (2), and the function

β(x) satisfy the condition (3). Then for x0 ∈ T the norm

∥∥ | · −x0|
β(·)

∥∥
p(·)

is finite if and only if

−
1

p(x0)
< β(x0) <

1

p′(x0)
.

Theorem 1. Let p : T → R satisfy the conditions (1) and (2), and the function β(x)
satisfy the condition (3). Then the following statements are equivalent:

(i) lim
n→∞

∥∥Snf(·) − f
∥∥

p(·),w
= 0 for any f ∈ L

p(·)
w (T );

(ii) −
1

p(x0)
< β(x0) <

1

p′(x0)
.

Theorem 2. Let p : T → R satisfy the conditions (1) and (2), and the function β

satisfy the condition (3). Assume w(x) = |x − x0|β(x). Then the following statements

are equivalent:

(i) lim
n→∞

∥∥σα
n (f, · ) − f

∥∥
p,w

= 0;

(ii) lim
r→1

∥∥u(r, · ) − f
∥∥

p,w
= 0;

(iii) −
1

p(x0)
< β(x0) <

1

p′(x0)
.

The problem of convergence and summability of conjugate Fourier series is also stud-
ied.

Let
∞∑

n=1

(an sin nx − bn cos nx) (6)

be the series, conjugate to the series (5). As above, we assume that w(x) = |x− x0|β(x),
x0 ∈ T .

Theorem 3. Let the function p(x) satisfy the condition (3). Then the partial sums

of the conjugate trigonometric Fourier series are mean convergent to the function f̃(x)

in the space L
p(·)
w if −

1

p(x0)
< β(x0) <

1

p′(x0)
.
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Theorem 4. Under the conditions of Theorem 3, for the functions p(x) and β(x)

that the trigonometric Fourier series of the function f ∈ L
p(·)
w (T ) is the Fourier series

of the function f̃(x), and

lim
n→∞

∥∥σ̃ α
n(f)(x) − f̃

∥∥
p,w

= 0.

An analogous theorem holds for the Abel-Poisson means.

Theorem 5. Let the functions p and β satisfy the conditions of Theorem 3. Then

for any f ∈ L
p(·)
w (T ) the Abel-Poisson means of the series (6) are mean convergent in

L
p(·)
w (T ) to the function f̃(x).

The above theorems are likewise valid for the weights

w(x) =
n∏

k=1

|x − xk|
βk (7)

where x1, x2, . . . , xn are different points on T , and

−
1

p(xk)
< βk <

1

p′(xk)

for all k = 1, 2, . . . , n.
Let

uf (x, t) =

∫

Rn

t

t2 + (x − y)2
f(y) dy (8)

be the Poisson integral in the upper half-plane. As is known, uf (x, t) is the harmonic
function in the upper half-plane.

Let p : R1 → R1 be the measurable function for which the following conditions are

fulfilled:
(1) 1 < p− := essinf

x∈R1
p(x) ≤ p(x) ≤ p = esssup

x∈R1
p(x) < ∞;

(2) there exists the constant A > 0, such that

∣∣p(x) − p(y)
∣∣ ≤ A

ln 1
|x−y|

, |x − y| <
1

2
;

(3) there exists the interval (−R, R), such that

p(x) = p∞ = const for |x| > R.

Assume that the weight function is of the form

w(x) = |x|β
n∏

k=1

|x − xk|
βk (9)

under the conditions

−
1

p(xk)
< βk <

1

p′(xk)

and

−
1

p∞
< β +

n∑

k=1

βk <
1

p′∞
.

Let us now solve the following Dirichlet problem. Let f ∈ L
p(·)
w (R1). Find in the upper

half-plane a harmonic function possessing in the capacity of nontangential boundary

values on R1 almost everywhere the function f ∈ L
p(·)
w (R1), such that

lim
t→0

∥∥u(· , t) − f
∥∥

L
p(·)
w

= 0.
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The solution of that problem is given by the Poisson integral in the upper half-plane
given by formula (8).
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