S. Veliev

ON THE BASISNESS OF SYSTEMS OF EXPONENTS WITH DEGENERATE COEFFICIENTS IN WEIGHTED SUBSPACES

> (Reported on 21.05.2005)

Investigation of the problem on eigen values of some discontinuous differential operators leads to the study of basis properties of systems of exponents of the type

$$
\begin{equation*}
\left\{A^{+}(t) \cdot \omega^{+}(t) e^{i n t} ; A^{-}(t) \cdot \omega^{-}(t) e^{-i n t}\right\}_{n \geq 0, k \geq 1} \tag{1}
\end{equation*}
$$

in spaces $L_{p} \equiv L_{p}(-\pi, \pi), 1<p<+\infty$ where $A^{ \pm}(t) \equiv\left|A^{ \pm}(t)\right| e^{i \alpha^{ \pm}}(t)$ are complexvalued functions on $[-\pi, \pi], \omega^{ \pm}(t)$ have the representations

$$
\begin{equation*}
\omega^{ \pm}(t) \equiv \prod_{i=1}^{l^{ \pm}}\left\{\sin \left|\frac{t-\tau_{i}^{ \pm}}{2}\right|\right\}^{\beta_{i}^{ \pm}} \tag{2}
\end{equation*}
$$

$\left\{\tau_{i}\right\}_{1}^{l^{ \pm}} \subset(-\pi, \pi) ;\left\{\beta_{i}^{ \pm}\right\}_{1}^{l^{ \pm}} \subset R$ are the sets of real numbers. To show where such questions aris from, let us consider the discontinuous first order differential operators

$$
L^{ \pm} u \equiv u^{\prime}(t)-\sum_{i=1}^{l^{ \pm}} \operatorname{ctg}\left(t-\tau_{i}^{ \pm}\right) \cdot u(t)
$$

on $G^{ \pm} \equiv \bigcup_{i=1}^{l^{ \pm}+1}\left(\tau_{i-1}^{ \pm}, \tau_{i}^{ \pm}\right)$, where $-\pi=\tau_{0}^{ \pm}<\tau_{1}^{ \pm}<\cdot<\tau_{l^{ \pm}}^{ \pm}<\tau_{l^{ \pm}+1}^{ \pm}=\pi$.
Following V. A. Il'yin [1], we start with the generalized treatment of eigen functions of the operator $L^{ \pm}$; such treatment admits us to consider absolutely arbitrary boundary conditions. That is, under the eigen function of the operator $L^{ \pm}$, corresponding to the eigen value λ, we mean any nonzero piecewise continuous function with points of discontinuity $\left\{\tau_{i}^{ \pm}\right\}_{l}^{l^{ \pm}}$which is absolutely continuous on $G^{ \pm}$and satisfies almost everywhere on $(-\pi, \pi)$ the equation $L^{ \pm} u=\lambda u$. It is not difficult to notice that the systems $\left\{\prod_{i=1}^{l^{ \pm}} \sin \left(t-\tau_{i}^{ \pm}\right) e^{\lambda_{n} t}\right\}$ themselves are the eigen functions of the operators $L^{ \pm}$, respectively. Following V. A. Il'yin and E. A. Moiseev [2], we consider the system of the type (1):

$$
\left\{\prod_{i=1}^{l^{+}} \sin \left(t-\tau_{i}^{+}\right) e^{i n t} ; \prod_{i=1}^{l^{-}} \sin \left(t-\tau_{i}^{-}\right) e^{-i(n+1) t}\right\}_{n \geq 0}
$$

i.e., we take "halfs" of eigen functions of the operators L^{+}and L^{-}which correspond to the eigen values $\lambda_{n}=i n$. In case $\omega^{ \pm}(t) \equiv 1$, the basis properties of the system (1) under ceratin conditions imposed on the functions $A^{ \pm}(t)$ have been studied by B. T. Bilalov (see, for e.g., [3]) in $L_{p}, 1 \leq p \leq+\infty$. Similar problems concerning the subject were considered by E. I. Moiseev [4]-[5] and V. F. Gaposhkina [6].

[^0]
1. The Basisness of the System $\left\{e^{i n t}\right\}_{-\infty}^{+\infty}$ in Weighted Spaces

To investigate the subsequent questions, we have first to establish the basisness of the classical system of exponents $\left\{e^{i n t}\right\}_{-\infty}^{+\infty}$ in the weight space $L_{p, \nu}$ on the interval $(-\pi, \pi)$:

$$
L_{p, \nu} \stackrel{\text { def }}{\equiv}\left\{f:\|f\|_{p, \nu}<+\infty\right\}
$$

where

$$
\|f\|_{p, \nu} \equiv\left(\int_{-\pi}^{\pi}|f(x)|^{p} \nu(x) d x\right)^{1 / p}, \quad \nu(x)>0
$$

almost everywhere.
So, let $\varphi(x)$ be some function satisfying the condition

$$
\begin{equation*}
\varphi(x) \in L_{1}(-\pi, \pi), \quad \varphi(x)>0 \quad(-\pi, \pi) . \tag{3}
\end{equation*}
$$

Consider a harmonic function

$$
\begin{equation*}
\varphi(x) \equiv \varphi(\tau, x)=\frac{1}{2 \pi} \int_{-\pi, \pi}^{\pi} \varphi(t) \frac{1-r^{2}}{1+r^{2}-2 r \cdot \cos (t-x)} d t \tag{4}
\end{equation*}
$$

where $0 \leq r<1, z=r \cdot e^{i x}$. Its conjugate function we denote by $\psi(z) \equiv \psi(r, x)$. Let $\exists C>0$ for which

$$
\begin{equation*}
\varphi(r, x) \geq C|\psi(r, x)| \tag{5}
\end{equation*}
$$

where

$$
\left.\begin{array}{cl}
C>0 & \text { for } p \geq 2 \tag{6}\\
C>\left|\operatorname{tg} \frac{p \pi}{2}\right| & \text { for } 1<p \leq 2
\end{array}\right\}
$$

We assume that the weight $\nu(x) \geq 0$ satisfies almost everywhere the condition

$$
\begin{equation*}
\nu(x) ; \quad \nu^{1-q}(x) \in L_{1}(-\pi, \pi) \tag{7}
\end{equation*}
$$

where $q: \frac{1}{p}+\frac{1}{q}=1$ is the conjugate number.
The following theorem is valid.
Theorem 1. Let the weight $\nu(x)$ satisfy the condition (6) and, moreover, for the function $\varphi(x) \equiv \nu(x)$ the expressions (4) and (5) hold. Then the system of exponents $\left\{e^{i n t}\right\}_{-\infty}^{\infty}$ forms a basis in $L_{p, \nu}, 1<p<+\infty$.

Using one result of K. I. Babenko [7], from the above theorem we obtain the following
Corollary 1. Let $\nu \equiv \prod_{i=0}^{n}\left|x-x_{i}\right|^{\beta_{i}}$, where $-\pi \leq x_{0}<x_{1} \cdots<x_{n}<\pi,-1<\beta_{i}<$ $p-1$. Then the system $\left\{e^{i n t}\right\}_{-\infty}^{+\infty}$ forms a basis in $L_{p, \nu}, 1<p<+\infty$.

2. The Basisness of the System of Exponents in Weighted Subspaces

Let $H_{p}^{+} ; H_{p}^{-}$be the standard Hardy classes of analytic functions respectively inside and outside of the unit circle; m is the order of the principal part of the Loran-series expansion at infinity of the function from H_{p}^{-}. Denote by L_{p}^{+}and ${ }_{m} L_{p}^{-}$narrowings of the functions respectively from ${ }_{m} H_{p}^{+}$and H_{p}^{-}on the unit circle. It is easy to see that L_{p}^{+}and ${ }_{m} L_{p}^{-}$are the subspaces of the space $L_{p}(-\pi, \pi)$. Since any part of the basis in the Banach space is the basis of its own closed linear span, it is clear that the systems $\left\{e^{i n t}\right\}_{n \geq 0}$ and $\left\{e^{-i n t}\right\}_{n \geq m}$ are the bases of the spaces L_{p}^{+}and ${ }_{m} L_{p}^{-}$, respectively. Moreover, we have the expansion

$$
L_{p}=L_{p}^{+}+{ }_{1} L_{p}
$$

i.e., $\forall f \in L_{p}$ is uniquely representable in the form $f=f^{+}+f^{-}$, where $f^{=} \in L_{p}^{+}$, $f^{-} \in{ }_{1} L_{p}^{-}$. Let now $\nu^{ \pm}(x)$ be the function almost everywhere measurable on $-\pi, \pi$. We introduce into consideration the following weight spaces:

$$
\begin{gathered}
L_{p, \nu}^{+} \stackrel{\text { def }}{\equiv}\left\{f \in L_{1}^{+}:\|f\|_{p, \nu^{+}}<+\infty\right\} \\
{ }_{m} L_{p, \nu}^{-} \stackrel{\text { def }}{\equiv}\left\{f \in{ }_{m} L_{1}^{-}:\|f\|_{p, \nu^{-}}<+\infty\right\}
\end{gathered}
$$

where

$$
\|f\|_{p, \nu^{ \pm}} \equiv\left(\int_{-\pi}^{\pi}|f(t)|^{p} \cdot \nu^{ \pm}(t) d t\right)^{1 / p}
$$

Assume that the weight $\nu^{ \pm}(x) \geq 0$ satisfies almost everywhere the condition

$$
\begin{equation*}
\nu^{ \pm}(x) ;\left[\nu^{ \pm}(x)\right]^{1-q} \in L_{1}(-\pi, \pi) \tag{8}
\end{equation*}
$$

Theorem 2. Let the weight $\nu^{+}(x)\left(\nu^{-}(x)\right)$ satisfy the condition (8) and, moreover, for the function $\left.\varphi(x) \equiv \nu^{-}(x)\right)$ the conditions (5) and (6) be fulfilled. Then the system $\left\{e^{i n t}\right\}_{n \geq 0}\left(\left\{e^{-i n t}\right\}_{n \geq m}\right)$ forms a basis in the space $L_{p, \nu^{+}}^{+}\left({ }_{m} L_{p, \nu^{-}}^{-}\right), 1<p<+\infty$.

Using again the results of [7], we have
Corollary 2. Let $\nu(x) \equiv \prod_{i=0}^{l}\left|x-x_{i}\right|^{\beta_{i}}$, where $-\pi \leq x_{0}<x_{1}<\cdots<x_{l}<\pi$, $-1<\beta_{i}<p-1, \forall i=\overline{1, l}$. Then the system $\left\{e^{i n t}\right\}_{n \geq m}\left(\left\{e^{-i n t}\right\}_{n \geq m}\right)$ forms a basis in the space $L_{p, \nu}^{+}\left({ }_{m} L_{p, \nu}^{-}\right), 1<p<+\infty$.

3. The Basisness in L_{p}

Using the above-stated results, we can establish the basisness of the system (1) in L_{p}. Thus, let the functions $\omega^{ \pm}(t)$ be defined by formulas (2), where $\left\{\tau_{i}^{ \pm}\right\}:-\pi \leq \tau_{l}^{ \pm}<\cdots<$ $\tau_{l^{ \pm}}^{ \pm}$are some points, and

$$
\begin{equation*}
\left\{\tau_{i}^{+}\right\} \cap\left\{\tau_{i}^{-}\right\}=\{\varnothing\} \tag{9}
\end{equation*}
$$

Moreover, the following condition regarding the function $A^{ \pm}(t)$ holds:
(a) $\alpha^{ \pm}(t)$ are the piecewise-Hölder functions in $[-\pi, \pi] ;\left\{s_{i}\right\}_{1}^{r} \subset[-\pi, \pi)$ is the set of points of discontinuity of the function $\theta(t) \equiv \alpha^{+}(t)-\alpha^{-}(t)$. Note that $\left\{\tau_{i}^{ \pm}\right\} \cap\left\{s_{i}\right\}_{1}^{r}=\{\varnothing\}$ and the condition $0<\left\|A^{ \pm}\right\|_{\infty}<+\infty$, where $\|\cdot\|_{\infty}$ is the norm in L_{∞}, is fulfilled. Denote by $\left\|h_{i}\right\|_{1}^{r}$ oscillations of the function $\theta(t)$ at the points $s_{i}: h_{i}=\theta\left(s_{i}+0\right)-\theta\left(s_{i}-0\right)$, $i=\overline{1, r}$.

Theorem 3. Let complex-valued functions $A^{ \pm}(t)$ defined by the representations (2) satisfy the condition (a) with respect to the functions $\omega^{ \pm}(t)$, and let the condition (8) hold. Then if the conditions

$$
\begin{gathered}
-\frac{1}{p}<\beta_{i}^{ \pm}<\frac{1}{q}, \quad i=\overline{1, l^{ \pm}} \\
-\frac{2 \pi}{q}<h_{k}<\frac{2 \pi}{p}, \quad k=\overline{1, r}
\end{gathered}
$$

are fulfilled, then the system (1) forms a basis in L_{p}.

References

1. V. A. Il'in, Unconditional basis property on a closed interval of systems of eigen- and associated functions of a second-order differential operator. (Russian) Dokl. Akad. Nauk SSSR 273(1983), No. 5, 1048-1053; English transl.: Sov. Math. Dokl. 28(1983), 743-747.
2. V. A. Il'in and E. I. Moiseev, On systems consisting of subsets of root functions of two different boundary value problems. (Russian) Trudy Mat. Inst. Steklov 201(1992), 219-230; English transl.: Proc. Steklov Inst. Math., 1994, No. 2 (201), 183-192.
3. B. T. Bilalov, The basis property of some systems of exponentials of cosines and sines. (Russian) Differentsial'nye Uravneniya 26(1990), No. 1, 10-16; English transl.: Differential Equations 26(1990), No. 1, 8-13.
4. E. I. Moiseev, On the basis property of sine and cosine systems in a weighted space. (Russian) Differentsial'nye Uravneniya 34(1998), No. 1, 40-44; English transl.:Differential Equations 34(1998), No. 1, 39-43.
5. E. I. Moiseev, The basis property of a system of eigenfunctions of a differential operator in a weighted space. (Russian) Differentsial'nye Uravneniya 35(1999), No. 2, 200-205; English transl.: Differential Equations 35(1999), No. 2, 199-204.
6. V. F. Gaposhkin, A generalization of the theorem of M. Riesz on conjugate functions. (Russian) Mat. Sb. N. S. 46(88)(1958), 359-372.
7. K. I. Babenko, On conjugate functions. (Russian) Dokl. Akad. Nauk SSSR (N. S.) 62(1948), 157-160.

Author's address:
Institute of Mathematics and Mechanics of Azerbaijan
National Academy of Sciences
9, F. Agaev St., Baku
Azerbaijan

[^0]: 2000 Mathematics Subject Classification: 42B05, 42C05.
 Key words and phrases. Basissness, weighted subspace, eigen functions, eigen values, differenrial operator.

