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Investigation of the problem on eigen values of some discontinuous differential opera-
tors leads to the study of basis properties of systems of exponents of the type

{

A+(t) · ω+(t)eint ; A−(t) · ω−(t)e−int
}

n≥0, k≥1
(1)

in spaces Lp ≡ Lp(−π, π), 1 < p < +∞ where A±(t) ≡ |A±(t)|eiα±

(t) are complex-
valued functions on [−π, π], ω±(t) have the representations

ω±(t) ≡
l±
∏

i=1

{

sin
∣

∣

∣

t − τ±i
2

∣

∣

∣

}β±

i
, (2)

{τi}
l±

1 ⊂ (−π, π); {β±
i }l±

1 ⊂ R are the sets of real numbers. To show where such
questions aris from, let us consider the discontinuous first order differential operators

L±u ≡ u′(t) −
l±
∑

i=1

ctg
(

t− τ±i
)

· u(t),

on G± ≡
l±+1
⋃

i=1
(τ±i−1, τ

±
i ), where −π = τ±0 < τ±1 < · < τ±

l±
< τ±

l±+1
= π.

Following V. A. Il’yin [1], we start with the generalized treatment of eigen functions
of the operator L±; such treatment admits us to consider absolutely arbitrary bound-
ary conditions. That is, under the eigen function of the operator L±, corresponding to
the eigen value λ, we mean any nonzero piecewise continuous function with points of

discontinuity {τ±i }l±

l which is absolutely continuous on G± and satisfies almost every-

where on (−π, π) the equation L±u = λu. It is not difficult to notice that the systems

{

l±
∏

i=1
sin(t − τ±i )eλnt

}

themselves are the eigen functions of the operators L±, respec-

tively. Following V. A. Il’yin and E. A. Moiseev [2], we consider the system of the type
(1):

{ l+
∏

i=1

sin(t − τ+
i )eint;

l−
∏

i=1

sin(t− τ−i )e−i(n+1)t

}

n≥0

,

i.e., we take “halfs” of eigen functions of the operators L+ and L− which correspond to
the eigen values λn = in. In case ω±(t) ≡ 1, the basis properties of the system (1) under
ceratin conditions imposed on the functions A±(t) have been studied by B. T. Bilalov
(see, for e.g., [3]) in Lp, 1 ≤ p ≤ +∞. Similar problems concerning the subject were
considered by E. I. Moiseev [4]–[5] and V. F. Gaposhkina [6].
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1. The Basisness of the System {eint}+∞
−∞ in Weighted Spaces

To investigate the subsequent questions, we have first to establish the basisness of the
classical system of exponents {eint}+∞

−∞ in the weight space Lp,ν on the interval (−π, π):

Lp,ν
def
≡

{

f : ‖f‖p,ν < +∞
}

,

where

‖f‖p,ν ≡

(

π
∫

−π

∣

∣f(x)
∣

∣

p
ν(x) dx

)1/p

, ν(x) > 0,

almost everywhere.
So, let ϕ(x) be some function satisfying the condition

ϕ(x) ∈ L1(−π, π), ϕ(x) > 0 (−π, π). (3)

Consider a harmonic function

ϕ(x) ≡ ϕ(τ, x) =
1

2π

π
∫

−π,π

ϕ(t)
1 − r2

1 + r2 − 2r · cos(t− x)
dt, (4)

where 0 ≤ r < 1, z = r · eix. Its conjugate function we denote by ψ(z) ≡ ψ(r, x). Let
∃C > 0 for which

ϕ(r, x) ≥ C
∣

∣ψ(r, x)
∣

∣, (5)

where
C > 0 for p ≥ 2

C >
∣

∣

∣
tg
pπ

2

∣

∣

∣
for 1 < p ≤ 2

}

(6)

We assume that the weight ν(x) ≥ 0 satisfies almost everywhere the condition

ν(x); ν1−q(x) ∈ L1(−π, π), (7)

where q : 1
p

+ 1
q

= 1 is the conjugate number.

The following theorem is valid.

Theorem 1. Let the weight ν(x) satisfy the condition (6) and, moreover, for the
function ϕ(x) ≡ ν(x) the expressions (4) and (5) hold. Then the system of exponents
{eint}∞−∞ forms a basis in Lp,ν , 1 < p < +∞.

Using one result of K. I. Babenko [7], from the above theorem we obtain the following

Corollary 1. Let ν ≡
n
∏

i=0
|x− xi|βi , where −π ≤ x0 < x1 · · · < xn < π, −1 < βi <

p− 1. Then the system {eint}+∞
−∞ forms a basis in Lp,ν , 1 < p < +∞.

2. The Basisness of the System of Exponents in Weighted Subspaces

Let H+
p ; H−

p be the standard Hardy classes of analytic functions respectively inside
and outside of the unit circle; m is the order of the principal part of the Loran-series
expansion at infinity of the function from H−

p . Denote by L+
p and mL

−
p narrowings of the

functions respectively from mH
+
p and H−

p on the unit circle. It is easy to see that L+
p and

mL
−
p are the subspaces of the space Lp(−π, π). Since any part of the basis in the Banach

space is the basis of its own closed linear span, it is clear that the systems {eint}n≥0 and

{e−int}n≥m are the bases of the spaces L+
p and mL

−
p , respectively. Moreover, we have

the expansion

Lp = L+
p + 1Lp,
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i.e., ∀f ∈ Lp is uniquely representable in the form f = f+ + f−, where f= ∈ L+
p ,

f− ∈ 1L
−
p . Let now ν±(x) be the function almost everywhere measurable on −π, π. We

introduce into consideration the following weight spaces:

L+
p,ν

def
≡

{

f ∈ L+
1 : ‖f‖p,ν+ < +∞

}

,

mL
−
p,ν

def
≡

{

f ∈ mL
−
1 : ‖f‖p,ν− < +∞

}

,

where

‖f‖p,ν± ≡

(

π
∫

−π

∣

∣f(t)
∣

∣

p
· ν±(t) dt

)1/p

.

Assume that the weight ν±(x) ≥ 0 satisfies almost everywhere the condition

ν±(x);
[

ν±(x)
]1−q

∈ L1(−π, π). (8)

Theorem 2. Let the weight ν+(x) (ν−(x)) satisfy the condition (8) and, moreover,
for the function ϕ(x) ≡ ν−(x)) the conditions (5) and (6) be fulfilled. Then the system

{eint}n≥0 ({e−int}n≥m) forms a basis in the space L+
p,ν+

(mL
−

p,ν−
), 1 < p < +∞.

Using again the results of [7], we have

Corollary 2. Let ν(x) ≡
l

∏

i=0
|x − xi|

βi , where −π ≤ x0 < x1 < · · · < xl < π,

−1 < βi < p− 1, ∀i = 1, l. Then the system {eint}n≥m ({e−int}n≥m) forms a basis in

the space L+
p,ν (mL

−
p,ν), 1 < p < +∞.

3. The Basisness in Lp

Using the above-stated results, we can establish the basisness of the system (1) in Lp.

Thus, let the functions ω±(t) be defined by formulas (2), where {τ±i } : −π ≤ τ±l < · · · <

τ±
l±

are some points, and

{τ+
i } ∩ {τ−i } = {∅}. (9)

Moreover, the following condition regarding the function A±(t) holds:
(a) α±(t) are the piecewise-Hölder functions in [−π, π]; {si}r

1 ⊂ [−π, π) is the set of

points of discontinuity of the function θ(t) ≡ α+(t)−α−(t). Note that {τ±i }∩{si}
r
1 = {∅}

and the condition 0 < ‖A±‖∞ < +∞, where ‖·‖∞ is the norm in L∞, is fulfilled. Denote
by ‖hi‖r

1 oscillations of the function θ(t) at the points si : hi = θ(si + 0) − θ(si − 0),

i = 1, r.

Theorem 3. Let complex-valued functions A±(t) defined by the representations (2)
satisfy the condition (a) with respect to the functions ω±(t), and let the condition (8)
hold. Then if the conditions

−
1

p
< β±

i <
1

q
, i = 1, l±;

−
2π

q
< hk <

2π

p
, k = 1, r;

are fulfilled, then the system (1) forms a basis in Lp.
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