TS. TSANAVA

ON THE SUMMABILITY OF TRIGONOMETRIC FOURIER SERIES IN WEIGHTED LEBESGUE SPACES

(Reported on April 7, 2005)

The problems on the summability of trigonometric Fourier series in weighted Lebesgue spaces in the frame of Muckenhoupt weights have been investigated in [1–5]. Using the Abel–Poisson and Cesaro methods of order α , $\alpha > 0$, we expound the results concerning the summability of trigonometric Fourier series in the weighted spaces, when weighted functions do not belong to the Muckenhoupt class A_p .

In the sequel, every nonnegative summable function will be called a weight. The 2π -periodic function $f: (-\pi, \pi) \to R'$ is said to be an element of the space $L^p_w(-\pi, \pi)$, if the norm

$$\left\|f\right\|_{p,w} = \left(\int\limits_{-\pi}^{\pi} \left|f(x)\right|^{p} w(x) \, dx\right)^{1/p} < \infty.$$

We introduce some classes of pairs of weight functions.

Definition 1. Let v and w be even positive increasing on $(0, \pi)$ functions. Suppose that $v(\pi -) < \infty$, $w(\pi -) < \infty$.

The pair (v, w) is said to be of the class $a_p(1 , if$

$$\sup_{0 < x < \pi} \left(\int_x^\pi \frac{v(t)}{t} \, dt\right) \left(\int_0^x w^{1-p'}(t) \, dt\right)^{p-1} < \infty$$

Here we present an example of a pair belonging to the class a_p . Let $v(x) = |x|^{p-1}$ and $w(x) = |x|^{p-1} \ln^p \frac{2\pi}{|x|}$. Note that none of these functions belongs to the Muckenhoupt class A_p .

Definition 2. Let v and w be even positive decreasing on $(0, \pi)$ functions, where $v(\pi -) > 0$ and $w(\pi -) > 0$.

The pair (v, w) is said to be of the class $\tilde{a}_p (1 , if$

$$\sup_{0 < x < \pi} \left(\frac{1}{x} \int_{0}^{x} v(t) \, dt\right) \left(\frac{1}{x} \int_{0}^{x} w^{1-p'}(t) \, dt\right)^{p-1} < \infty.$$

Let $u_f(x,r)$ denote the Abel–Poisson means of the trigonometric Fourier series of the 2π -periodic summable function f.

The following statements are valid.

Theorem 1. Let $1 , and let v and w be even positive increasing (decreasing) on <math>(0, \pi)$ functions. If $(v, w) \in a_p((v, w) \in \tilde{a}_p)$, then:

(i) there exists the positive constant c such that

$$\left\| u_f(\cdot, r) \right\|_{p,v} \le c \left\| f \right\|_{p,w}$$

2000 Mathematics Subject Classification: 42B05, 42C05.

Key words and phrases. Fourier series, summability, weighted inequalities, Abel–Poisson means, Cesaro means, Poisson integral.

119

for an arbitrary $f \in L^p_w$ and r, 0 < r < 1;

(ii) $\lim_{r \to 0} \left\| u_f(\cdot, r) - f \right\|_{p,v} = 0$

for an arbitrary $f \in L^p_w$;

(iii) the operator

$$Nf(x) = \sup_{0 \le r \le 1} \left| u_f(r, x) \right|$$

is bounded from L_w^p to the space L_v^p .

Note that the condition (iii) on the contrary implies that $(v, w) \in a_p$ for increading weights, and $(v, w) \in \tilde{a}_p$ for decreasing v and w.

As it follows from the Banach-Steinhaus theorem, the conditions (i) and (ii) are equivalent.

Denote by $\sigma_n^{\alpha}(x, f)$ the Cesaro means of order $\alpha > 0$ of the function f.

Theorem 2. Let 1 , and let <math>v and w be even positive increasing (decreasing) on $(0, \pi)$ functions. If $(v, w) \in a_p$ ($(v, w) \in \tilde{a}_p$), then the following statements are valid:

(i) there exists the positive constant c such that

$$\left\|\sigma_n(\cdot, f)\right\|_{p, v} \le c \left\|f\right\|_{p, w}$$

for every $f \in L^p_w(-\pi,\pi)$;

(ii) $\lim_{r \to \infty} \left\| \sigma_n^{\alpha}(\cdot, f) - f \right\|_{p,v} = 0$ for an arbitrary $f \in L^p_w(-\pi, \pi)$;

an arbitrary $f \in L_w(-\pi)$,

(iii) the operator

$$N_1 f(x) = \sup \left| \sigma_n(f, x) \right|$$

is bounded from $L_w^p(-\pi,\pi)$ to the space $L_v^p(-\pi,\pi)$. Consider now the Poisson integral in the upper half-space $R_+^{n+1} = R^n \times (0,\infty)$:

$$u(x,y) = \int\limits_{R^n} f(x-t)P(t,y) \, dt, \quad f \in L^1(R^n),$$

where

$$P(t,y) = \frac{c_n y}{\left(|t|^2 + |y|^2\right)^{\frac{n+1}{2}}}.$$

Theorem 3. Let 1 , and let <math>v and w be even positive increasing (decreasing) on $(0,\infty)$ functions. Suppose that $\sigma(x) = v(|x|)$ and $\rho(x) = w(|x|)$. If $(v,w) \in a_p$, $((v,w) \in \tilde{a}_p)$, then the following statements are valid:

(i) there exists the positive constant c such that

$$\left\|u(\cdot, y)\right\|_{p,\sigma} \le c \left\|f\right\|_{p,\rho}$$

for every $f \in L^p_{\rho}(\mathbb{R}^n)$ and y > 0;

(ii) $\lim_{y\to 0} \left\| u(\cdot, y) - f \right\|_{p,\sigma} = 0$

for every $L^p_{\rho}(\mathbb{R}^n)$;

(iii) the operator

$$Mf(x) = \sup_{y>0} \left| u(x,y) \right|$$

is bounded from $L^p_{\rho}(\mathbb{R}^n)$ to the space $L^p_{\sigma}(\mathbb{R}^n)$.

Finally for arbitrary weights we give the criteria governing the summability by Abel–Poisson method in $L_v^p(\mathbb{T})$ for arbitrary function $f \in L_w^p(\mathbb{T})$.

120

$$\lim_{r \to 1} \left\| u_f(\cdot,r) - f \right\|_{p,v} = 0$$

holds for arbitrary $f \in L^p_w(\mathbb{T})$ if and only if

$$\sup \frac{1}{|I|} \int_{I} v(x) \, dx \left(\frac{1}{|I|} \int_{I} w^{1-p'}(x) \, dx \right)^{p-1} < \infty$$

where the supremum is taken over all intervals with length less than 2π .

References

- M. Rosenbloom, Summability of Fourier series in L^p(dµ). Trans. Amer. Math. Soc. 165(1962), 32–42.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal functions. Trans. Amer. Math. Soc. 165(1972), 207–226.
- R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform. *Trans. Amer. Math. Soc.* 176(1973), 227– 251.
- A. D. Nakhman and B. P. Osilenker, Estimates of weighted norms of some operators generated by multiple trigonometric Fourier series. (Russian) *Izv. Vyssh. Uchebn. Zaved. Mat.*, 1982, No. 4, 39–50.
- M. Khabazi, Metric properties of Fourier series in weighted function classes. Proc. A. Razmadze Math. Inst. 112(1997), 133–137.
- E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971.

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Aleksidze St., Tbilisi 0193 Georgia