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The quesion on revealing the curves for which the singular Cauchy operator

SΓ : f → SΓf,
(

SΓf
)

(t) =
1

πi

∫

Γ

f(τ)dτ

τ − t
, t ∈ Γ, f ∈ Lp(Γ), p > 1, (1)

is continuous in spaces Lp(Γ) drew attention of researches for a long time (see, for e.g., [1],
Ch. II). The best possible solution of that question is obtained in [2] in which G. David
gives a complete description of a set of these curves Γ for which SΓ is continuous in L2(Γ)
and hence in any Lρ(Γ) (see, for e.g., [3], [4], pp. 30–34). We denote a class of such curves

by R.
Let Γ be a simple rectifiable curve, ζ ∈ Γ, ρ > 0, lζ(ρ) = |Γ∩{z : |z−ζ| < ρ}| (|E| is a

linear measure of the set E). If there exists C such that for all ζ ∈ Γ we have lζ(ρ) ≤ Cρ,
then Γ is called a regular, or a Carleson curve (see, for e.g., [5]).

In [2] it is stated that R coincides with the class of regular curves. The fact that the
curves of the class R are certainly regular is also established in [6].

Lately, various operators and boundary value problems in Lebesgue spaces with a
variable exponent Lp(·) are intensively being studied (see, for e.g., [7]–[11] and so on).

In the present work we state that for the functions p used in [9] for the Cauchy

operator, the continuity of SΓ in Lp(·), just as in the case p(t) = const > 1, implies
regularity of the curve Γ.

10. Let Γ be a simple rectifiable curve with the equation t = t(s), 0 ≤ s ≤ l with
respect to the arc coordinate, and let p = p(t) = p(t(s)) be a nonnegative measurable
function given on Γ. Suppose

P =
{

p(t) : 1 < p(Γ) = p = inf
t∈Γ

p(t) ≤ sup
t∈Γ

p(t) = p(Γ) = p < ∞
}

. (2)

By Lp(·)(Γ) we denote a set of measurable on Γ functions f for which

Ip(f) =

∫

Γ

∣

∣f(t)
∣

∣

p(t)
|dt| =

l
∫

D

∣

∣f(t(s))
∣

∣

p(t(s))
ds <∞. (3)

This set transforms into the Banach space with respect to the norm

∥

∥f
∥

∥

p(·)
= inf

{

λ > 0 : Ip
( f

λ

)

≤ 1
}

. (4)

It can be easily seen that if p ∈ P, then
∥

∥f
∥

∥

ν(f)

p(·)
≤ Ip(f) ≤

∥

∥f
∥

∥

µ(f)

p(·)
, (5)
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where

ν(f) =

{

p, if
∥

∥f
∥

∥

p(·)
≥ 1,

p if
∥

∥f
∥

∥

p(·)
< 1,

µ(f) =

{

p, if
∥

∥f
∥

∥

p(·)
≥ 1,

p if
∥

∥f
∥

∥

p(·)
< 1.

(6)

20. Theorem. Let p ∈ P and let there exist a number k such that

∣

∣p(t1) − p(t2)
∣

∣ <
k

| ln |t1 − t2||
, |t1 − t2| <

1

2
. (7)

Then the continuity of the operator SΓ in Lp(·)(Γ) implies that Γ is the regular curve.

Here we present a brief scheme of proving the theorem.
Let ζ ∈ Γ and ρ ∈ (0, 1

6
diamΓ). We draw circumferences with center in ζ and of radii

ρ, 2ρ, 3ρ and also rays coming from ζ forming between each other the angle of size π
4
.

These rays divide the circle |z − ζ| < ρ and the ring 2ρ < |z − ζ| < 3ρ into eight parts.
Intersections of Γ with these parts we denote, respectively, by Γk and λk, k = 1, 8. There
exists at least one pair k0, j0 such that |Γk0

| ≥ 1
8
lζ(ρ), |λj0 | ≥

1
8
ρ. It is not difficult to

prove that if t ∈ Γk0
, τ ∈ λj0 and τ− t = |τ− t| exp iα(τ, t), then either | cosα(τ, t)| ≥ m,

or | sinα(τ, t)| ≥ m, m > 0. Relying on that fact, we can prove the following

Statement 1. If Γ is the simple rectifiable curve, p ∈ P and

ϕζ(τ) =

{

1
τ ′(s)

, τ ∈ Γk0
,

0, τ ∈ Γ \ Γk0
,

(8)

then

Ip =
(

SΓϕζ

)

≥ m
( lζ(ρ)

ρ

)p(Γ)−1
Ip(ϕζ), m > 0. (9)

Proceeding from this fact and using inequalities (5) and (6), we can prove

Statement 2. If p ∈ P, and SΓ are continuous in Lp(·)(Γ), then

ρ−1lζ(ρ) ≤ A
(

lζ(ρ)
)δ(ζ,Γ)

(10)

where

A =
( 8‖SΓ‖

p

m

) 1
p−1

(11)

δ(ζ,Γ) =
(µ(SΓϕζ)

ν(ϕζ)
− 1

) 1

p− 1
. (12)

If SΓ is continuous in Lρ(·)(Γ), and γ ∈ Γ is a measurable set, then the operator

Sγ = SΓχγ is continuous in Lp(·)(γ) (χγ is the characteristic function of the set γ). If
we take γ = γζ = {z : |z − ζ| < 3ρ}, then on the basis of Statement 2 we find that if

p ∈ P, and SΓ is continuous in Lρ(·), then

ρ−1lζ(ρ) ≤ A
(

lζ(ρ)
)δ(ζ,γζ )

(13)

where

δ(ζ, γζ) =
(µ(Sγζ

ϕζ)

ν(ϕζ)
− 1

) 1

p(γζ) − 1
. (14)

Depending on the values ‖Sγζ
ϕζ‖ and ‖ϕζ‖, as is seen from (6), δ(ζ)γζ ) can take the

values 0, δ1, δ2 where

δ1 =
p(γζ) − p(γζ )

p(γζ )

1

p(γζ) − 1
, δ2 =

p(γζ) − p(γζ )

p(γζ)

1

p(γζ) − 1
.

Therefore it is not difficult to verify that

∣

∣δ(ζ, γζ)
∣

∣ ≤
ω(6ρ; p)

(p(Γ) − 1)p(Γ)
= λω(6ρ; p), (15)
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where ω(·; p) is the continuity modulus of the function p.
Let for p the condition (7) be fulfilled, and let ρa be a number such that λω(6ρ0; p) ≤

ε < 1. Then it follows from (13)–(15) that for ρ < ρ0

lζ(ρ) ≤ A
1

1−δ(ζ,γζ ) ρ
1

1−δ(ζ,γζ ) ≤ A
1

1−ε ρ
1

1+ε . (16)

Thus for ρ < ρ0 the inequalities (13) and (16) are valid. But then, according to (7),

for the function ψζ(ρ) = [lζ(ρ)]dl(ζ,γζ ) we have

∣

∣ lnψζ(ρ)
∣

∣ =
∣

∣δ(ζ, γζ) ln lζ(ρ)
∣

∣ ≤
( 1

1 − ε
lnA+

1

1 + ε
| ln ρ|

) λk

| ln 6ρ|
.

Hence lnψζ(ρ) and, consequently, ψζ is bounded for ζ ∈ Γ and ρ < ρ0. It follows from

(13) that under the same conditions ρ−1lζ(ρ) is also bounded.
Next,

sup
ζ∈Γ, ρ≥ρ0

ρ−1lζ(ρ) ≤ ρ−1
0 |Γ| = ρ−1

0 l.

Consequently,

sup ρ−1lζ(ρ) <∞,

and hence Γ is the regular curve.
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