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In the present report we present the results on the boundedness of the Fourier operator
generated by the Bellman transform [1] from one weighted Lebesgue space into the other.
Moreover, we consider weighted Lebesgue spaces both with constant and with variable

exponent.
Let f(x) be a 2π-periodic function. Almost everywhere positive function ρ is called a

weighted function.
The weighted Lebesgue space L

p
ρ(−π, π) is called the Banach space of all those mea-

surable 2π-periodic functions for which

∥

∥f
∥

∥

L
p
ρ(−π,π)

=

(

π
∫

−π

∣

∣f(x)
∣

∣

p
ρ(x) dx

)1/p

< ∞.

Theorem 1. Let 1 < p ≤ q < ∞. The weighted functions v and w are assumed to

satisfy the condition

sup
0<x<π

(

π
∫

x

v(t)

t
dt

) 1
q
(

x
∫

0

w1−p′

(x) dx

) 1
p

< ∞. (1)

Next, let the even function f ∈ L
p
w(−π, π) and let

f(x) ∼

∞
∑

n=1

an cos nx (2)

be its Fourier series. Then the trigonometric series

∞
∑

n=1

An cos nx, (3)

where An =
∞
∑

k=n+1

ak
k

+ 1
2n an, is the Fourier series of some function F ∈ L

q
v(−π, π),

and there exists an independent of f constant c > 0, such that
∥

∥F
∥

∥

L
q
v
≤

∣

∣f
∣

∣

L
p
w

. (4)

The following theorems are valid.

Theorem 2. Let p : (0, π) → [1,∞) be a bounded measurable function, p(0) > 1 and

lim
x→0+

sup
(

p(x) − p(0)
)

log
1

x
< ∞.

Assume that 0 < α < 1
p′(0)

.
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If f ∈ L
p(·)
xα (0, π) and

f(x) ∼

∞
∑

n=1

an cos nx,

then the trigonometric series (3) is the Fourier series of some function F ∈ L
p(·)
xα , and

∥

∥F
∥

∥

L
p(·)
xα (0,π)

≤ c
∣

∣f
∣

∣

L
p(·)
xα (0,π)

,

where the positive constant c does not depend on f .

Let now p : (−π, π) → R′ be the measurable function, such that

1 < P ≤ p(x) ≤ p < ∞,

where P = ess inf
x∈(−π,π)

p(x) and p = ess sup
x∈(−π,π)

p(x).

By Lp(·)(−π, π) we denote a set of those functions f : (−π, π) for which

Aλ
p (f) =

π
∫

−π

∣

∣

∣

f(x)

λ

∣

∣

∣

p(x)
dx < ∞

for some λ > 0. This set is in fact the Banach space with respect to the norm

∥

∥f
∥

∥

Lp(·) = inf
{

λ > 0 : Aλ
p (f) ≤ 1

}

.

The weight space L
p(·)
ρ is defined as a set of all measurable functions for which

∥

∥f
∥

∥

L
p(·)
ρ

=
∥

∥ρf
∥

∥

Lp(·) < ∞.

The space L
p(·)
ρ is likewise the Banach space. In the sequel, the use will be made of

the following notation:

ρ0(x) = ess inf
y∈(0,x)

ρ(y), 0 < x < π.

The following theorem is valid.

Theorem 3. Let ρ(x) and q(x) be measurable functions defined on (0, π). Further-

more, we assume that

1 < P ≤ ρ0(x) ≤ q(x) < q < ∞, x ∈ (0, π).

Let the condition

sup
0<x<π

1
∫

x

(

u(t)

t
dt

)q(t)(
x

∫

0

w(p0)′(t)(τ) dτ

)

q(t)

(p0)′(t)
dt < ∞

be fulfilled. Then for any f ∈ L
p(·)
w , the trigonometric series (3) together with the Fourier

series (2) is the Fourier series of some function F ∈ L
q
v, where

∥

∥F
∥

∥

L
q
v(0,π)

≤ c
∥

∥f
∥

∥

L
p
w(0,π)

.

Note that similar statements are valid for the Fourier sine-series.
The properties of Bellman transforms in different functional classes have been con-

sidered by many authors (see, for e.g., [2], [3]). It should be noted that when proving
Theorem 3 we have, to a certain extent, used the results obtained in [4].
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