TS. TSANAVA

ON MAPPING PROPERTIES OF BELLMAN TRANSFORM IN WEIGHTED LEBESGUE SPACES

(Reported on 21.01.2005)

In the present report we present the results on the boundedness of the Fourier operator generated by the Bellman transform [1] from one weighted Lebesgue space into the other. Moreover, we consider weighted Lebesgue spaces both with constant and with variable exponent.

Let f(x) be a 2π -periodic function. Almost everywhere positive function ρ is called a weighted function.

The weighted Lebesgue space $L^p_\rho(-\pi,\pi)$ is called the Banach space of all those measurable 2π -periodic functions for which

$$\|f\|_{L^p_{\rho}(-\pi,\pi)} = \left(\int\limits_{-\pi}^{\pi} |f(x)|^p \rho(x) \, dx\right)^{1/p} < \infty.$$

Theorem 1. Let 1 . The weighted functions v and w are assumed to satisfy the condition

$$\sup_{0 < x < \pi} \left(\int_{x}^{\pi} \frac{v(t)}{t} \, dt \right)^{\frac{1}{q}} \left(\int_{0}^{x} w^{1-p'}(x) \, dx \right)^{\frac{1}{p}} < \infty.$$
(1)

Next, let the even function $f \in L^p_w(-\pi,\pi)$ and let

$$f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx \tag{2}$$

be its Fourier series. Then the trigonometric series

$$\sum_{n=1}^{\infty} A_n \cos nx,\tag{3}$$

where $A_n = \sum_{k=n+1}^{\infty} \frac{a_k}{k} + \frac{1}{2^n} a_n$, is the Fourier series of some function $F \in L_v^q(-\pi,\pi)$, and there exists an independent of f constant c > 0, such that

$$\left\|F\right\|_{L^{q}} \le \left|f\right|_{L^{p}}.$$
(4)

The following theorems are valid.

Theorem 2. Let $p: (0,\pi) \to [1,\infty)$ be a bounded measurable function, p(0) > 1 and

$$\lim_{x \to 0+} \sup \left(p(x) - p(0) \right) \log \frac{1}{x} < \infty.$$

Assume that $0 < \alpha < \frac{1}{p'(0)}$.

 $Key\ words\ and\ phrases.$ Bellman transform, trigonometric Fourier series, Weighted Lebesque spaces.

141

²⁰⁰⁰ Mathematics Subject Classification: 42B05, 42C05.

If $f \in L^{p(\cdot)}_{x^{\alpha}}(0,\pi)$ and

$$f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx,$$

then the trigonometric series (3) is the Fourier series of some function $F \in L^{p(\cdot)}_{\pi^{\alpha}}$, and

$$|F||_{L^{p(\cdot)}_{x^{\alpha}}(0,\pi)} \le c|f|_{L^{p(\cdot)}_{x^{\alpha}}(0,\pi)}$$

where the positive constant c does not depend on f.

Let now $p:(-\pi,\pi)\to R'$ be the measurable function, such that

$$1 < P \le p(x) \le p < \infty,$$

where $P = \underset{x \in (-\pi,\pi)}{\operatorname{ess inf}} p(x)$ and $p = \underset{x \in (-\pi,\pi)}{\operatorname{ess sup}} p(x)$. By $L^{p(\cdot)}(-\pi,\pi)$ we denote a set of those functions $f: (-\pi,\pi)$ for which

$$A_p^{\lambda}(f) = \int_{-\pi}^{\pi} \left| \frac{f(x)}{\lambda} \right|^{p(x)} dx < \infty$$

for some $\lambda > 0$. This set is in fact the Banach space with respect to the norm

$$\left\|f\right\|_{L^{p(\cdot)}} = \inf\left\{\lambda > 0: A_p^{\lambda}(f) \leq 1\right\}$$

The weight space $L^{p(\cdot)}_{\rho}$ is defined as a set of all measurable functions for which

$$\left\|f\right\|_{L^{p(\cdot)}} = \left\|\rho f\right\|_{L^{p(\cdot)}} < \infty.$$

The space $L_{\rho}^{p(\cdot)}$ is likewise the Banach space. In the sequel, the use will be made of the following notation:

$$\rho_0(x) = \operatorname*{ess\,inf}_{y \in (0,x)} \rho(y), \quad 0 < x < \pi.$$

The following theorem is valid.

Theorem 3. Let $\rho(x)$ and q(x) be measurable functions defined on $(0, \pi)$. Furthermore, we assume that

$$1 < P \le \rho_0(x) \le q(x) < q < \infty, \quad x \in (0, \pi).$$

Let the condition

$$\sup_{0 < x < \pi} \int_{x}^{1} \left(\frac{u(t)}{t} \, dt\right)^{q(t)} \left(\int_{0}^{x} w^{(p_0)'(t)}(\tau) \, d\tau\right)^{\frac{q(t)}{(p_0)'(t)}} dt < \infty$$

be fulfilled. Then for any $f \in L_w^{p(\cdot)}$, the trigonometric series (3) together with the Fourier series (2) is the Fourier series of some function $F \in L_v^q$, where

$$||F||_{L^q_v(0,\pi)} \le c ||f||_{L^p_w(0,\pi)}.$$

Note that similar statements are valid for the Fourier sine-series.

The properties of Bellman transforms in different functional classes have been considered by many authors (see, for e.g., [2], [3]). It should be noted that when proving Theorem 3 we have, to a certain extent, used the results obtained in [4].

142

References

- R. Bellman, A note on a theorem of Hardy on Fourier constants. Bull. Amer. Math. Soc. 50(1944), 741–744.
- 2. F. Móricz, The harmonic Cesaro and Copson operators on the spaces L^p , $1 \le p < \infty$ and M^1 , and BMO. Acta Sci. Math. (Szeged) **65**(1999), No. 1–2, 293–310.
- B. I. Golubov, On a theorem of Bellman on Fourier coefficients. (Russian) Russian Acad. Sci. Sb. Math. 83(1995), No. 2, 321–330; English transl.: Mat. Sb. 185(1994), No. 11, 31–40.
- 4. D. E. Edmunds, V. Kokilashvili, and A. Meskhi, On the boundedness and compactness of weighted Hardy operators in spaces $L^{p(x)}$. Georgian Math. J. **12**(2005), No. 1, 27–44.

Author's address: Sukhumi Branch of Tbilisi State University 12, Jikia St., Tbilisi 0186 Georgia