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Let x ∈ Rn and let y > 0. Poisson integral of the function f : Rn → R1 is defined by

uf (x, y) =

∫

Rn

f(t)P (x − t, y)dt,

where

P (x, z) =
cnz

(|z|2 + |y|2)−
n+1

2

, x ∈ Rn, z ∈ Rn.

The aim of the present note is to give the criteria of various modular inequalities for the
Littlewood-Paley function gf in weighted Orlicz classes. This function is defined by

gf (x) =

( ∞∫

0

y
∣∣∇u(x, y)

∣∣2dy

)1/2

,

where

∇u(x, y) =
( ∂u

∂x1
(x, y),

∂u

∂x2
(x, y), . . . ,

∂u

∂y
(x, y)

)

is full gradient of u(x, y).
For our purpose we need some basic definitions. Let Φ be a class of functions ϕ :

R1 → R1 nonnegative, even and increasing on (0,∞), ϕ(0+) = 0, lim
t→∞

ϕ(t) = ∞.

A function ϕ is called quasiconvex if there exist a Young function ω and a constant
c > 1 such that the chain of inequalities

ω(t) ≤ ϕ(t) ≤ ω(ct), t ≥ 0

holds.
To each quasiconvex function ϕ we can put into correspondence its complementary

function ϕ̃ defined by

ϕ̃(t) = sup
s≥0

(
st − ϕ(s)

)
.

By definition, the function ϕ satisfies the global condition ∆2 (ϕ ∈ ∆2) if there is c > 0
such that

ϕ(2t) ≤ cϕ(t), t > 0.

Further, for each quasiconvex function ϕ we define the number p(ϕ) as follows:

1

p(ϕ)
= inf{α : ϕα is quasiconvex}.

We need also the definition of the well-known Muckenhoupt’s class of weight functions.
An almost everywhere locally integrable function ω : R1 → R1 will be called a weight

function.
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By definition, the weight function ω ∈ As(Rn) (1 < s < ∞) if

sup
B

(
1

|B|

∫

B

ω(x) dx

)(
1

|B|

∫

B

ω(x)
− 1

s−1 dx

)s−1

< ∞,

where supremum is taken over all balls B ⊂ Rn.
Now we are ready to formulate the main results of our note.

Theorem 1. Let ϕ ∈ Φ. The modular inequality
∫

Rn

ϕ
(
gf (x)

)
ω(x) dx ≤ c

∫

Rn

ϕ
(
f(x)

)
ω(x) dx

holds if and only if ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1 and ω ∈ Ap(ϕ).

Theorem 2. Let ϕ ∈ Φ. Then the inequality
∫

Rn

ϕ̃
( gf (x)

ω(x)

)
ω(x)dx ≤ c

∫

Rn

ϕ̃
( f(x)

ω(x)

)
ω(x) dx

holds if and only if the conditions of Theorem 1 are satisfied.

Theorem 3. Let ϕ ∈ Φ. Then the following conditions are equivalent:

i) there exists c > 0 such that
∫

Rn

ϕ
(
gf (x)

)
ω(x) dx ≤ c

∫

Rn

ϕ
(
f(x)

)
ω(x) dx

for all f with the finite integral on the right side,

ii) ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, ωp(ϕ) ∈ Ap(ϕ) and ω−p(ϕ) ∈
Ap(ϕ̃).

For the maximal functions and singular integrals criteria of modular weighted inequal-
ities are presented in [1], [2]. For unweighted case for gf function see [3].
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