TS. TSANAVA

The Marcinkiewicz Integral in Lebesgue Weighted Spaces with Variable Exponent

(Reported on 08.09.2003)

In the present report we set force one result on the boundedness of the Marcinkiewicz integral in Lebesgue spaces with a variable exponent with power weight. Let $p: \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that the conditions:

 $1 \le p_0 \le p(x) \le p < \infty, \quad x \in \mathbb{R}^n$ (1.1)

and

$$|p(x) - p(y)| \le \frac{A}{\ln \frac{1}{|x-y|}}, \quad |x-y| \le \frac{1}{2}, \quad x, y \in \mathbb{R}^n$$
 (1.2)

are fulfilled.

By $L^{p(\cdot)}(\mathbb{R}^n)$ we denote a space of functions on \mathbb{R}^n for which

$$A_p(f) = \int_{R^n} \left| \frac{f(x)}{\lambda} \right|^{p(x)} dx < \infty$$

for some $\lambda > 0$.

This is the Banach functional space with respect to the norm

$$\|f\|_{L^{p(\cdot)}} = \inf \left\{ \lambda > 0 : A_p\left(\frac{f}{\lambda}\right) \le 1 \right\}$$

Under the condition (1.1) the space $L^{(p(\cdot))}$ coincides with the space

$$\left\{f(x): \ \left|\int\limits_{R^n} f(x)\varphi(x)\,dx\right| < \infty\right\} \ \text{for all} \ \varphi(x) \in L^{q(\cdot)}(R^n),$$

where $\frac{1}{p(t)} + \frac{1}{q(t)} \equiv 1$ up to the equivalence of the norm

$$\|f\|_{L^{p(\cdot)}} \approx \sup_{\|f\|_{L^{q(\cdot)}} \leq 1} \Big| \int\limits_{R^n} f(x)\varphi(x) \, dx \Big| \approx \sup_{A_q(\varphi) \leq 1} \Big| \int\limits_{R^n} f(x)\varphi(x) \, dx \Big|.$$

Let ρ be a measurable, almost everywhere positive integrable function on \mathbb{R}^n . The weighted Lebesgue space $L^{p(\cdot)}_{\rho} = L^{p(\cdot)}(\mathbb{R}^n, \rho)$ is defined as a set of all measurable functions for which

$$\left\|f\right\|_{L^{p(\cdot)}} = \left\|\rho f\right\|_{L^{p(\cdot)}} < \infty.$$

 $L^{p(\cdot)}(\mathbb{R}^n, \rho)$ is the Banach space. In the sequel, we will consider the weight function $\rho(x) = |x - x_0|^{\alpha}$, where $x_0 \in \mathbb{R}^n$.

Let P be a closed set of the space \mathbb{R}^n . Introduce the notation

$$\delta(y) = \operatorname{dist}(y, P) = \inf_{z \in P} |y - z|.$$

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 47B38.

Key words and phrases. Lebesgue space with variable exponent, Marcinkiewicz integral, weights.

¹⁵⁰

Assume that λ is some positive number, and we consider the following integral transformation:

$$Jf(x) = \int_{CP} \frac{(\delta(y))^{\lambda}}{|x - y|^{n + \lambda}} f(y) \, dy.$$

This integral has been introduced by Yu. Marcinkiewicz [1] and is of importance in different fields of the theory of functions, in particular, in the theory of singular and hyper-singular integrals, in the theory of trigonometric Fourier series, and so on.

Later on, L. Corleson [2] and A. Zygmund [3] considered the modified Marcinkiewicz integral, namely, the integral

$$J^*f(x) = \int\limits_{R^n} \frac{(\delta(y))^{\lambda}}{(|x-y|+\delta(y))^{n+\lambda}} f(y) \, dy.$$

Obviously, J and J^* coincide on the set P.

In what follows, along with the conditions (1.1) and (1.2) it will be assumed that p(x) satisfies the following condition: there exists

$$\lim_{x \to \infty} p(x) = p(\infty) \text{ and } |p(x) - p(\infty)| \le \frac{A}{\ln(1+|x|)}.$$
 (1.3)

The following theorem is valid.

Theorem 1. Let p(x) satisfy the conditions (1.1), (1.2) and (1.3). For the operator J to be bounded in $L_{|x-x_0|^{\alpha}}^{p(\cdot)}$, it is necessary and sufficient that the condition

$$-\frac{1}{p(x_0)} < \alpha < \frac{1}{p'(x_0)} \,,$$

where $\frac{1}{p(x_0)} + \frac{1}{p'(x_0)} = 1$ be fulfilled.

A. Calderon [4] has introduced the more general integral than that of Marcinkiewicz one.

Let $\varphi(\rho, t)$ be a non-negative measurable function of two variables $\rho > 0$ and $t \ge 0$, satisfying the following conditions:

1. For every t, $(\rho + t)^{-n}\varphi(\rho, t)$ decreases with respect to ρ , and $\lim_{\rho \to \infty} \frac{\varphi(\rho, t)}{(\rho + t)^n} = 0$.

2. There exists c > 0 such that $\int_{0}^{\infty} \rho^{n-1} (\rho + t)^{-n} \varphi(\rho, t) d\rho \le c$ for any t.

Let the function $\psi(y)$ and also the function $\varphi(|x-y|, \psi(y))$ be measurable. The Calderon's integral has the form

$$Kf(x) = \int_{R''} \frac{\varphi(|x-y|, \psi(y))}{(|x-y| + \psi(y))^n} f(y) \, dy.$$

If in the expression Kf(x) we put $\varphi(\rho, t) = \frac{t^{\lambda}}{(\rho+t)^{\lambda}}f(y)$ and $\psi(y) = \delta(y)$, then we will obtain the modified Marcinkiewicz integral.

The following theorem is valid.

Theorem 2. For the operator K to be bounded in $L^{p(\cdot)}_{|x-x_0|^{\alpha}}$, it is sufficient that the condition

$$\frac{1}{\rho(x_0)} < \alpha < \frac{1}{\rho'(x_0)}$$

be fulfilled.

References

- J. Marcinkiewicz, Sur quelques intégrales du type de Dini. Ann. Soc. Polon. Math. 17(1938), 42–50.
- L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math. 116(1966), 135–157.
- A. Zygmund, On certain lemmas of Marcinkiewicz and Carleson. J. Approximation Th. 2(1969), 249–257.
- A. Calderon, On an integral of Marcinkiewicz. Studia Mathematika, 57(1976), 280– 284.

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 0193 Georgia

152