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In the present report we set force one result on the boundedness of the Marcinkiewicz
integral in Lebesgue spaces with a variable exponent with power weight.

Let p : Rn → R be a measurable function such that the conditions:

1 ≤ p0 ≤ p(x) ≤ p <∞, x ∈ Rn (1.1)

and
∣

∣p(x) − p(y)
∣

∣ ≤
A

ln 1
|x−y|

, |x− y| ≤
1

2
, x, y ∈ Rn (1.2)

are fulfilled.
By Lp(·)(Rn) we denote a space of functions on Rn for which

Ap(f) =

∫

Rn

∣

∣

∣

f(x)

λ

∣

∣

∣

p(x)
dx <∞

for some λ > 0.
This is the Banach functional space with respect to the norm

‖f‖
Lp(·)

= inf
{

λ > 0 : Ap

( f

λ

)

≤ 1
}

.

Under the condition (1.1) the space L(p(·) coincides with the space
{

f(x) :
∣

∣

∣

∫

Rn

f(x)ϕ(x) dx
∣

∣

∣
< ∞

}

for all ϕ(x) ∈ Lq(·)(Rn),

where 1
p(t)

+ 1
q(t)

≡ 1 up to the equivalence of the norm

‖f‖
Lp(·)

≈ sup
‖f‖

Lq(·)
≤1

∣

∣

∣

∫

Rn

f(x)ϕ(x) dx
∣

∣

∣
≈ sup

Aq(ϕ)≤1

∣

∣

∣

∫

Rn

f(x)ϕ(x) dx
∣

∣

∣
.

Let ρ be a measurable, almost everywhere positive integrable function on Rn. The

weighted Lebesgue space L
p(·)
ρ = Lp(·)(Rn, ρ) is defined as a set of all measurable func-

tions for which

‖f‖
L

p(·)
ρ

= ‖ρf‖
Lp(·)

< ∞.

Lp(·)(Rn, ρ) is the Banach space. In the sequel, we will consider the weight function
ρ(x) = |x− x0|α, where x0 ∈ Rn.

Let P be a closed set of the space Rn. Introduce the notation

δ(y) = dist(y, P ) = inf
z∈P

|y − z|.
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Assume that λ is some positive number, and we consider the following integral trans-
formation:

Jf(x) =

∫

CP

(δ(y))λ

|x− y|n+λ
f(y) dy.

This integral has been introduced by Yu. Marcinkiewicz [1] and is of importance in
different fields of the theory of functions, in particular, in the theory of singular and
hyper-singular integrals, in the theory of trigonometric Fourier series, and so on.

Later on, L. Corleson [2] and A. Zygmund [3] considered the modified Marcinkiewicz
integral, namely, the integral

J∗f(x) =

∫

Rn

(δ(y))λ

(|x− y| + δ(y))n+λ
f(y) dy.

Obviously, J and J∗ coincide on the set P .
In what follows, along with the conditions (1.1) and (1.2) it will be assumed that p(x)

satisfies the following condition: there exists

lim
x→∞

p(x) = p(∞) and |p(x) − p(∞)| ≤
A

ln(1 + |x|)
. (1.3)

The following theorem is valid.

Theorem 1. Let p(x) satisfy the conditions (1.1), (1.2) and (1.3). For the operator

J to be bounded in L
p(·)
|x−x0|α , it is necessary and sufficient that the condition

−
1

p(x0)
< α <

1

p′(x0)
,

where 1
p(x0)

+ 1
p′(x0)

= 1 be fulfilled.

A. Calderon [4] has introduced the more general integral than that of Marcinkiewicz
one.

Let ϕ(ρ, t) be a non-negative measurable function of two variables ρ > 0 and t ≥ 0,
satisfying the following conditions:

1. For every t, (ρ+ t)−nϕ(ρ, t) decreases with respect to ρ, and lim
ρ→∞

ϕ(ρ,t)
(ρ+t)n = 0.

2. There exists c > 0 such that
∞
∫

0

ρn−1(ρ+ t)−nϕ(ρ, t)dρ ≤ c for any t.

Let the function ψ(y) and also the function ϕ(|x− y|, ψ(y)) be measurable.
The Calderon’s integral has the form

Kf(x) =

∫

R′′

ϕ(|x− y|, ψ(y))

(|x− y| + ψ(y))n
f(y) dy.

If in the expression Kf(x) we put ϕ(ρ, t) = tλ

(ρ+t)λ f(y) and ψ(y) = δ(y), then we will

obtain the modified Marcinkiewicz integral.
The following theorem is valid.

Theorem 2. For the operator K to be bounded in L
p(·)
|x−x0|α

, it is sufficient that the

condition

−
1

ρ(x0)
< α <

1

ρ′(x0)

be fulfilled.
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