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(57) ABSTRACT

A new apparatus, system, and technique for performing
Matrix Spectral Factorization has been developed, which can
factorize in real time high-dimensional matrices with high-
order polynomial or non-rational entries. The method can be
used for efficient implementation of engineering solutions to
problems in Data Compression, Filtering, Wireless Commu-
nications, and Radar Systems, etc., which are computation-
ally reducible to matrix spectral factorization.
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1
MATRIX SPECTRAL FACTORIZATION FOR
DATA COMPRESSION, FILTERING,
WIRELESS COMMUNICATIONS, AND
RADAR SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to and claims the priority of U.S.
Provisional Patent Application No. 61/050,045, filed May 2,
2008, the entirety of which is hereby incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Exemplary implementations of the present invention relate
to a method of matrix spectral factorization for computer or
hardware implementation. The exemplary implementations
are therefore systems such as Data Compression systems,
Filtering, Wireless Communications, and Radar Systems.

2. Description of the Related Art

Spectral factorization is the cornerstone for enabling a
variety of methods that perform filter design, prediction, and
estimation and that lead to hardware or software implemen-
tations of products that realize these applications. A Wiener
filter, proposed by Norbert Wiener, is designed to reduce the
amount of noise present in a signal by yielding the best
estimate of the desired noiseless signal.

Although such a filter concept was initially proposed in the
1940’s, practical algorithms for implementing Wiener filters
in certain scenarios have proved challenging particularly for
cases of data compression, signal filtering, wireless commu-
nication, and radar system in which multi-dimensional sig-
nals are present (such as when high-dimensional matrices
with high-order polynomial or non-rational entries are
present), and there is a long-felt need for improved algorithms
to implement such filters, thereby rendering them practical.

SUMMARY OF THE INVENTION

An exemplary implementation of the present invention is
an apparatus. The apparatus includes a receiver configured to
receive a signal whose characteristics are described by means
of a high-dimensional matrix with high-order polynomial or
non-rational entries. The apparatus also includes a processor
configured to perform Wiener filtering on the received signal.
The apparatus further includes a transmitter configured to
provide a real-time output of the filtering. This apparatus
performs Wiener filtering that employs the needed matrix
spectral factorization for an arbitrarily high dimension of the
signal representation.

Another exemplary implementation of the present inven-
tion is an apparatus. The apparatus includes receiving means
for receiving a signal whose characteristics are described by
means of a high-dimensional matrix with high-order polyno-
mial or non-rational entries. The apparatus also includes pro-
cessing means for performing Wiener filtering on the received
signal. The apparatus further includes transmitting means for
providing a real-time output of the filtering. This apparatus
performs Wiener filtering that employs the needed matrix
spectral factorization for an arbitrarily high dimension of the
signal representation.

A further exemplary implementation of the present inven-
tion is a method. The method comprises receiving a signal
whose characteristics are described by means of a high-di-
mensional matrix with high-order polynomial or non-rational
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entries. The method further comprises performing Wiener
filtering on the received signal. The method further comprises
transmitting an output of the filtering in real-time. The Wiener
filtering in this method employs the needed matrix spectral
factorization for an arbitrarily high dimension of the signal
representation.

An additional exemplary implementation of the present
invention is a computer-readable medium encoded with
instructions that, when executed on a computing device per-
form a process. The process comprises receiving a signal
whose characteristics are described by means of a high-di-
mensional matrix with high-order polynomial or non-rational
entries. The process further comprises performing Wiener
filtering on the received signal. The process further comprises
transmitting an output of the filtering in real-time. The Wiener
filtering in this process employs the needed matrix spectral
factorization for an arbitrarily high dimension of the signal
representation.

An additional exemplary implementation of the present
invention is a computer-readable medium encoded with
instructions that, when executed on a computing device per-
form a process of computing the spectral factors of a given
spectral density matrix function. The process comprises per-
forming a lower-upper triangular factorization of the given
matrix-function into a lower triangular and upper triangular
matrix. The process further comprises computing the spectral
factors by following a recursive operation on the lower trian-
gular matrix determined in the previous step. The process
may further include making the computed spectral factor
canonical by multiplying it by a unitary matrix.

An exemplary implementation of the present invention is a
method and an apparatus for data compression using the
matrix spectral factorization.

BRIEF DESCRIPTION OF THE DRAWINGS

For proper understanding of the invention, reference
should be made to the accompanying drawings, wherein:

FIG. 1 illustrates a device according to an exemplary
implementation of the present invention;

FIG. 2 illustrates a method according to an exemplary
implementation of the present invention;

FIG. 3 illustrates a system according to an exemplary
implementation of the present invention;

FIG. 4 illustrates an apparatus according to an exemplary
implementation of the present invention;

FIG. 5 illustrates a method according to an exemplary
implementation of the present invention; and

FIG. 6 illustrates an apparatus according to an exemplary
implementation of the present invention.

DETAILED DESCRIPTION OF THE
EXEMPLARY IMPLEMENTATIONS

Exemplary implementations of the present invention relate
to a new apparatus, system, and method for solving multi-
dimensional matrix spectral factorization exactly. Such appa-
ratuses, systems, and methodological solutions may be
applied to variety of engineering problems two of which are
summarized below. These applications are 1) Wiener Filtering
and i1) Wavelet Data Compression. These are merely example
applications. The need for and use of multi-dimensional spec-
tral factorization for numerous applications is well docu-
mented in the literature.

The proposed factorization method can provide a complete
solution of the matrix spectral factorization problem. It can
permit one of ordinary skill in the art to construct a low
computational complexity algorithm for actual computation
of the spectral factors which until now was possible only in
the scalar case. The matrix spectral factorization can be used,
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e.g., in estimation of multi-dimensional signals based on
noisy observations (filtering) as it arises in guidance and
control, in multi-user detection, in cellular wireless tele-
phony, and in many other applications.

Exemplary implementations of the present invention per-
form the spectral factorization of a matrix-function by factor-
izing step-by-step the left-upper submatrices of lower dimen-
sion. The accuracy ofthe result can be controlled at each step,
which may provide significant benefit for the efficiency of the
method. An exemplary implementation of the present inven-
tion comprises the following steps for factorizing a matrix
function:

a. A lower-upper triangular factorization of the given
matrix-function can be performed with corresponding scalar
spectral factors on the main diagonal.

b. Further a unitary matrix-function can be found, which
converts a corresponding left-upper submatrix into the spec-
tral factor by multiplication from the right. This approach
may eliminate the technical difficulties of the problem that
inhibited its efficient implementation until now. A close rela-
tion of these unitary matrix functions with compactly sup-
ported wavelet systems has been revealed.

c. The approximate determination of the aforementioned
unitary matrix-function establishes the accuracy level in the
solution of a corresponding NxN system of linear equations.
This system of linear equations is associated with a positive
definite matrix, which allows further reduction of the com-
putational burden. As N tends to infinity the algorithm con-
verges to the exact result and we can determine the size of N
in order to achieve a given accuracy.

The above exemplary algorithm can be used for any dimen-
sional matrix function for which a spectral factorization
exists, including non-rational matrices. Experiments have
indicated that sufficiently high order matrices can be factor-
ized on-line within good accuracy. On the other hand, oft-line
calculations can be performed within any desired accuracy
for matrices of arbitrary dimension. The method can handle
so called singular cases as well: where the determinant of the
associated matrix has zeros on the boundary. Next, we
describe this exemplary implementation in more detail.

A matrix spectral density S(z), |z|=1, defined in the unit
circle of the complex plane admits the spectral factorization

SE@)=5"2)5(2), M

where S*(z), |1zI<1, is an optimal analytic matrix-function and
S~ (z)=(S*(1/z)), 1zI>1.

An exemplary implementation of the present invention
provide a fast, reliable computation of S*(z) whenever S(z) is
given. It can be applied to design a solution to every engineer-
ing problem in which practical implementation requires on-
line spectral factorization of high dimensional matrix func-
tions. A few such examples are provided below, and these
examples would apprise one of ordinary skill in the art of
related examples, all of which and any of which could be
considered various exemplary implementations of the present
invention.

Although the formulation and solution of spectral factor-
ization problem presented in the various exemplary imple-
mentations of the present invention is given for spectral den-
sities defined in the unit circle of the complex plane, which
corresponds to analysis of discrete situations, it can be natu-
rally extended (considering the conformal mapping

(1+2)
(1-2)

5

)

to spectral densities defined on the imaginary axis, which
involves the analysis of continuous situations as well (see,

e.g., [14]).
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Mathematical Description for an Exemplary
Implementation of the Invention (Also Referred to
Later in this Application as the Method of Matrix
Spectral Factorizaton)

For a given matrix spectral density which is a positive
definite matrix-function

hi@ f2@) - fil@ @

f1(2) 2@ ... f2r(2)
Sz) = : : : : >

1@ fix@ .. f@

lzI=1, with integrable entries, f;(z)eL,(T), satisfying the
Paley-Wiener condition

log det S(z)eL ((T),

a method according to an exemplary implementation
approximately computes the canonical spectral factor S*(z)
(from which S7(z) can be obtained), i.e. the analytic matrix-
function

sH@ sth@ .. s1,@

1@ s3,2) ... s3,)
sto=| "

st S22 52

with entries from the Hardy space H,, given by
i@ =) Al <1,
n=0

where 3,_,Ip,?|><e, and that satisfy that det S*(z) is an
outer function, S*(0) is positive definite, and

S)=S*(2)(S*(2))* for a.a. zeT.
A method for carrying out the above factorization is as
follows:

Procedure 1 (Triangular Factorization).

Perform the lower-upper triangular factorization of the
given matrix spectral density S(z) shown in (2). This can be
done in standard algebraic way and by using the scalar spec-
tral factorization for the diagonal terms. Let

S(z) = MM @)Y, (&)
where

i@ 0 e 0 0

@ @ .. 0 0
M(z)= : : 5 5

&11® Goi2® o fLi@ 0

L@ @ . L@ f@

The functions f,,*(z), m=1, 2, . . .
spectral factors of

, I, are canonical scalar
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detSp(z)
detSy,,1(2)

where S(z)=1 and S, (z) is the left-upper mxm submatrix of
S(z). More specifically, one can compute

1 2 g . )
i@ =exp| = f L (lopdetS(e®) ~ logdetSy 1 (€¥))d6
m dn J, € -z m e ’

The other entries ; in (3) can be found by the standard
algebraic way when performing the lower-upper triangular
factorization of the given matrix spectral density S(z) shown
in (2).

Procedure 2 (Recurrent Construction).

The method proceeds recurrently with respect to m, mak-
ing the left-upper mxm submatrix of M(z) analytic, i.e., per-
forming the spectral factorization of the left-upper mxm sub-
matrix of S(z). Thus, from m=2 until m=r step by step do the
following:

Step 1 (Preparing an Auxiliary Matrix).
The next nonanalytic row can be separated in M(z), and
included in a special mxm matrix of the form

0 0 0 0 4
0 1 0 0 0
0 0 1 0 0
Fi(2) = : : : :
0 0 0 1 0

4@ &0 870 . @ L

where C,“(2), 0, (@), . . ., C,,., " (z)m f,*(2) entries of the
m th row of the matrix M,, ,(z). It is assumed that M, (z)=-M
(z) (see (3)) and M, (z) is prepared in the end of m th iteration,
m=2,3,...,r(see Step 4).

Step 2 (Cutting the Tails). In order to approximate a non-
analytic part of the functions £,"(2), i=1, 2, . .., m-1 in (4)
by finite trigonometric polynomials, these functions can be
expanded into the Fourier series and approximated by trun-
cation of the series namely,

o Y @R j=12, 0 m- 1

n=—N

Where N=N is a (large) positive integer which determines
the level of accuracy. For on-line design of the algorithm, N
may be optimized according to the available time for calcu-
lations.

Step 3 (Construction of Wavelet Matrices). This step is
very valuable in certain exemplary implementations of the
present invention. Independently from the main goal of fac-
torizing the spectral density, this step can provide an oppor-
tunity to construct efficiently the total class of compact wave-
let matrices (see Application to Wavelet Compression
described later in this application).

In this step, we find a mxm unitary matrix-function U, (z),
1z|=1, of the form
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P WP U2 &)
(m) (m) (m)
Uy (2) Upy (2) U, )
Un(@) = : : Pl
UL C N I €O B €9
U@ W) Ul (z)
where

N - 6)
W= i,
n=0

(the entries of the last row are u,, ()=, "o, ™)z~ in
(5)), such that det U,,(z)=1, and

F,(z)-U,(z) is analytic.

The coefficients c.,, "% in (6) can be determined as follows.
Let 1=(1, 0,0, ...,0)",

L .
o =) T el <
7o ; 7 lel <

4@ Y et =2 m

n=—oo

do di dy ... dy-i dn

0 do dy ... dyv—z dy_1
F=l0 0 d ... dvs dv2|,

0 0 0 0 dy

Yio Vit Yiz e ViN-1 VN

Yiu Y Yo ¥in 0
Ci=|ve v v - 0 0

ViN 0 0 .. 0 0

i=1,2, ..., m-1,

0-FT,j=1,2,...,m-1,and ©,=I,,,

where I, is the identity matrix of order n, and

A=0,0,%+0,0,%+ ... +0, -0, T+, .

Solve m systems of (N+0x(N+1) algebraic linear equations
with the same coefficients matrix and different right-hand

sides,
AX=0;1=12,...m. )

A is always positive definite and has the displacement rank
m (which reduces the computational burden for its solution
from O(N?) to O(mN?), see [ 10], Appendix F, which is hereby
incorporated herein by reference in its entirety). Denote m
solutions of (7) by X, j=1, 2, .. ., m. Identifying polynomials
P(z)=2,_ . p,z" withvectors (py, Py, - - - , ) from R™*! yields

@)K, =12, .., m,
u,"()=0,%X, j=12,. .., m, =, i=1,2, ..., m-1,
and

u,"()=0,4X~F1,j=1,2,. .., m-1.

Using these ul.j(’")(z) and constructing U', (z) according to
(5) yields

Un@)=U' ) (U ()7 ®)



US 9,318,232 B2

7

U',(1) is the value of matrix-function U',(z) in 1, which is
never singular.

Step 4 (Iterative Step). This step allows the increase in the
dimension of considered submatrices by 1. In this step, take

Un(z) 0 ]
0 lem/

where U, (z) is determined in Step 3 by (5).

As mentioned above, M,,,(z) is used back in Step 1 when the
number of iterations m increases by 1.

Once we reach a stage in the algorithm where m=r, it is
assumed that

Mp(2) = My (2) (

M,(2)=M,.,(2) U, (). ©

The analytic matrix-function (9) is now an approximate
spectral factor of (2). As N—co in step 2, the difference
between the computed and the exact spectral factors goes to
zero in the L, norm.

Procedure 3 (the Canonical Spectral Factor). In order to
make a spectral factor canonical, it can be multiplied from the
right by constant unitary matrix U which makes it positive
definite in the origin. Thus

S*(z)=M(z)-U.

In summary there has been described a method according
to an exemplary implementation of the present invention, for
factorizing a high-dimensional spectral density matrix into
two canonical spectral factors. Next, there is described the use
of this method to a real-life wireless communications prob-
lem. It would be apparent to a person of ordinary skill in the
art that the exemplary method discussed above could well be
applied to many engineering problems and the applications
chosen next are mere examples of the most obvious cases
where this method could be used.

Application to Wiener Filtering

A signal that is transmitted from a sender to a receiver is
often impaired by various forms of distortions. Wiener filter-
ing is a method to recover the original signal as accurately as
possible from the received signal. The necessity of this fre-
quently arises in signal detection, prediction, estimation, sto-
chastic control, missile guidance, aircraft stabilization, eco-
nomic forecasting, seismic data processing, etc.

Wiener filtering is based on a statistical approach. One is
assumed to have knowledge of the spectral properties of the
existing signals (this knowledge may be obtained through
previous measurements), and one seeks the linear time invari-
ant (LTT) filter whose output would yield a signal with mini-
mal mean-squared error compared with the original signal.
Wiener filters are characterized by the following:

1. Assumption: Existing signals are jointly stationary sto-
chastic processes with known spectral characteristics or
known autocorrelation and cross-correlation

2. The filter may be physically realizable, i.e. causal

3. Performance criterion: minimum mean-square error
(MMSE)

Another exemplary implementation of the present inven-
tion is a method for estimating a message from a received
signal at a receiver. For example, multiple mobile units 301
(i.e. 3014, 3015 . . . 3017) could send messages to a base
station as seen in FIG. 3. We need to estimate the messages
from the received signals, simultaneously. The total received
signal y, and the actual message x; and the method of estimat-
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8

ing the message are described next. It should be noted that y,
is a multi-dimensional signal. Let

Xi(u)):(xi(l)s Xi(z)s cees Xi(r))T and yi((’u):(yi(l)5 yi(z), S
v mu=...,-1,0,1, ..., bejointly stationary zero mean
(without lose of generality) r-dimensional stochastic pro-
cesses given on a probability space (€2, F, P). Itis assumed that
X, 1s a directly unobservable quantity, conventionally called a
“message”, and y, is the observed “signal”. It can be assumed
that

YVi=xtn;

where n, is an additive “noise”, for example, a white gaussian
noise. Having access to autocorrelation coefficients

& " DT, (@ (0)dP

and to cross-correlation coefficients

(10)

e (@) ()P, an

which are assumed to be known or estimated from the “mes-

sage”, the “message” can be estimated from the “signal”. The
estimated “message”

%= Z kjyiej
=

is obtained by passing y, through a causal LTT filter K with
impulse response (ky, k;, k, . . . ) and transfer function

© (12)
K@= k!
=0

which minimizes the error

- (13)
X —ijyi—j .

=0

e=|x; - Xl =

The coeflicients k, j=0, 1, . . ., are rxr matrices and they are
assumed to be 0 for negative j since the filter is causal. The
expression of norm in (13) is usual quadratic norm and it is
independent of 1 because of stationarity.

In order to construct the Wiener filter, the matrix coeffi-
cients k; in (12) which minimizes the error in (13) should be
found. An exemplary implementation ofthe present invention
is a method that determines these matrix coeffecients. Since
C,0)=(c,,) " D)y m=1, 2, .. ., »» —0<i<00, are autocorrelation
matrix coefficients (see (10)), the method of determining the
filter coeffecients includes determining the z-transform

S(2) =Sy (2) = Z ny(f)Zja

Jj=—co

which is a positive definite matrix function on the unit circle.
The method then performs a spectral factorization
S2)=5"@)S" (@)

according to the method of matrix spectral factorization
described earlier. An equation for determining the filter based
on the computed spectral factors is,

KOS5 &) @) h S ™, (14)
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where S, (2)=%,__.."C,, ()7, C., D=y Dmes, 2. ..., »
(see (11)), and the operator {*}, is the projection operator

defined by

Jm—co =0

This completes the construction of the Wiener filter as the
coeffecients can be determined from (14). Further, knowing
the construction of the Weiner filter, the message can be
estimated by

b= ki
=0

Note that this procedure could not be implemented using
conventional techniques when the signal is multi-dimen-
sional (not scalar or 1-dimensional). However, using a
method of Wiener filter design including a method of matrix
spectral factorization according to one of the exemplary
implementations disclosed in this application, a multi-dimen-
sional case can be handled with ease.

FIG. 4 is an exemplary implementation according to the
present invention and it provides for a logic unit such as a
processor that takes a noisy signal as an input and provides for
an estimate of the message included in the noisy signal. The
processor may employ Weiner filtering along with the method
of' matrix spectral factorization described earlier. The proces-
sor may apply other filtering techniques that are computation-
ally reducible to a state where the method of matrix spectral
factorization yields spectral factors, which are used in con-
struction of the filter.

FIG. 5 is another exemplary implementation of the present
invention. This implementation provides for a method of
determining coeffecients for a filter that will allow for esti-
mating a message from a noisy input signal. In this method,
501a pre-computed measure of the channel characteristics
(which is in the form of a spectral density matrix function), is
factorized 502 into two spectral factors. In 503 the filter
coeffecients (which describe the impulse response of the
filter) are determined from the spectral factors determined in
502. The precomputed measurements such as the spectral
characteristics of the signal are assumed known. In practice
they are computed ahead of time based on signal character-
istics and channel qualities or by monitoring the source (at the
source). For example, the source may be monitored, the char-
acteristics then computed, and then separately communicated
to the receiver in order to calibrate the filter correctly. None-
theless there may be cases where the signal characterisitics
are not precomputable and have to be estimated “on-line.”
This is known as “spectral estimation” and is a well developed
field of statistics. More details can be found in the following
two sources that are hereby incorporated herein by reference
in their entirety:

Basic filtering: A. Papoulis, U. Pillai “Probability, Random
Variables, Stochastic Processes” Mc Graw Hill; and

T. Kailath, “Lectures on Wiener and Kalman Filtering”,
CISM monographs, springer Verlag, 1981.

FIG. 6 describes the processor 401 in FIG. 4 in greater
detail. It must be noted that the two processors in FIG. 6 may
be the same integrated circuit or logic component or may be
different integrated circuits or logic components. Specifi-
cally, processor 1 may compute the filter coeffecients based
on the precomputed spectral characteristics of the channel
and/or the incoming signal. The processor 1 may include
logic components for receiving the precomputed spectral
characteristics, which may be described by a means of a
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high-dimensional matrix with high-order polynomial or non-
rational entries. Processor 1 may also include logic compo-
nents for computing canonical spectral factors of the received
characteristics. Processor 1 may further include logic com-
ponents for computing filter coefficients using the computed
canonical spectral factors. In FIG. 6, the processor 2 may be
further decomposed into additional logic components, which
perform functions such as taking N samples of the incoming
signaly,. These samples would then be output to another logic
block within processor 2 that would compute the estimated
signal or message based on coefficients of the filter computed
by processor 1 and the original input signal y,.

Application to Wavelet Compression

Wavelet compression is a form of data compression using
the so-called wavelet transform. It is often employed for
compression or coding of structured information, e.g. for
compression of image, video or audio signals. The goal is to
store the data in as little space as possible. Performing the
wavelet transform and removing the coefficients that are out-
side a theoretical threshold shrinks the existing data perform-
ing a lossy compression. Such information is more suitable
for storage and transmission. When the inverse wavelet trans-
form is performed, information can be reconstructed without
producing significant distortion, if the removed coeffecients
for this compression are appropriately selected.

A challenge in every specific practical problem of wavelet
compression is to select how to remove the superfluous coet-
fecients. One important factor in this system is the way one
decides which information is “less important™ and should be
discarded. The short list of known wavelets restricts the area
of applications of the compression method described above.

An exemplary implementation of the present invention
may provide a complete classification of all wavelets. The
computational procedures for on-line construction of such
wavelets is given below. Having quick access to the complete
bank of compactly supported wavelets, opens the possibility
of choosing the best possible selection, thereby maximizing
the compression level for a given level of accuracy in signal
reconstruction.

A wavelet matrix A=(a,") of rank m and genus g is a rect-
angular matrix which consists of m rows of formally infinite
vectors

0 0 0 0
0 a ay - Oy Gmgy O .o (15)
1 1 1 1
N 0 ag aj - O Gmgy O .o
m-1 m-1 m-1_ m-l
0 af af . Omg=y e O .

o,/€C, satisfying following two conditions.
(1) Quadratic Condition:

rooos _ o srss 16
Z“j+mlaj+mn—m5 i (16)

J

(I1) Linear Condition:

& an

where 0 stands for the Kronecker delta (see [12], Sect. 4.2).
For every such matrix A, there is a corresponding scaling
function ¢el.,(R) with compact support,
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supp$ C [0, (8- 1)(mn_1 i ) + 1],
which solves the following functional difference equation

mg—1

p0 = )" alpimx—k),

k=0

(18)

as well as corresponding m—1 wavelet functions y*, 2, . . .
™, defined by the formula

mg—1

Yrx) = Z agpmx—k), 1 <r<m,

k=0

whose dilations and translations

q)jk(x):mj/ 2(])(m"x—k): JkeZ

Y @)= (mix—k):1sr<m; jkeZ

form the wavelet system W=WJ[A] (associated with wavelet
matrix A).

The existence of such scaling function ¢=¢[A], which
determines the whole system W=W[A] can be proved math-
ematically (see [12], Th. 5.1), but for practical computations,
one can construct an iterative procedure defining ¢,=S, ,,
the characteristic function of the interval [0,1], and

mg—1

)= ) oy (mx—k),

k=0

n=1, 2, ..., which will readily approximate ¢=lim,_, ¢, on
a computer (see [12], Ch. 5).

Each system of compactly supported wavelets W corre-
sponds to some wavelet matrix A. Furthermore, in the case of
discrete situations, whenever a signal is already sampled, the
Discrete Wavelet Transform is applied. The only thing nec-
essary in this commonly widespread case is the knowledge of
entries of A in (15). An equivalent way of obtaining the
wavelet matrix (15) is to express it in terms of block mxm
matrices

A=(...,0dg A, 4y ... A0, .. ),

g1

where A, =(at,,., ), O=s, rsm-1, and to associate a polyno-
mial matrix function

= 19
A@= ) Ak
k=—c0

Obviously, there is one-to-one correspondence between
the matrices in (15) and the matrix functions in (19).

It can be verified that the quadratic and the linear con-
straints on A are equivalent, respectively, to the following two
conditions on A(z):

A@) Az Y=ml,
where A¥(z™'):=2,___."A,*z % is the adjoint of A(z), and

0)

10

15

20

25

30

35

40

45

50

55

60

65

12

” (21
ZAU(l) =mé, 1 <i<m,
=1

where A(z)=(A,(2)), -, One can see from (20) that after
normalization A(z) is a unitary (on the unit circle) matrix
function. Furthermore, one can easily show that det A(z) is
always equal to cz?, where d=g-1, and generically d=g-1
except some degenerated cases.

Remembering that the construction in Step 3, that yielded
a Laurent polynomial (of order N) matrix function U(z)=U,,
(z) (see (4)), ensured that the latter is unitary with determinant
1, and satistying U,(1)=I, (see (8)), then it can be concluded
that

A@)=HLE) (22)

is a wavelet matrix of rank m and genus N+1, and determinant
7V, where L(z) is a polynomial matrix function which is
obtained from U,,(z) by multiplying its last row by z*, and H
is a canonical Haar wavelet matrix of rank m (see [12, p. 48],
the characteristic features of H are that HH*=mlI,,, and the first
row of His (1, 1, . . ., 1, 1)). Since L(z)L*(z™")=1,, and
HH*=ml,,, A(z) will satisfy the quadratic condition, and
since A(1)=H it will satisty the linear condition as well.

An exemplary implementation of the present invention
provides a method for data compression that includes con-
structing a generic wavelet matrix A of rank m and genus
N+1. The method of constructing the generic wavelet matrix
A comprises the following.

1. Construct a matrix function F(z) of the form

1 0 0 0 0 (23)
0 1 0 0 0
0 1 0 0
F(z)= .
0 0 0 .. 1 0
1@ L@ 5@ . Lp(@) L
where

N
Zi(2) Zyjnz’”, j=L2,... ,m-1,
n=0

(see (4), where f*(z) is taken to be 1), i.e. take arbitrarily the
coefficients v,,, i=1, 2, . . . , m-1, O=n=N.

2. Following the procedures described in Step 3 (see the
description of the method of matrix spectral factorization),
construct the unitary (on the unit circle) Laurent polynomial
matrix function U(z) of form

Uz) = (ug(l))lsi,jém
where
(24

N
u;j(z):ZaL"j)z”, l<i<m,l=<j=m,
=0

@5

a;mﬂz’”, l<j=m,

1=

Unj(2) =

I
=3

n

with determinant 1, detU(z)=1, and with property U(1)=],,
such that

F@)U)eLy",

where L," is the class of polynomials of order N.
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3. Consider the polynomial matrix function

uii(z) w2z Uim(2)
w1(z)  unl(z) Uzm(2)
L= : :
Un-1,1(2) Up12(2) oo U1 m(2)
L@ Dy o N it (2

which is obtained from U(z) by multiplying its last row by z".
Pay attention that det U(z)=z".

4. The matrix function A(z) defined by the formula (22)
will be then a wavelet matrix.

One can show (see [8]) that every non-degenerated wavelet
matrix A(z) can be constructed in this manner starting from an
approximate matrix as in (23).

As was indicated in Step 3 (see the description of the
method of matrix spectral factorization), one can find coeffi-
cients o, ¥ in (24), (25), i.e. determine the entries of wavelet
matrix (15), by solving (N+1)x(N+1) linear algebraic equa-
tions with positive definite coefficient matrix function which
has a displacement structure with displacement rank m. Thus
the number of operations required for this construction can be
estimated as O(mN?). As we can see, according to this exem-
plary implementation wavelet matrices of very high rank m
and genus N can be constructed in minimal time, while the
range of constructible wavelet matrices is exhaustive. A more
detailed discussion of the role of wavelets in signal process-
ing can be found in Stephane Mallat, “A Wavelet Tour of
Signal Processing,” Academic Press, which is hereby incor-
porated herein by reference in its entirety.
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Example Implementations

An exemplary implementation of the present invention
may be an apparatus, such as a computer device, illustrated in
FIG. 1. The apparatus may include a receiver 110 configured
to receive a signal input 120 whose characteristics may be
described by means of a high-dimensional matrix with high-
order polynomial or non-rational entries. This can be
expressed, for example, as being that the receiver 110 is
configured to receive a signal input describable with a high-
dimensional matrix with high-order polynomial or non-ratio-
nal entries. When it is said that the signal is so describable, it
should be understood that it is intended that the signal cannot
be characterized more simply. One of ordinary skill in the art
will appreciate that the characterization of signals as they
occur in wireless communications may be characterized
according to this description. Other signals are, of course, not
excluded.

The apparatus may also include a processor 130 configured
for estimating a message from the received signal using a
filtering technique. In the current exemplary implementation
the filtering technique is Wiener filtering. A person of ordi-
nary skill in the art would appreciate that many other filtering
techniques may be applicable to the problem at hand, namely
estimating a message from a received signal. The Wiener
filtering according to this exemplary implementation
employs the method of matrix spectral factorization
described earlier. The processor 130 may be the same physi-
cal device as the receiver 110, or the receiver 110 and the
processor 130 may be separate physical devices. For
example, in one exemplary implementation the processor 130
may be a general purpose processor and the receiver 110 is an
input port for the processor. In another example, both the
processor 130 and receiver 110 are the same application spe-
cific integrated circuit. Other examples are permitted. The
processor 130 may be specifically configured to perform
matrix calculations and may be provided with suitable logic
circuitry and software programming to accomplish matrix
mathematics and manipulations described throughout this
patent application.

The apparatus can further include a transmitter 140 con-
figured to provide a real-time output 150 of the filtering. The
transmitter 140, like the receiver 110, can be implemented
either as a discrete physical element or as an integrated com-
ponent with either or both of the receiver 110 and the proces-
sor 130.
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Although the above apparatus has been characterized in
terms of performing Wiener filtering, one of ordinary skill in
the art would appreciate that suitable modifications to the
above apparatus could be made to configure the processor 130
to perform the data compression such as wavelet compres-
sion.

The signal input 120 can be a noisy signal of a wireless
communication system (not shown). The output signal from
the real-time output 150 can be a repaired version of the
received signal from which noise has been removed. FIG. 2
illustrates a method according to an exemplary implementa-
tion of the present invention. The method can include receiv-
ing 210 a signal input whose characteristics may be described
by means of a high-dimensional matrix with high-order poly-
nomial or non-rational entries. The Wiener filtering can
employ matrix spectral factorization. The method can also
include 220 performing Wiener filtering on the received sig-
nal. The method can further include providing 230 a real-time
output of the filtering.

The signal input can be, for example, a noisy signal of a
wireless communication system. The output signal can be, for
example, a repaired version of the received signal from which
noise has been removed. Thus, the method can provide a
concrete and tangible output signal. The method can be
implemented in such a way that each step of the method is
performed by a computing device. Thus, one exemplary
implementation of the present invention is a computer-read-
able medium (such as a recording or storage medium)
encoded with instructions that, when executed on a comput-
ing device perform the method.

One having ordinary skill in the art will readily understand
that the invention as discussed above may be practiced with
steps in a different order, and/or with hardware elements in
configurations which are different than those which are dis-
closed. The term logic component or logic block may refer to
any computing device/element such as integrated circuits or
computer readable instructions stored on or in a computer
readable medium. Therefore, although the invention has been
described based upon these exemplary implementations, it
would be apparent to those of ordinary skill in the art that
certain modifications, variations, and alternative construc-
tions would be apparent, while remaining within the spiritand
scope of the invention as defined by the appended claims.

We claim:

1. An apparatus, comprising:

a receiver configured to receive a signal input;

a processor configured to perform Wiener filtering on the
received signal even when the received signal is describ-
able with a multi-dimensional matrix with up to infinite
order polynomial or non-rational entries; and

atransmitter configured to provide a real-time output of the
filtering,

wherein the Wiener filtering employs matrix spectral fac-
torization, and

wherein the matrix spectral factorization comprises

performing, for a given matrix spectral density, a lower-
upper triangular factorization to factor the given matrix
spectral density into a first matrix and a conjugate trans-
pose of the first matrix,

recurrently processing the first matrix by preparing an aux-
iliary matrix considering a submatrix of the first matrix,
cutting the tails, constructing wavelet matrices, and
increasing a dimension of the considered submatrix, and

applying a canonical spectral factor to a result of the recur-
rent processing of the first matrix.

2. The apparatus of claim 1, wherein the signal input is a

noisy signal of a wireless communication system.
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3. The apparatus of claim 1, wherein the output signal is a
repaired version of the received signal from which noise has
been removed.
4. An apparatus, comprising:
receiving means for receiving a signal input;
processing means for performing Wiener filtering on the
received signal even when the received signal is describ-
able with a multi-dimensional matrix with up to infinite
order polynomial or non-rational entries; and

transmitting means for providing a real-time output of the
filtering,

wherein the Wiener filtering employs matrix spectral fac-

torization, and

wherein the matrix spectral factorization comprises

performing, for a given matrix spectral density, a lower-

upper triangular factorization to factor the given matrix
spectral density into a first matrix and a conjugate trans-
pose of the first matrix,
recurrently processing the first matrix by preparing an aux-
iliary matrix considering a submatrix of the first matrix,
cutting the tails, constructing wavelet matrices, and
increasing a dimension of the considered submatrix, and

applying a canonical spectral factor to a result of the recur-
rent processing of the first matrix.
5. The apparatus of claim 4, wherein the signal input is a
noisy signal of a wireless communication system.
6. The apparatus of claim 4, wherein the output signal is a
repaired version of the received signal from which noise has
been removed.
7. A method, comprising:
receiving a signal input at a computer;
performing, by the computer, Wiener filtering on the
received signal even when the received signal is describ-
able with a multi-dimensional matrix with up to infinite
order polynomial or non-rational entries; and

providing, by the computer, a real-time output of the filter-
ing,

wherein the Wiener filtering employs matrix spectral fac-

torization, and

wherein the matrix spectral factorization comprises

performing, for a given matrix spectral density, a lower-

upper triangular factorization to factor the given matrix
spectral density into a first matrix and a conjugate trans-
pose of the first matrix,
recurrently processing the first matrix by preparing an aux-
iliary matrix considering a submatrix of the first matrix,
cutting the tails, constructing wavelet matrices, and
increasing a dimension of the considered submatrix, and

applying a canonical spectral factor to a result of the recur-
rent processing of the first matrix.

8. The method of claim 7, wherein the signal input is a
noisy signal of a wireless communication system.

9. The method of claim 7, wherein the output signal is a
repaired version of the received signal from which noise has
been removed.

10. A non-transitory computer-readable medium encoded
with instructions that, when executed on a computing device
perform a process, the process comprising:

receiving a signal input;

performing Wiener filtering on the received signal even

when the received signal is describable with a multi-
dimensional matrix with up to infinite order polynomial
or non-rational entries; and

providing a real-time output of the filtering,

wherein the Wiener filtering employs matrix spectral fac-

torization, and
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wherein the matrix spectral factorization comprises

performing, for a given matrix spectral density a lower-

upper triangular factorization to factor the given matrix
spectral density into a first matrix and a conjugate trans-
pose of the first matrix,

recurrently the first matrix by preparing an auxiliary matrix

considering a submatrix of the first matrix, cutting the
tails, constructing wavelet matrices and increasing a
dimension of the considered submatrix, and

applying a canonical spectral factor to a result of the recur-

rent processing of the first matrix.

11. The non-transitory computer-readable medium of
claim 10, wherein the signal input is a noisy signal of a
wireless communication system.

12. The non-transitory computer-readable medium of
claim 10, wherein the output signal is a repaired version of the
received signal from which noise has been removed.
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