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Abstract. In this paper, we propose a uniform convexity assumption that will lead to a direct proof
of the decay of correlations. We also discuss its consequence on the log-Sobolev inequality along with
a direct method for calculating the derivatives of the free energy in certain classical unbounded lattice
models.
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რეზიუმე. ნაშრომში შემოთავაზებულია ერთგვაროვანი ამოზნექილობის დაშვება, რომელსაც
მივყავართ კორელაციების დაშლის უშუალო დამტკიცებამდე. ჩვენ ასევე განვიხილავთ მის
გავლენას სობოლევის ლოგარითმულ უტოლობაზე შემოუზღვრელი მესერის ზოგიერთ კლასიკურ
მოდელში თავისუფალი ენერგიის წარმოებულების გამოთვლის პირდაპირ მეთოდთან ერთად.
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1 Background introduction on the Witten–Laplacians
In 1982, Edward Witten published the paper [32] on supersymmetry and Morse theory; to relate
some invariants of a Riemannian manifold M with some indices of a Morse function Φ ∈ C∞(M), he
introduced the Witten derivative dΦ and the Witten coderivative d∗

Φ by simply setting

dΦ = e−Φ
2 deΦ

2 and d∗
Φ = eΦ

2 d∗e−Φ
2 ,

where d and d∗ are the exterior derivative and exterior coderivative, respectively. The Witten Lapla-
cian is then defined to be the associated second order operator

WΦ = (dΦ + d∗
Φ)

2 = dΦd∗
Φ + d∗

ΦdΦ

acting on the exterior algebra bundle of the cotangent bundle of M as the standard Laplacian does.
Choosing a local orthonormal frame field e1, . . . , ed and denoting by e1, . . . , ed its dual coframe

field, d and d∗ could be easily represented in terms of the Riemannian connection ∇ as

d = ei ∧∇ei and d∗ = −i(ej)∇ej ,

where i denotes the interior product. Here and in the rest of this section, we use the Einstein sum-
mation convention, namely, an index occurring twice in a product is to be summed from 1 up to the
space dimension. Consequently, we have

dΦ = ei ∧∇ei + ei Φ; i

2
and d∗

Φ = −i(ej)∇ej + i(ej)
Φ; i

2
,

where Φ; i1i2··· denote the components of multiple covariant differentiation relative to the local frame
field e1, . . . , ed

Φ; ij = ∇ej∇eiΦ−∇∇ej eiΦ.

Since ei ∧∇ei and i(ej)∇ej do not depend on the choice of the local orthonormal frame and coframe
field, we may assume that e1, . . . , ed come from a normal coordinate centered at an arbitrary point
and, consequently, have

∇ejei∧ = ∇ei i(ej) = 0.

Now, using the fact that
ei ∧ i(ej) + i(ej)ei∧ = δij ,

we have
W(p)

Φ = ∆− Φ; iΦ; i

4
+

Φ; ij

2
(ei ∧ i(ej)− i(ej)ei∧).

In the case of Rn, where covariant differentiation becomes a standard differentiation, the Witten
Laplacian on 0-forms acting on a smooth function f gives

W(0)
Φ f = −∆f − ΦxiΦxi

4
f − Φxixi

2
f =

(
−∆+

|∇Φ|2

4
− ∆Φ

2

)
f.

The Witten Laplacian on one-forms acting on a one form

u = uk(x)dxk

gives
W(1)

ϕ u = ∆u− ϕxi
ϕxi

4
u− ϕxixi

2
u+ 2

ϕxkxi

2
dxi ∧ i ∂

∂xk

u.

Identifying one-forms with vector fields in Rn, we obtain

W(1)
Φ u =

(
−∆+

|∇Φ|2

4
− ∆Φ

2

)
⊗ u + HessΦu.
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The tensor notation simply means that the operator −∆ + |∇Φ|2
4 − ∆Φ

2 acts diagonally on each
component of the vector field u. Let us also point out that the identification between the forms and
vectors fields is a common practice in Riemaniann geometry and is done via themetric tensor.

As first observed by Bernard Helffer and Johannes Sjötrand [16,30], these Laplacians provide new
methods for solving problems coming from Statistical Mechanics. The methods are generally based
on the analysis of the differential operators

A
(0)
Φ := −∆+∇Φ ·∇

and
A

(1)
Φ := A

(0)
Φ ⊗ Id+ HessΦ.

These two elliptic differential operators for which a Fredholm theory can be developed [18] are equiv-
alent to Witten’s Laplacians W

(0)
Φ and W

(1)
Φ , respectively, where

W(0)
Φ = −∆+

|∇Φ|2

4
− ∆Φ

2

and
W(1)

Φ =
(
−∆+

|∇Φ|2

4
− ∆Φ

2

)
⊗ I + HessΦ.

Indeed, it only suffices to observe that

W
( · )
Φ = e−Φ/2 ◦A( · )

Φ ◦ eΦ/2

and the map

UΦ : L2(RΛ) → L2(RΛ, e−Φdx),

u 7→ e
Φ
2 u.

These operators are used to get direct methods for integrals of the type that appear in Statistical
Mechanics and Euclidean Field Theory [1–4, 7]. As a simple illustration, suppose one is interested in
the study of the mean value 〈g〉Λ, where

〈g〉Λ =

∫
g dµΛ

and
dµΛ =

e−Φ dx∫
e−Φ dx

.

For a suitable smooth function g, one can first solve the equation

∇g = (−∆+∇Φ ·∇)v + HessΦv,

where the solution v is a suitable C∞-vector field and the operator (−∆ +∇Φ ·∇) acts diagonally
on each component of v. Under certain assumptions on the Hamiltonian Φ, one can see that v is also
a solution of the system

g = 〈g〉Λ + v ·∇Φ− div v.
It turns out that if g(0) = 0 and 0 is a critical point of Φ, then

〈g〉Λ = div v(0).

The study of the thermodynamic properties of the mean value is then reduced to estimating the
derivatives of the solution v.

Numerous techniques have been developed for the study of integrals associated to the equilibrium
Gibbs state for certain unbounded spins systems [1–4, 15, 16, 24, 25, 30, 34]. One of the most striking
result is the Helffer–Sjötrand formula which is an exact formula for the covariance of two functions
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in terms of the Witten Laplacian on one-forms leading to sophisticated methods for estimating the
two-point correlation functions. This formula is in some sense a stronger and more flexible version of
the Brascamp-Lieb inequality [5]. The formula can be written as

cov (f, g) = Z−1

∫ (
A

(1)−1

Φ ∇f ·∇g
)
e−Φ(x) dx,

where Z is a normalization constant.
To understand the idea behind the formula mentioned above, let us denote by 〈f〉Λ the mean value

of f with respect to the measure
Z−1e−Φ(x) dx,

the covariance of two functions f and g is defined by

cov (f, g) =
〈(

f − 〈f〉Λ
)(
g − 〈g〉Λ

)〉
.

If one wants to have an expression of the covariance in the form

cov (f, g) =
〈
∇g · w

〉
L2(Rn,Rn;e−Φ dx)

(as in the case of the Brascamp–Lieb inequality) for a suitable vector field w, after observing that
∇g = ∇(g − 〈g〉) we get

cov (f, g) = Z−1

∫ (
g − 〈g〉Λ

)
(∇Φ−∇) · we−Φ(x) dx.

This leads to the question of solving the equation

f − 〈f〉Λ = (∇Φ−∇) · w.

Now, trying to solve this equation with w = ∇u, we obtain the equation

f − 〈f〉Λ = A
(0)
Φ u

〈u〉Λ = 0.

}
.

Assuming for now the existence of a smooth solution, by differentiation of this above equation we get

∇f = A
(1)
Φ ∇u

and the formula is now easily seen.

2 Relevant unbounded models
We shall consider systems, where each component is located at a site i of a crystal lattice Zd and is
described by a continuous real parameter xi ∈ R. A particular configuration of the total system will
be characterized by an element X = (xi)i∈Λ of the product space Ω = RΛ. This set is called the
configuration space or phase space.

We denote by Φ = ΦΛ the Hamiltonian which assigns to each configuration X ∈ RΛ a potential
energy Φ(X). The probability measure that describes the equilibrium of the system is then given by
the Gibbs measure

dµΛ(X) = Z−1
Λ e−Φ(X) dX,

Z > 0 is a normalization constant,

Z = ZΛ =

∫
RΛ

e−Φ(X) dX.

For any finite domain Λ of Zd, we consider a Hamiltonian of the phase space Ω = RΛ satisfying the
following assumprions:
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(1) lim
|X|→∞

|∇Φ(X)| = ∞.

(2) For some M , any ∂αΦ with |α| = M is bounded on RΛ.

(3) For |α| ≥ 1,
|∂αΦ(X)| ≤ Cα

(
1 + |∇Φ(X)|2

)1/2 for some Cα > 0.

(4) There exist w > 0, C > 0 such that

X · ∇Φ ≥ C|X|1+w for all |X| ≥ 1

C
.

Here and in what follows, α = (αi)i=1,...,m ∈ Z|Λ|
+ denotes a multiindex. We set |α| =

m∑
i=1

αi,

α! = α1! · · ·αm! . If β = (βi)i=1,...,m ∈ Z|Λ|
+ and βj ≤ αj for all j = 1, . . . ,m, then we write β ≤ α. For

α, β ∈ Z|Λ|
+ such that β ≤ α, we put

(
α
β

)
= α!

β! (α−β)! . If α = (αi)i=1,...,m ∈ Z|Λ|
+ and X ∈ Rd, we write

Xα =

m∏
i=1

xαi

and
∂α =

∂α1

∂xα1
1

· · · ∂αm

∂xαm
m

.

The Hessian of the Hamiltonian Φ is denoted by HessΦ. If i and j are two nearest neighbor sites
in Zd, we write i ∼ j. Finally, d(i, j) denotes the Manhattan distance of two lattice sites i, j ∈ Zd.

Throughout this paper, we assume that the source function g satisfies

|∂α∇g| ≤ Cα, ∀α ∈ N|Λ|. (2.1)

3 Decay of correlations without using 1-dimensional
Witten Laplacians

In [4, 15], the authors studied the existence of uniform logarithmic Sobolev inequalities by using
Zegarlinski criterion. Because of the difficulty in having a uniform lower bound for the spectrum of
the Witten Laplacian, they considered the models whose Hamiltonians are of the form

ΦΛ(X) =
∑
j∈Λ

ϕ(xj) +
J
2

∑
({i}∪{k})∩Λ ̸=∅,

j∼k

|zj − zk|2,

under the condition of strict convexity at ∞ on ϕ. The authors first discussed uniform estimates for a
family of 1-dimensional Witten Laplacians and then explained how the result may be generalized to
higher dimensions. In [4], Helffer and Bodineau gave a proof of the log–Sobolev inequality for similar
models but under weaker assumptions on ϕ.

We consider classical continuous models whose Hamiltonians satisfy the assumptions (1)–(4) above.
This is a generalized version of the type of Hamiltonians used in [4] and [15].

We discuss a direct method for proving uniform decay of correlations without using the one-
dimensional cases as discussed in [4] and [15]. As a consequence, we give a proof of the logarithmic
Sobolev inequality that does not use the one-dimensional Witten Laplacians. Our method is based
on a weak uniform strict convexity on the Hamiltonian.
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3.1 The decay of correlations
Definition. The lattice support, Sg of a function g on RΛ, is defined here to be the smallest subset
Γ of Λ ⊂ Zd for which g can be written as a function of xj alone with j ∈ Γ. For instance, if g = xi,
Sg = {i}.

Lemma 3.1. Suppose that there exist ρΛ ≥ 1 and δ0 > 0 such that

M HessΦM > ρΛ, where M is the diagonal matrix M = (e−δ0d(i,Sg))i∈Λ.

Then
MA

(1)
Φ M > ρΛ ≥ 1.

Proof. It follows from Theorem 1.6 – [18] (see also [30]) that the operator

A
(1)
Φ := −∆+∇Φ ·∇+ HessΦ > HessΦ

in the sense of the operator inequalities, i.e.,

A
(1)
Φ − HessΦ > 0.

Now, using classical results on the operator inequality (see [28]), we have

MA
(1)
Φ M > M HessΦM > ρΛ.

Proposition 3.1. Suppose that the Hamiltonian Φ satisfies the assumptions (1)–(4) above and there
exist ρΛ ≥ 1 and δ0 > 0 such that

M HessΦM > ρΛ, where M is the diagonal matrix M = (e−δ0d(i,Sg))i∈Λ.

Let gand h be smooth functions on RΓ, and RΓ′ , where Γ and Γ′ & Λ with Γ ∩ Γ′ = ∅ denote,
respectively, the support of g and h, and assume that g and h satisfy (2.1). Then

|cov (g, h)| < Ce−δ0d(Sh,Sg),

where C is a positive constant that does not depend on Λ, but possibly depends on the size of the
supports of g and h.

Proof. There exists c1 > 0 such that
A

(1)
Φ ≥ c1.

Moreover, we have the Helffer–Sjötrand formula

cov (g, h) = Z−1

∫
RΛ

(
A

(1)−1

Φ ∇g ·∇h
)
e−Φ(x) dx, (3.1)

where
Z =

∫
RΛ

e−Φ(x) dx.

Multiplying the equation
A

(1)
Φ ∇f = ∇g

by M , we obtain
MA

(1)
Φ ∇f = M∇g ⇐⇒ MA

(1)
Φ MM−1∇f = M∇g.

Taking the inner product with M−1∇f on both sides of this last equality and integrating with respect
to Z−1e−Φ dx, we obtain〈

MA
(1)
Φ MM−1∇f,M−1∇f

〉
Λ
=

〈
M∇g,M−1∇f

〉
Λ
.
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Note that this inner product is well defined under the assumptions (1)–(4) above on the Hamiltonian.
Now, using the fact that M HessΦM > ρΛ ≥ 1, we have〈

MA
(1)
Φ MM−1∇f,M−1∇f

〉
Λ
≥ ρΛ‖M−1∇f‖2Φ.

Thus using the Cauchy–Schwartz inequality on the right-hand side, we get

ρΛ‖M−1∇f‖2Φ ≤ ‖M∇g‖Φ‖M−1∇f‖Φ,

where

ρΛ ≥ 1 and ‖u‖Φ :=

(
Z−1

∫
RΛ

|u|2e−Φ(x) dx

)1/2

.

If ‖M−1∇f‖Φ = 0, then A
(1)−1

Φ ∇g = 0 and the result follows. If ‖M−1∇f‖Φ 6= 0, then we have

‖M−1∇f‖Φ ≤ ‖M∇g‖Φ.

Equivalently, ∫
RΛ

∑
i∈Λ

e2δ0d(i,Sg)f2
xi
e−Φ(x) dx ≤

∫
RΛ

∑
i∈Λ

e−2δ0d(i,Sg)g2xi
e−Φ(x) dx. (3.2)

Now, using the fact that gxi = 0 if i /∈ Sg, d(i, Sg) = 0 if i ∈ Sg and (2.1), we obtain∫
RΛ

∑
i∈Λ

e2δ0d(i,Sg)f2
xi
e−Φ(x) dx < ZCg,

where Cg is a positive constant that depends only on the size of the support of g. Thus we finally get

Z−1

∫
RΛ

∑
i∈Λ

e2δ0d(i,Sg)f2
xi
e−Φ(x) dx < Cg.

Now, we use formula (3.1) to get

|cov (g, h)| = Z−1

∣∣∣∣ ∫
RΛ

∇f ·∇he−Φ(x) dx

∣∣∣∣ ≤ Z−1

∫
RΛ

∑
i∈Λ

∣∣fxi
(x)eδ0d(i,Sg)e−δ0d(i,Sg)hxi

∣∣e−Φ(x) dx

≤ Z−1

∫
RΛ

(∑
i∈Λ

f2
xi
(x)e2δ0d(i,Sg)

)1/2( ∑
i∈Sh

h2
xi
(x)e−2δ0d(i,Sg)

)1/2

e−Φ(x) dx

≤ Z−1

[ ∫
RΛ

∑
i∈Λ

f2
xi
(x)e2δ0d(i,Sg) dµΛ(x)

]1/2[ ∫
RΛ

∑
i∈Sh

h2
xi
(x)e−2δ0d(i,Sg) dµΛ(x)

]1/2

<
√
Cg

[
Z−1

∫
RΛ

∑
i∈Sh

h2
xi
(x) dµΛ(x)

]1/2
e−δ0d(Sh,Sg) <

√
Cg

√
Ch e

−δ0d(Sh,Sg).

Here, Cg and Ch are independent of Λ. They depend only on the size of the support of g and h,
respectively.

One can see that our method in the proof given above allows us to avoid having ρΛ to be involved
in the constant in the right-hand side. Thus we obtain the following mixing condition.
Corollary 3.1. Suppose that the Hamiltonian Φ satisfies the assumptions (1)–(4) above and there
exist ρΛ ≥ 1 and δ0 > 0 such that

M HessΦM > ρΛ, where M is the diagonal matrix M = (e−δ0d(i,Sg))i∈Λ.

Let g and h be smooth functions on RΓ and RΓ′ , where Γ and Γ′ & Λ with Γ ∩ Γ′ = ∅ denote,
respectively, the support of g and h, and assume that g and h satisfy (2.1). Then

|cov (g, h)| ≤ e−δ0d(Sh,Sg)‖∇g‖Φ‖∇h‖Φ. (3.3)
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Corollary 3.2. Suppose that the Hamiltonian Φ satisfies the assumptions (1)–(4) above and there
exist ρΛ ≥ 1 and δ0 > 0 such that

M HessΦM > ρΛ, where M is the diagonal matrix M = (e−δ0d(i,Sg))i∈Λ.

Then
|cov (xi, xj)| < Ce−δ0d(i,j),

where C is a positive constants that does not depend on Λ.

Proof. Take g = xi and h = xj .

3.2 Example of models satisfying the assumptions
Consider the cases, where the Hamiltonian is given by

ΦΛ(x) =
∑
j∈Λ

ϕ(xj) + g(x),

where

• x = (xi)i∈Λ,

• ϕ ∈ C2(R,R) is a one particle phase on R with at least quadratic increase at ∞ as discussed
in [4, 15],

• g ∈ C∞(RΓ) (Γ = Sg),
|∂α∇g| ≤ Cα, ∀α ∈ N|Λ|.

• If Cg > 0 is such that |gxixj | ≤ Cg and Kg = Cg(1 + |Γ|), we make the following assumption:
there exists ρ ≥ 1 such that the function ϕ̃(t) := ϕ(t)− Kg

2 t2 satisfies

d2ϕ̃(t)

dt2
> ρ.

Let us now verify that
ΦΛ(x) =

∑
j∈Λ

ϕ(xj) + g(x)

satisfies our main assumption, i.e., there exists ρΛ ≥ 1 such that

M HessΦM > ρΛ, where M = (e−δ0d(i,Sg))i∈Λ for some δ0 > 0.

The first and second derivatives of ΦΛ give

ΦΛ
xi
(x) = ϕ′(xi) + gxi(x),

ΦΛ
xixj

(x) =

{
ϕ′′(xi) + gxixi

(x),

gxixj (x) if i 6= j.

Let P = diag(e−ξd(i,Sg))i∈Λ, ξ > 0. We have

(P HessΦPx, x) =
∑
i∈Λ

[
(ϕ′′(xi) + gxixi(x))e

−2ξd(i,Sg)x2
i +

∑
j∈Λ, j ̸=i

gxixj (x)e
−ξ[d(i,Sg)+d(j,Sg)]xixj

]
=

∑
i∈Λ

ϕ′′(xi)e
−2ξd(i,Sg)x2

i +
∑
i∈Sg

gxixi(x)x
2
i +

∑
i∈Sg

∑
j∈Sg, j ̸=i

gxixj (x)xixj

≥
∑
i∈Λ

ϕ′′(xi)e
−2ξd(i,Sg)x2

i − Cg

∑
i∈Sg

x2
i +

∑
i∈Sg

∑
j∈Sg, j ̸=i

gxixj (x)xixj

≥
∑
i∈Λ

ϕ′′(xi)e
−2ξd(i,Sg)x2

i − Cg

∑
i∈Λ

x2
i +

∑
i∈Sg

∑
j∈Sg, j ̸=i

gxixj (x)xixj (Sg  Λ).
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There is Schur’s Lemma (see [31]) stating that for each pair of sequence (xi)1≤i≤m and (yj)1≤j≤n, we
have the bound ∣∣∣ m∑

i=1

n∑
j=1

cijxiyj

∣∣∣ ≤ √
RC

( m∑
i=1

|xi|2
)1/2( n∑

j=1

|yj |2
)1/2

,

where R and C are the row sum and the column sum maxima defined by

R = max
i

n∑
j=1

|cij | and C = max
j

m∑
i=1

|cij |.

Using this result, we have ∣∣∣ ∑
i∈Sg

∑
j∈Sg, j ̸=i

gxixj (x)xixj

∣∣∣ ≤ √
RΛCΛ

∑
i∈Λ

x2
i ,

where
RΛ = max

i∈Sg

∑
j∈Sg

|gxixj
(x)| ≤ Cg|Γ| and CΛ = max

j∈Λ

∑
i∈Sg

|gxixj
(x)| ≤ Cg|Γ|.

Thus

(P HessΦPx, x) ≥
∑
i∈Λ

ϕ′′(xi)e
−2ξd(i,Sg)x2

i − Cg

∑
i∈Λ

x2
i − Cg|Γ|

∑
i∈Λ

x2
i

=
∑
i∈Λ

[
ϕ′′(xi)e

−2ξd(i,Sg) − Cg(1 + |Γ|)
]
x2
i , ∀ ξ > 0, ∀x ∈ RΛ.

Hence

lim
ξ→0+

(P HessΦPx, x) ≥
∑
i∈Λ

[
ϕ′′(xi)−Kg

]
x2
i , ∀x ∈ RΛ (uniform limit)

> ρ
∑
i∈Λ

x2
i .

Hence ∃ δ0 > 0 such that
ξ ≤ δ0 =⇒ (P HessΦPx, x) > ρ

∑
i∈Λ

x2
i .

In particular, when ξ = δ0 with M = (e−δ0d(i,Sg))i∈Λ, we have

(M HessΦPMx, x) > ρ
∑
i∈Λ

x2
i .

The result follows.

4 What about higher correlations?
Recall that

dΦ = e−Φ/2deΦ/2 and d∗Φ = eΦ/2d∗e−Φ/2,

where d and d∗ are the exterior derivative and exterior coderivative, respectively. The Witten Lapla-
cian is then defined to be the associated second order operator

W
(k)
Φ = (dΦ + d∗Φ)

2 = dΦd
∗
Φ + d∗ΦdΦ.

acting on k-forms.
We now consider the operators A

(k)
Φ given by

A
(k)
Φ = eΦ/2 ◦W (k)

Φ ◦ e−Φ/2



A Uniform Convexity Method for Estimating Correlations 77

acting on the weighted spaces L2(RΛ, e−Φ dx,ΛkRΛ) [18], the space of k-smooth forms with coefficients
in L2(RΛ, e−Φ dx). The norm on this space is defined by

∥∥∥ ∑
i1<···<ik

fi1···ik dx
i1 · · · dxik

∥∥∥
Φ
=

(
Z−1

∫
RΛ

∑
i1<···<ik

f2
i1···ik(x)e

−Φ dx

)1/2

.

If dk denotes the differential k-form operator and d∗k is its adjoint, we have

dkA
(k)
Φ = A

(k+1)
Φ dk. (4.1)

This equality is a higher order version of ∇A
(0)
Φ = A

(1)
Φ ∇ which is obtained when identifying 0-forms

with functions and 1-forms with vector fields.
Recall that under the assumption (1)–(4), the operators A(k)

Φ are positive on L2(RΛ, e−Φdx,ΛkRΛ)
(k ≥ 1) (see [18, Section 4.1]).

Proposition 4.1. Let Mk be the multiplication operators on L2(RΛ, e−Φ dx,ΛkRΛ):

Mk
∑

i1<···<ik

fi1···ik dx
i1 · · · dxik :=

∑
i1<···<ik

δ(i1, . . . , ik)fi1···ik dx
i1 · · · dxik ,

where δ(i1, . . . , ik) = (e−δ0d({i1,...,ik},Sg))i1,...,ik∈Λ for some δ0 > 0 and g ∈ C∞(RΓ) satisfying

|∂α∇g| ≤ Cα, ∀α ∈ N|Λ|.

Suppose that the Hamiltonian Φ satisfies the assumptions (1)–(4) above and there exist ρk ≥ 1 and
δ0 > 0 such that

MkA
(k)
Φ Mk > ρk ≥ 1 (k ≥ 1),

then
Z−1

∫
RΛ

∑
i1<···<ik

f2
xi1

···xik
(x)e2δ0d({i1,...,ik},Sg)e−Φ dx ≤ Ck, (4.2)

where Ck is a positive constant independent of Λ.

Proof. The multiplication operator Mk defined on L2(RΛ, e−Φ dx,ΛkRΛ) by

Mk

∑
i1<···<ik

fi1···ik dx
i1 · · · dxik :=

∑
i1<···<ik

e−δ0d({i1,...,ik},Sg)fi1···ik dx
i1 · · · dxik

is self-adjoint and invertible. Let f be a smooth solution of

A
(0)
Φ f = g − 〈g〉Λ in RΛ.

Using dkA
(k)
Φ = A

(k+1)
Φ dk, we have

A
(k)
Φ ∇kf = ∇kg,

where ∇ku denotes the k-order Hessian of u [18]. Multiplying both sides by Mk and taking the inner
product with M−1

k ∇kf , we obtain〈
MkA

(k)
Φ MkM

−1
k ∇kf,M−1

k ∇kf
〉
=

〈
Mk∇kg,M−1

k ∇kf
〉
.

It then follows from the assumption MkA
(k)
Φ Mk > ρk ≥ 1 and Cauchy–Schwartz inequality that

‖M−1
k ∇kf‖2Φ ≤ ρk‖M−1

k ∇kf‖2Φ ≤ ‖Mk∇kg‖Φ‖M−1
k ∇kf‖Φ. (4.3)
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If ‖M−1
k ∇kf‖Φ = 0, then there is nothing to prove. However, if ‖M−1

k ∇kf‖Φ 6= 0, we have∫
RΛ

∑
i1···ik

f2
xi1 ···xik

(x)e2δ0d({i1,...,ik},Sg)e−Φ dx

≤
∫
RΛ

∑
i1···ik

g2xi1
···xik

(x)e−2δ0d({i1,...,ik},Sg)e−Φ dx

=

∫
RΛ

∑
i1···ik∈Sg

g2xi1
···xik

(x)e−2δ0d({i1,...,ik},Sg)e−Φ dx ≤ Ck,g.

where Ck,g is a positive constant that depends only on the support of g.

The higher order correlation is defined as

〈g1, . . . , gk〉 :=
〈
(g1 − 〈g1〉) · · · (gk − 〈gk〉)

〉
. (4.3)

Using the estimate above for the higher order Hessians of the solution f and following the same
argument as in the proof of Proposition 3.1, we obtain

Proposition 4.2. Let g1, g2, g3 be smooth functions satisfying (2.1) with Sgi ∩Sgj = ∅ (i, j = 1, 2, 3;
i 6= j), where Sgi denotes the support of gi. Suppose that the Hamiltonian Φ satisfies the assumptions
(1)–(4) above and there exist ρ2 ≥ 1 and δ0 > 0 such that

M2A
(2)
Φ M2 > ρ2 ≥ 1.

Then we have the following higher order correlations:

|〈g1, g2, g3〉| ≤ C
[
e−δ0d(Sg2

,Sg1
) + e−δ0d(Sg3

,Sg1
)
]
.

If g1 = xi, g2 = xj and g3 = xk, we obtain∣∣∣〈(xi − 〈xi〉
)(
xj − 〈xj〉

)(
xk − 〈xk〉

)〉∣∣∣ ≤ C
[
e−δ0d(i,j) + e−δ0d(i,k)

]
.

Remark. Note that in the one-dimensional case, we obtain a stronger exponential decay in the sense
that

d(i, j) → ∞ =⇒ d(i, k) → ∞.

Indeed, we have
i ≤ j ≤ k =⇒ d(i, k) = d(i, j) + d(j, k) ≥ d(i, j).

However, this is not the case in higher dimensions. Thus if d > 1, this exponential decay of the
correlations is weaker in the sense that the decay occurs as you simultaneously pull the spins away
from a fixed one.

5 Calculating the derivatives of the free energy
Phase transitions and critical points correspond to mathematical singularities in the thermodynamic
potentials and other thermodynamic quantities which are related to appropriate derivatives of the free
energy. For example, at the critical point of a ferromagnetic system, the spontaneous magnetization
vanishes and the susceptibility diverges. It is therefore central to develop the methods for calculating
derivatives of the free energy as a function of the thermodynamic parameter. The most famous result
on the analyticity of the free energy is the circle theorem by Lee and Yang [33]. The Lee–Yang theorem
and its variants depend on the ferromagnetic character of the interaction. There are various other
ways of proving the infinite differentiability or the analyticity of the free energy for (ferromagnetic
and non ferromagnetic) systems at high or low temperatures, or at large external fields. Most of
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them take advantage of a sufficiently rapid decay of correlations and/or cluster expansion methods.
Here is a small sample of relevant references: Bricmont, Lebowitz and Pfister [6], Dobroshin [7],
Dobroshin and Sholsman [8, 9], Duneau et al [10–12], Glimm and Jaffe [13, 14], Israel [17], Kotecky
and Preiss [20], Kunz [21], Lebowitz [22,23], Malyshev [26], Malychev and Milnos [27] and Prakash [29].
To our knowledge, the only available exact formula of the free energy was obtained by M. Kac and
J. M. Luttinger [19]. Kac–Luttinger formula has a limit of validity and is a representation of the
free energy in terms of irreducible distribution functions. In this section of the paper, we derive a
more explicit formula of the higher derivatives of the free energy that is suitable for applications. Our
method is again based on the Witten–Laplacian formalism framework.

We consider the Hamiltonian given by

Φβ(x) = ΦΛ(x)− βg(x),

where β is a thermodynamic parameter (temperature or magnetic field) and g satisfies

|∂α∇g| ≤ Cα, ∀α ∈ N|Λ|.

We assume that there exist positive β0 and β1 such that Φβ(x) satisfies the assumptions (1)–(4)
for all β ∈ (β0, β1) (see [24] for more details).

The finite volume pressure or the free energy of the system is defined by

PΛ(β) =
1

|Λ|
ln

[ ∫
RΛ

e−Φβ(x) dx

]
.

We are interested in the k-times differentiability of the free energy in the thermodynamic limit
given by

P (β) = lim
|Λ|→∞

PΛ(β).

We use the following notations:

ZΛ,β =

∫
RΛ

e−Φβ(X) dX,

〈 · 〉β,Λ = Z−1
Λ,β

∫
RΛ

·e−Φβ(X) dX.

Observe that for an arbitrary suitable function f(β),

∂

∂β
〈f(β)〉β,Λ = 〈f ′(β)〉β,Λ + cov (f, g).

Now, using the Helffer–Sjötrand formula (3.1), we have

∂

∂β
〈f(β)〉β,Λ = 〈f ′(β)〉β,Λ +

〈
A

(1)−1

Φβ (∇f) ·∇g
〉
β,Λ

.

Denote by Ag the operator A
(1)−1

Φβ ( · ) ·∇g, i.e.,

Agf := A
(1)−1

Φβ (∇f) ·∇g.

Thus
∂

∂β
〈f(β)〉β,Λ =

〈(
∂

∂β
+Ag

)
f

〉
β,Λ

.

The linear operator ∂
∂β +Ag will be denoted by Hg:

Hg :=
( ∂

∂β
+Ag

)
f.
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Observe that each β ∈ (β0, β1) is associated with a unique C∞-solution f(β) of the equation{
A

(0)

Φβ
Λ

f(β) = g − 〈g〉
L2(µ)

,

〈f(β)〉L2(µ) = 0.

Hence
A

(1)

Φt
Λ
vβ = ∇g,

where vβ = ∇f(β). Notice that the map
β 7→ vβ

is well defined and {
vβ : β ∈ (β0, β1)

}
is a family of smooth solutions on RΛ.

Under the notation above, we have the following

Proposition 5.1. Let g be a smooth function satisfying (2.1), and β0 > 0 such that Φβ(x) =
ΦΛ(x)− βg(x) satisfies the assumptions (1)–(4) for all β ∈ [0, β0) (see [24, Section 7]). Then for all
n ≥ 1, the nth derivative of the finite volume pressure is given by

P
(n)
Λ (β) = (n− 1)!

〈An−1
g g〉β,Λ
|Λ|

,

where An−1
g g is the n− 1 times composition of the operator Agg( · ).

Here, we give only an outline of the proof of this proposition without discussing the dependency
and control of the solution on the parameter β. This issue has been discussed rigorously in [16] and [24]
using a sophisticated bootstrap argument.

Proof. First, put
θΛ(β) = |Λ|PΛ(β),

we have

θ′Λ(β) = 〈g〉β,Λ =
〈( ∂

∂β
+Ag

)0

g
〉
β,Λ

= 〈H0
gg〉β,Λ,

θ′′Λ(β) =
∂

∂β
〈g〉β,Λ =

〈
A

(1)−1

Φβ (∇g) ·∇g
〉
β,Λ

=
〈( ∂

∂β
+Ag

)
g
〉
β,Λ

,

θ′′′Λ (β) =
∂

∂β

〈
A

(1)−1

Φβ (∇g) ·∇g
〉
β,Λ

=
〈 ∂

∂β
A

(1)−1

Φβ (∇g) ·∇g
〉
β,Λ

+
〈(

A
(1)−1

Φβ ∇
(
A

(1)−1

Φβ (∇g) ·∇g
))

·∇g
〉
β,Λ

=
〈( ∂

∂β
+Ag

)2

g
〉
β,Λ

,

By induction, it is easy to see that

θ
(n)
Λ (β) =

〈( ∂

∂β
+Ag

)n−1

g
〉
β,Λ

= 〈Hn−1
g g〉β,Λ, ∀n ≥ 1.

Next, observe that

Hgg = A
(1)−1

Φβ (∇g) ·∇g = Agg,

H2
gg =

∂

∂β
∇f ·∇g +

(
A

(1)−1

Φβ ∇
(
A

(1)−1

Φβ (∇g) ·∇g
))

·∇g,
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because f satisfies the equation
∇f = A

(1)−1

Φβ (∇g).

With vβ = ∇f , we have
∂

∂β
∇f =

∂vβ

∂β
= A

(1)−1

Φβ

[
(Hess g)vβ −∇g · ∇vβ

]
,

H2
gg = A

(1)−1

Φβ

[
(Hess g)vβ −∇g · ∇vβ +∇

(
A

(1)−1

Φβ ∇g · ∇g
)]

· ∇g.

Now, observe that

∇(A
(1)−1

Φβ ∇g · ∇g) = ∇(∇f · ∇g) = ∇(vβ · ∇g)

= (Hess g)vβ −∇g · ∇vβ (after expanding the gradient).
Thus

H2
gg = A

(1)−1

Φβ

[
∇
(
A

(1)−1

Φβ ∇g · ∇g
)
+∇

(
A

(1)−1

Φβ ∇g · ∇g
)]

· ∇g

= A
(1)−1

Φβ

[
2∇

(
A

(1)−1

Φβ ∇g · ∇g
)]

· ∇g = 2A
(1)−1

Φβ [Agg] · ∇g = 2A2
gg

We will now prove by induction that
Hn−1

g g = (n− 1)!An−1
g g for n ≥ 1.

We have already checked that the result is true for n = 1, 2, 3. For induction, assume that
Hn−1

g g = (n− 1)!An−1
g g.

If n is replaced by ñ ≤ n, then

Hn−1
g g =

( ∂

∂β
+Ag

)(
(n− 1)!An−1

g g
)
= (n− 1)!

( ∂

∂β
An−1

g g +An
g g

)
.

Now,
An−1

g g =
[
A

(1)−1

Φβ ∇(An−2
g g)

]
·∇g = ∇φn ·∇g,

where
∇φn =

[
A

(1)−1

Φβ ∇(An−2
g g)

]
.

We obtain
∂

∂β
∇φn = A

(1)−1

Φβ

( ∂

∂β
∇An−2

g g + (Hess g)∇φn −∇g ·∇(∇φn)
)
.

Hence
∂

∂β
An−1

g g =
∂

∂β
∇φn ·∇g

=
[
A

(1)−1

Φβ

( ∂

∂β
∇An−2

g g + (Hess g)∇φn −∇g ·∇(∇φn)
)]

·∇g

=
[
A

(1)−1

Φt

( ∂

∂β
∇An−2

g g +∇(∇φn ·∇g)
)]

·∇g

= Ag

[ ∂

∂β
An−2

g g +Ag(An−2
g g)

]
= AgHg(An−2

g g).

= AgHg

( 1

(n− 2)!
H(n−2)

g g
)

(from the induction hypothesis)

=
1

(n− 2)!
AgH(n−1)

g g

=
1

(n− 2)!
Ag

(
(n− 1)!An−1

g g
)

(still by the induction hypothesis)

= (n− 1)An
g g.
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Thus
Hn

g g = (n− 1)! (n− 1 + 1)An
g g = n!An

g g.

The result follows.

Next, we propose to find a formula of P (n)
Λ (β) that involves only Φβ(x) and g(x)/

Proposition 5.2. Let g be a smooth function satisfying (2.1) and assume that there exist β0 and β1

such that Φβ(x) = ΦΛ(x) − βg(x) satisfies the assumptions (1)–(4) for all β ∈ (β0, β1). Then for
all n ≥ 1, we have the following recursion formula to compute the nth derivative P

(n)
Λ (β) of the free

energy:
n−1∑
k=0

〈gk〉Λ,β

k!

P
(n−k)
Λ (β)

(n− k − 1)!
=

1

(n− 1)!

〈gn〉Λ,β

|Λ|
, n ≥ 1. (5.1)

Proof.

〈An−1
g g〉Λ = Z−1

∫
RΛ

(
A

(1)−1

Φ ∇An−2
g g ·∇g

)
e−Φ(x) dx = cov (An−2

g g, g) = 〈gAn−2
g g〉Λ − 〈g〉Λ〈An−2

g g〉Λ.

Now, denote by ζin the components of A(1)−1

Φ ∇An−3
g g. We have

〈gAn−1
g g〉Λ = Z−1

∫
RΛ

g
∑
i∈Λ

ζingxi
e−Φ(x) dx = Z−1

∫
RΛ

∑
i∈Λ

ζinggxi
e−Φ(x) dx

= Z−1

∫
RΛ

∑
i∈Λ

ζin
1

2

∂

∂xi
g2e−Φ(x) dx =

1

2
Z−1

∫
RΛ

A
(1)−1

Φ ∇An−3
g g ·∇(g2)e−Φ(x) dx

=
1

2
cov (An−3

g g, g2) =
1

2

[
〈g2An−3

g g〉Λ − 〈g2〉Λ〈An−3
g g〉Λ

]
.

We obtain
〈g2An−3

g g〉Λ =
1

3
cov (An−4

g g, g3) =
1

3
〈g3An−4

g g〉Λ − 1

3
〈g3〉Λ〈An−4

g g〉Λ.

Hence

〈An−1
g g〉Λ =

1

2
· 1
3
〈g3An−4

g g〉Λ − 1

2
· 1
3
〈g3〉Λ〈An−4

g g〉Λ − 1

2
〈g2〉Λ〈An−3

g g〉Λ − 〈g〉Λ〈An−2
g g〉Λ

=
1

2
· 1
3

[1
4
〈g4An−5

g g〉Λ − 1

4
〈g4〉Λ〈An−5

g g〉Λ
]

− 1

2
· 1
3
〈g3〉Λ〈An−4

g g〉Λ − 1

2
〈g2〉Λ〈An−3

g g〉Λ − 〈g〉Λ〈An−2
g g〉Λ

=
1

2
· 1
3
· 1
4
〈g4An−5

g g〉Λ − 1

2
· 1
3
· 1
4
〈g4〉Λ〈An−5

g g〉Λ

− 1

2
· 1
3
〈g3〉Λ〈An−4

g g〉Λ − 1

2
〈g2〉Λ〈An−3

g g〉Λ − 〈g〉Λ〈An−2
g g〉Λ

...

=
1

(n− 1)!
〈g(n−1)g〉Λ − 1

(n− 1)!
〈g(n−1)〉Λ〈g〉Λ − 1

(n− 2)!
〈g(n−2)〉Λ〈Agg〉Λ − · · ·

− 1

3!
〈g3〉Λ〈An−4

g g〉Λ − 1

2!
〈g2〉Λ〈An−3

g g〉Λ.

Thus

1

(n− 1)!
〈g(n−1)〉Λ〈g〉Λ +

1

(n− 2)!
〈g(n−2)〉Λ〈Agg〉Λ + · · ·+ 1

3!
〈g3〉Λ〈An−4

g g〉Λ

+
1

2!
〈g2〉Λ〈An−3

g g〉Λ +
1

1!
〈g〉Λ〈An−2

g g〉Λ +
1

0!
〈g0〉Λ〈An−1

g g〉Λ =
1

(n− 1)!
〈gn〉Λ,
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i.e.,
n−1∑
k=0

〈gk〉Λ〈An−k−1
g g〉Λ
k!

=
1

(n− 1)!
〈gn〉Λ.
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