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Abstract. In this paper we study the existence and regularity results for nonlinear elliptic equation
with degenerate coercivity and a singular gradient lower order term.
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1 Introduction
Consider the elliptic problem{

− div
(
a(x, u)â(x, u,∇u)

)
+B |∇u|p

|u|θ = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded set of RN (N ≥ 3), B > 0, f is a positive function belonging to Lm(Ω)
with m ≥ 1, and

0 < θ < 1, (1.2)
2 ≤ p < N. (1.3)

Here, we suppose that a : Ω × R → R, is a Carathéodory function such that for a.e. x ∈ Ω, for
every s ∈ R, we have

α

(1 + |s|)γ
≤ a(x, s) ≤ β, (1.4)

where α, β are strictly positive real numbers and γ > 0.
We suppose that â : Ω × R × RN → R is a Carathéodory function satisfying a.e. x ∈ Ω, ∀ s ∈ R

and ξ, ξ′ ∈ RN , the following inequalities:

â(x, s, ξ) · ξ ≥ |ξ|p, (1.5)

|â(x, s, ξ)| ≤ C1|s|
θ(p−1)

p + C2|ξ|p−1, (1.6)(
â(x, s, ξ)− â(x, s, ξ′)

)
(ξ − ξ′) ≥ C3|ξ − ξ′|p, (1.7)

where C1, C2 and C3 are positive real numbers.
As prototype examples, we consider the following models:− div

( |u| θ(p−1)
p (1 + |Du|)−1Du+ |Du|p−2Du

(1 + |u|)γ
)
+

|∇u|p

|u|θ
= f in Ω,

u = 0 in ∂Ω,

and a(x, s) =
1

(b(x) + |s|)γ
, b(x) ∈ L∞(Ω), and b(x) ≥ c > 0,

â(x, s, ξ) = |ξ|p−2
(
1 + |ξ|−ε

)
ξ, ε ∈ (0, p− 1).

The main difficulty in dealing with problem (1.1) is the fact that the lower order term has a quadratic
growth with respect to the gradient and is singular in the variable u, and the differential operator

Au = div
(
a(x, u)â(x, u,∇u)

)
is well defined between W 1,p

0 (Ω) and its dual, but it fails to be coercive if u is large. The corresponding
results in the case Au = div(a(x, u)∇u) and p = 2 are developed in [6]. In the case where γ = B = 0,
f ∈ L1(Ω), the solution u of problem (1.1) belongs only to W 1,s

0 (Ω) for every s < N(p−1)
N−1 (see

[3, 4]). Once again, the lower order term improves the regularity of solutions of problem (1.1), since
N(p−1)
N−1 < N(p−θ)

N−θ (due to the fact that 0 < θ < 1). In [1], under the assumptions B ≡ 0, γ = θ(p− 1)

and â(x, s, ξ) = |ξ|p−2ξ, the authors proved only the existence of entropy solutions u of problem (1.1)
belonging only to the Marcinkiewicz space Mτ (Ω) for every τ = N(p−1)(1−θ)

N−p , with |∇u| ∈ Mq(Ω)

for q = N(p−1)(1−θ)
N−1−θ(p−1) . The existence and regularity results for problem (1.1) have been obtained in [8]

provided γ > 0, 1 ≤ θ ≤ 2 and f ∈ Lm(Ω) with m > 1.
To prove our main results, we approximate problem (1.1) by a sequence of non-degenerate and

non-singular problems. Then we prove both a priori estimates and convergence results on the sequence
of approximating solutions. Next, by the strong maximum principle [7], we prove that the weak limit
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of the approximate solutions is strictly positive in Ω. Finally, we pass to the limit in the approximate
problems.

The paper is organized as follows. In Section 2, we introduce the main results. The approximate
problem is presented in Section 3. Estimate uniforms are proved in Section 4. Theorems 2.1–2.4 are
proved in Section 5.

2 Statement of main results
Definition. Let f ∈ Lm(Ω), m ≥ 1. A measurable function u is said to be a solution in the sense
of distributions to problem (1.1) if u ∈ W 1,1

0 (Ω), â(x, u,∇u) ∈ (L1(Ω))N , |∇u|p
uθ ∈ L1(Ω), u > 0 in Ω,

and ∫
Ω

a(x, u)â(x, u,∇u)∇φdx+B

∫
Ω

|∇u|p

uθ
φdx =

∫
Ω

fφ dx, ∀φ ∈ C1
0 (Ω). (2.1)

Our main results are the following theorems.

Theorem 2.1. Let f ∈ L1(Ω) be a positive function and assume that (1.2)–(1.7) hold true. Then
problem (1.1) has at least one distributional solution u ∈W 1,η

0 (Ω) with

η =
N(p− θ)

N − θ
. (2.2)

Remark 2.1. Hypothesis (1.3) implies that η < p. Since p ≥ 2 > 2− 1
N , we can deduce that η > 1.

Theorem 2.2. If hypotheses (1.2)–(1.7) hold and f ∈ Lm(Ω) is a positive function such that

1 < m <
pN

pN − θ(N − p)
, (2.3)

then problem (1.1) has at least one distributional solution u ∈W 1,σ
0 (Ω) with

σ =
mN(p− θ)

N − θm
. (2.4)

Remark 2.2. Notice that condition (2.3) guarantees that σ < p.

Theorem 2.3. Suppose that assumptions (1.2)–(1.7) hold and f ∈ Lm(Ω) is a positive function such
that

pN

pN − θ(N − p)
≤ m <

N

p
.

Then problem (1.1) has at least one distributional solution u ∈W 1,p
0 (Ω).

Theorem 2.4. Let 0 < γ < p − 1. Suppose that assumptions (1.2)–(1.7) hold and f ∈ Lm(Ω) is a
positive function such that

m >
N

p
. (2.5)

Then problem (1.1) has at least one distributional solution u ∈W 1,p
0 (Ω)L∞(Ω).

3 The approximated problem
Hereafter, we denote by Tk the truncation function at the level k > 0 defined by

Tk(s) = max
{
− k,min{s, k}

}
for every s ∈ R.
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Let (fn) (fn > 0) be a sequence of bounded functions defined in Ω that converges to f > 0 in
L1(Ω), and verifies the inequalities fn ≤ n and fn ≤ f for every n ≥ 1 (for example, fn = Tn(f)).
Consider the following non-degenerate and non-singular problem:− div

(
a(x, Tn(un))â(x, un,∇un)

)
+B

un|∇un|p

(|un|+ 1
n )

θ+1
= fn in Ω,

un = 0 on ∂Ω.

(3.1)

Problem (3.1) admits at least one solution un ∈W 1,p
0 (Ω) ∩ L∞(Ω) (see [5]).

Proposition 3.1. We have un ≥ 0 almost everywhere in Ω.

Proof. Taking u−n = min(un, 0) as a test function in (3.1), using (1.4) and (1.5), we find that

α

(1 + n)γ

∫
Ω

|∇u−n |p dx ≤
∫
Ω

fnu
−
n dx ≤ 0,

so, un ≥ 0 almost everywhere in Ω.

Therefore, Proposition 3.1 implies that un satisfies− div
(
a(x, Tn(un))â(x, un,∇un)

)
+B

un|∇un|p

(un + 1
n )

θ+1
= fn in Ω,

un = 0 on ∂Ω.

(3.2)

In the remainder of this paper, we denote by C various positive constants depending only on the
data of the problem, but not on n.

4 A priori estimates
We are now going to prove some a priori estimates. The next lemma gives a control of the lower order
term.

Lemma 4.1. Let un be the solutions to problem (3.2). Then

B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
dx ≤

∫
Ω

f dx. (4.1)

Proof. For any fixed h > 0, let us consider Th(un)
h as a test function in (3.2), and dropping the

nonnegative first term, we obtain

B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1

Th(un)

h
dx ≤

∫
Ω

fn
Th(un)

h
dx.

So,

B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1

Th(un)

h
dx ≤

∫
Ω

f dx. (4.2)

Letting h tend to 0 in (4.2), we deduce (4.1) by Fatou’s lemma.

Lemma 4.2. Let f ∈ L1(Ω) be a positive function. Then the sequence un is bounded in W 1,η
0 (Ω),

where η is given by (2.2), and Tk(un) is bounded in W 1,p
0 (Ω) for every k > 0.
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Proof. Estimate (4.1) and the fact that 2θ+1unu
θ
n ≥ (un + 1

n )
θ+1 in {un ≥ 1} give

B

∫
{un≥1}

|∇un|p

uθn
dx ≤ B

∫
{un≥1}

un|∇un|p

(un + 1
n )

θ+1
dx ≤ ∥f∥L1(Ω). (4.3)

Let η < p and G1(t) = t− T1(t). Using the Hölder inequality, we have∫
Ω

|∇G1(un)|η dx =

∫
{un≥1}

|∇G1(un)|η

u
θη
p
n

u
θη
p
n dx

≤
( ∫
{un≥1}

|∇G1(un)|p

uθn
dx

) η
p
( ∫
{un≥1}

u
θη

p−η
n dx

) p−η
p

. (4.4)

By (4.3), (4.4) and due to un ≤ G1(un) + 1, we obtain∫
Ω

|∇G1(un)|η dx ≤ ∥f∥
η
p

L1(Ω)

( ∫
{un≥1}

u
θη

p−η
n dx

) p−η
p

≤ C

( ∫
{un≥1}

(G1(un))
θη

p−η dx

) p−η
p

+ C. (4.5)

Inequality (2.2) implies that η∗ = ηθ
p−η . By Sobolev embedding, we get( ∫

{un≥1}

(G1(un))
η∗
dx

) η
η∗

≤ C

∫
{un≥1}

|∇G1(un)|η ≤ C

(∫
Ω

(G1(un))
η∗
dx

) θ
η∗

+ C. (4.6)

Since θ < 1 < η, inequality (4.6) implies that G1(un) is bounded in Lη∗
(Ω). From (4.5) follows the

boundedness of G1(un) in W 1,η
0 (Ω). Using Tk(un) as a test function in (3.2), one has∫

{un≤k}

|∇Tk(un)|p dx ≤ Ck(k + 1)γ (4.7)

for every n ≥ 1. Taking k = 1 in (4.7), we deduce that T1(un) is bounded in W 1,p
0 (Ω) and hence in

W 1,η
0 (Ω). Since un = G1(un) + T1(un), we deduce that un is bounded in W 1,η

0 (Ω). Moreover, (4.7)
implies that

∥Tk(un)∥W 1,p
0 (Ω) ≤ Ck(k + 1)γ (4.8)

for all n ≥ 1.

Lemma 4.3. Suppose that the hypotheses of Theorem 2.2 are satisfied. Then the sequence un is
bounded in W 1,σ

0 (Ω), where σ is given by (2.3).

Proof. Take ϕ = (un + 1)θ+ps − 1 with

s =
p∗ − θm′

pm′ − p∗
(4.9)

as a test function in problem (3.2) (note that s < 0 and θ + ps > 0). We get

C

∫
Ω

a(x, Tn(un))â(x, un,∇un) · ∇un(un + 1)θ+ps−1 dx

+B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
(un + 1)θ+ps dx = B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
dx+

∫
Ω

fn((un + 1)θ+ps − 1) dx.

Using (1.4), (1.5), (4.1), fn ≤ f , and dropping the nonnegative first term, we find that

B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
(un + 1)θ+ps dx ≤

∫
Ω

f(un + 1)θ+ps dx+ C.
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Using the fact that
2un(un + 1)θ ≥

(
un +

1

n

)θ+1

(4.10)

on the set {x ∈ Ω, un ≥ 1}, we write

B

2(s+ 1)p

∫
{un≥1}

∣∣∇(
(un + 1)s+1 − 2s+1

)∣∣p dx =
B

2

∫
{un≥1}

|∇un|p(un + 1)ps dx

≤
∫

{un≥1}

f(un + 1)θ+ps dx+ C ≤ C

( ∫
{un≥1}

(un + 1)(ps+θ)m′
dx

) 1
m′

+ C. (4.11)

Using (4.11) and the Sobolev’s inequality on the left-hand side, we have

S B

2(s+ 1)p

( ∫
{un≥1}

∣∣(un + 1)s+1 − 2s+1
∣∣p∗

dx

) p
p∗

≤ B

2(s+ 1)p

∫
{un≥1}

∣∣∇((un + 1)s+1 − 2s+1)
∣∣p dx ≤ C

( ∫
{un≥1}

(un + 1)(ps+θ)m′
dx

) 1
m′

+ C.

We remark that (4.9) is equivalent to require (s+ 1)p∗ = (ps+ θ)m′, moreover, p
p∗ >

1
m′ , due to the

hypotheses on m and θ. Hence( ∫
{un≥1}

∣∣(un + 1)s+1 − 2s+1
∣∣p∗

dx

) p
p∗

≤ C

( ∫
{un≥1}

(un + 1)(s+1)p∗
dx

) 1
m′

+ C,

so, ∫
{un≥1}

(un + 1)(s+1)p∗
dx ≤ C. (4.12)

Now, by Hölder’s inequality, (2.4), (4.9) and the fact that −s σp
p−σ = (s+ 1)p∗, we obtain∫

{un≥1}

|∇un|σ dx =

∫
{un≥1}

|∇un|σ

(un + 1)−sσ
(un + 1)−sσ dx

≤
( ∫
{un≥1}

|∇un|p

(un + 1)−ps
dx

)σ
p
( ∫
{un≥1}

(un + 1)−s σp
p−σ dx

) p−σ
p

≤
( ∫
{un≥1}

|∇un|p(un + 1)(ps+θ)m′
dx

)σ
p
( ∫
{un≥1}

(un + 1)(s+1)p∗
dx

) p−σ
p

. (4.13)

Using (4.12) and (4.13), we deduce ∫
{un≥1}

|∇un|σ dx ≤ C. (4.14)

It remains to analyse the behaviour of ∇un on {un ≤ 1}. Taking T1(un) as a test function in (3.2),
using (1.4), (1.5), fn ≤ f and dropping the non-negative lower order term, we get∫

{un≤1}

|∇T1(un)|p dx ≤ C. (4.15)

As a consequence of estimates (4.14) and (4.15), the sequence {un}n is bounded in W 1,σ
0 (Ω).
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Lemma 4.4. Suppose that the hypotheses of Theorem 2.3 are satisfied. Then the sequence un is
bounded in W 1,p

0 (Ω).

Proof. Testing (3.2) with ϕ = (un + 1)θ − 1, we get

θ

∫
Ω

a(x, Tn(un))â(x, un,∇un) · ∇un(un + 1)θ−1 dx

+B

∫
Ω

|∇un|p

(un + 1
n )

θ+1
un(un + 1)θ dx = B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
dx+

∫
Ω

fn((un + 1)θ − 1) dx.

Using (1.4), (1.5), (4.1), fn ≤ f and dropping the non-negative first term, we obtain

B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
(un + 1)θ dx ≤ C

∫
Ω

fuθn dx+ C ≤ C

∫
{un≥1}

f(un − 1)θ dx+ C. (4.16)

By (4.16) and (4.10), we deduce

B

2

∫
{un≥1}

|∇un|p dx ≤ C

∫
{un≥1}

f(un − 1)θ dx+ C.

Using Sobolev’s inequality (with exponent p∗

θ on the left-hand side) and Hölder’s inequality (on the
right-hand side), we obtain

S B

2

( ∫
{un≥1}

(un − 1)p
∗
) p

p∗

dx ≤ B

2

∫
{un≥1}

|∇un|p dx ≤ C

( ∫
{un≥1}

(un − 1)p
∗
dx

) θ
p∗

+ C. (4.17)

Since θ < p, we have ∫
{un≥1}

(un − 1)p
∗
dx ≤ C. (4.18)

Inequalities (4.17) and (4.18) imply ∫
{un≥1}

|∇un|p dx ≤ C. (4.19)

Let us search for the same kind of estimate in {un < 1}. Taking T1(un) as a test function in problem
(3.2), using hypothesis (1.4) and dropping the non-negative lower order term, we get∫

{un<1}

|∇T1(un)|p dx ≤ C. (4.20)

As a consequence of (4.19) and (4.20), the sequence {un}n is bounded in W 1,p
0 (Ω).

To prove the L∞ a priori estimate, we will need the following result.

Lemma 4.5 ([2, Lemma 2.1]). Let w be a function in W 1,δ
0 (Ω) such that for k greater than some k0,∫

Ak

|∇w|δ dx ≤ Ck
γδ

p−1 |Ak|
δ
δ∗ +ε1 ,

where ε1 > 0, 0 ≤ γ < p − 1, δ∗ = Nδ
N−δ and Ak = {x ∈ Ω : w(x) > k}. Then the norm of w in

L∞(Ω) is bounded by a constant which depends on C, γ, δ, N , ε1, k0 and |Ω|.
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Lemma 4.6. Let 0 < γ < p− 1. Suppose that the hypotheses of Theorem 2.4 are satisfied. Then the
sequence {un}n is bounded in W 1,p

0 (Ω) ∩ L∞(Ω).
Proof. Let us start with the estimate in L∞(Ω). For x in R and for k > 0, define

Gk(x) = (|x| − k)+sign(x) = x− Tk(x).

For k > 0, if we take Gk(un) as a test function in (3.2), we get∫
Ω

a(x, Tn(un))â(x, un,∇un) · ∇unG′
k(un) dx+B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
Gk(un) dx =

∫
Ω

fnGk(un) dx.

By (1.4), (1.5), dropping the non-negative lower order term and using Hölder’s inequality, we obtain

α

∫
Ak

|∇un|p

(1 + un)γ
dx ≤ C

(∫
Ak

|Gk(un)|m
′
dx

) 1
m′

, (4.21)

where we have set Ak = {x ∈ Ω : |un(x)| ≥ k}. Let δ < p, using Hölder’s inequality and (4.21), we
have ∫

Ak

|∇un|δ dx =

∫
Ak

|∇un|δ

(1 + un)
γδ
p

(1 + un)
γδ
p dx

≤ C

(∫
Ak

|Gk(un)|m
′
dx

) δ
pm′

(∫
Ak

(1 + un)
γδ

p−δ dx

) p−δ
p

(4.22)

Choosing δ such that
δ∗ =

δN

N − δ
= m′ ⇐⇒ δ =

Nm

Nm+m−N
, (4.23)

it is easy to check that the hypotheses on m imply

δ <
N

N − p+ 1
< p. (4.24)

From (4.22), (4.23) and Sobolev’s inequality, we obtain∫
Ak

|∇un|δ dx ≤ C

(∫
Ak

(1 + un)
γδ

p−δ dx

) p−δ
p−1

. (4.25)

By (4.25) and die to 1 + un ≤ 2(k +Gk(un)) on Ak if k ≥ 1, we have∫
Ak

|∇un|δ dx ≤ C

[
k

γδ
p−1 |Ak|

p−δ
p−1 +

(∫
Ak

Gk(un)
γδ

p−δ dx

) p−δ
p−1

]
. (4.26)

Since γ < p− 1 and (2.5) holds, with our choice of δ we have
γδ

p− δ
< δ∗. (4.27)

By (4.26), (4.27), Hôlder’s, Sobolev’s and Young’s inequalities, one obtains∫
Ak

|∇un|δ dx ≤ C

[
k

γδ
p−1 |Ak|

p−δ
p−1 +

(∫
Ak

Gk(un)
δ∗ dx

) γδ
(p−1)δ∗

|Ak|
p−δ
p−1−

γδ
(p−1)δ∗

]

≤ C

[
k

γδ
p−1 |Ak|

p−δ
p−1 +

(∫
Ak

|∇un|δ dx
) γ

p−1

|Ak|
p−δ
p−1−

γδ
(p−1)δ∗

]

≤ C

[
k

γδ
p−1 |Ak|

p−δ
p−1 + ε

∫
Ak

|∇un|δ dx+ ε(p, γ)|Ak|
(p−δ)δ∗−γδ
δ∗(p−1−γ)

]
. (4.28)
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If we choose ε = 1
2C , then we can take on the right hand side in (4.28) the term containing the

gradient, obtaining ∫
Ak

|∇un|δ dx ≤ C
[
k

γδ
p−1 |Ak|

p−δ
p−1 + |Ak|

(p−δ)δ∗−γδ
δ∗(p−1−γ)

]
. (4.29)

Now, (4.24) implies
(p− δ)

p− 1
<

(p− δ)δ∗ − γδ

δ∗(p− 1− γ)
. (4.30)

Using (4.29), (4.30) and the fact that |Ak| ≤ |Ω|, we get∫
Ak

|∇un|δ dx ≤ C22k
γδ

p−1 |Ak|
p−δ
p−1 .

Let now ε1 = p−δ
p−1 − δ

δ∗ > 0. Therefore, by Lemma 4.5, we find that w = un is bounded in L∞(Ω).
The estimate in W 1,p

0 (Ω) is now very easy. Taking un as a test function in (3.2), using hypotheses
(1.4), (1.5), dropping the non-negative lower order term and using ∥un∥L∞(Ω) ≤ c, we get∫

Ω

|∇un|p dx ≤ cα

(1 + c)γ

∫
Ω

f dx

and the right-hand side is trivially bounded, since f belongs to L1(Ω).

5 Proof of main results
5.1 Proof of Theorem 2.1
By Lemma 4.2, the sequence {un}n is bounded in W 1,η

0 (Ω). Therefore, there exists a function u ∈
W 1,η

0 (Ω) such that (up to a subsequence){
un ⇀ u in W 1,η

0 (Ω),

un → u a.e. in Ω.
(5.1)

Now, we have to prove
∇un → ∇u a.e. in Ω. (5.2)

Let h, k > 0. We use Th(un−Tk(u)) as a test function in (3.2), by hypothesis (1.4) and estimate (4.1),
we get ∫

Ω

α

(1 + Tn(un))γ
â(x, un,∇un)∇Th(un − Tk(u)) dx ≤ Ch, (5.3)

whence by virtue of 1
(1+un)γ

≤ 1
(1+Tn(un))γ

, (1.7) and (5.3), it follows that∫
{|un−Tk(u)|≤h,|u|≤k}

|∇(un − Tk(u))|p

(1 + un)γ
dx

≤
∫

{|un−Tk(u)|≤h,|u|≤k}

Cp
(â(x, un,∇un)− â(x, un,∇Tk(u)))∇Th(un − Tk(u))

(1 + Tn(un))γ
dx

≤ Cp
Ch

α
− Cp

∫
{|un−Tk(u)|≤h,|u|≤k}

â(x, un,∇Tk(u))∇Th(un − u)

(1 + Tn(un))γ
dx

= −Cp

∫
{|un−Tk(u)|≤h,|u|≤k}

â(x, Th+k(un),∇Tk(u))∇Th(un − u)

(1 + Tn(un))γ
dx+ Cp

Ch

α
. (5.4)
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Combining (1.6), (4.8) and (5.1), we obtain{
∇Th(un − u)⇀ 0 in Lp(Ω),

â(x, Tk+h(un),∇Tk(u)) → â(x, u,∇Tk(u)) in Lp′
(Ω).

(5.5)

According to (5.4) and (5.5), we have

lim sup
n→+∞

∫
{|un−Tk(u)|≤h,|u|≤k}

|∇(un − Tk(u))|p

(1 + un)γ
dx ≤ Ch.

This implies
lim sup
n→+∞

∫
{|un−Tk(u)|≤h,|u|≤k}

∣∣∇(un − Tk(u))
∣∣p dx ≤ Ch(1 + k + h)γ . (5.6)

Let now τ be such that 1 < τ < η < p. It is clear that∫
Ω

|∇(un − u)|τ dx ≤
∫

{|un−u|≤h,|u|≤k}

|∇(un − u)|τ dx

+

∫
{|un−u|≤h,|u|>k}

|∇(un − u)|τ dx+

∫
{|un−u|>h}

|∇(un − u)|τ dx.

By Hölder’s inequality and the fact that un is uniformly bounded in W 1,η
0 (Ω), we obtain∫

Ω

|∇(un − u)|τ dx ≤ C

( ∫
{|un−u|≤h,|u|≤k}

|∇(un − u)|p dx
) τ

p

+ C
((
µ({|u| > k})

)1− τ
η +

(
µ({|un − u| > h})

)1− τ
η

)
. (5.7)

Thus we deduce from (5.6) and (5.7) that

lim sup
h→0

lim sup
n→∞

∫
Ω

|∇(un − u)|τ dx ≤ C
(
µ({|u| > k})

)1− τ
η , ∀ k > 0.

At the limit as k → +∞, µ({|u| > k}) converges to 0. Therefore (up to subsequences), ∇un → ∇u
a.e. in Ω.

Remark 5.1. The technique used for the proof of (5.2) under the hypotheses of Theorem 2.1 is the
same as compared to Theorem 2.2 and Theorem 2.3.

Now, we are going to prove the strict positivity of the weak limit u of the sequence of approximated
solutions un.

Lemma 5.1. Let 0 < θ < 1. Let un and u be as in (5.2). Then u > 0.

Proof. For s ≥ 0, define

Hn(s) =

s∫
0

t(1 + Tn(t))
γ

α(t+ 1
n )

θ+1
dt, H∞(s) =

s∫
0

(1 + t)γ

αtθ
dt.

Observe that H is well-defined, since θ < 1. Let ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be a positive function. We

choose e−BHn(un)ϕ as a test function in (3.1). Using hypotheses (1.4), (1.5) and fn ≥ T1(f), ∀n ≥ 1,
we get

β

∫
Ω

â(x, un,∇un) · ∇ϕe−BHn(un) dx ≥
∫
Ω

T1(f)e
−BHn(un)ϕdx. (5.8)
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Now, let us define for λ > 0, the function

ψλ(t) =


1 if 0 ≤ t < 1,

− 1

λ
(t− 1− λ) if 1 ≤ t < λ+ 1,

0 if λ+ 1 ≤ t,

and fix a function φ in W 1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0. Taking ϕ = ψλ(un)φ in (5.8), using (1.5) and

ψ′
λ(t) ≤ 0, we obtain∫
Ω

T1(f)φψλ(un)e
−BHn(un)χ{0≤un≤λ+1} dx

≤ β

∫
Ω

â(x, un,∇un) · ∇φψλ(un)e
−BHn(un)χ{0≤un≤λ+1} dx. (5.9)

Then, letting λ→ 0, Lebesgue’s theorem yields

ψλ(un)χ{0≤un≤λ+1} → χ{0≤un≤1} in L1(Ω). (5.10)

Equations (5.9) and (5.10) imply that

β

∫
{0≤un≤1}

â
(
x, T1(un),∇T1(un)

)
· ∇φe−BHn(T1(un)) dx ≥

∫
{0≤un≤1}

T1(f)φe
−BHn(T1(un)) dx. (5.11)

According to (1.6), (4.8), (5.1) and (5.2), we have

â
(
x, T1(un),∇T1(un)

)
⇀ â

(
x, T1(u),∇T1(u)

)
in Lp′

(Ω). (5.12)

Now, we pass to the limit as n→ +∞ in (5.11) and deduce from (5.12) that∫
Ω

â
(
x, T1(u),∇T1(u)

)
· ∇φe−BH∞(T1(u)) dx ≥ 1

β

∫
{0≤u≤1}

T1(f)φe
−BH∞(T1(u)) dx (5.13)

for all φ in W 1,p
0 (Ω) ∩L∞(Ω) with φ ≥ 0, and then, by density, for every non-negative φ in W 1,p

0 (Ω).
Now, we define the function

P (t) =

t∫
0

e−BH∞(s) ds,

inequality (5.13) is equivalent to∫
Ω

M(x, v,∇v) · ∇φdx ≥ 1

β

∫
Ω

g(x)φdx,

where

M(x, s, ξ) = e−BH∞(T1(u)) â

(
x, sT1(u)

( T1(u)∫
0

e−BH∞(s) ds

)−1

,
ξ

e−BH∞(T1(u))

)
,

g(x) =
1

β
T1(f)e

−BH∞(1)χ{0≤u(x)≤1} , v = P (T1(u)).

The comparison principle in W 1,p
0 (Ω) says that v(x) ≥ z(x) (see [7]), where z is the bounded weak

solution of
− div(M(x, z,∇z)) = g(x), z ∈W 1,p

0 (Ω).
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Indeed, using (1.5)–(1.7), for almost every x ∈ Ω and for every ξ, ξ′ in RN , M satisfies

M(x, s, ξ) · ξ ≥ |ξ|p, |M(x, s, ξ)| ≤ C1|s|p−1 + C2|ξ|p−1 + C3,(
â(x, s, ξ)− â(x, s, ξ′)

)
(ξ − ξ′) ≥ 0.

To check this, from (1.5), p ≥ 2 and that u ≥ 0 a.e. in Ω, we have

M(x, s, ξ) · ξ = e−2BH∞(T1(u))

e−BH∞(T1(u))
â

(
x, sT1(u)

( T1(u)∫
0

e−BH∞(s) ds

)−1

,
ξ

e−BH∞(T1(u))

)
· ξ

≥ e(p−2)BH∞(T1(u))|ξ|p ≥ |ξ|p.

In view of (1.6) and θ < p, we get

|M(x, s, ξ)| = e−BH∞(T1(u))

∣∣∣∣â(x, sT1(u)(
T1(u)∫
0

e−BH∞(s) ds

)−1

,
ξ

e−BH∞(T1(u))

)∣∣∣∣
≤ Ce−BH∞(T1(u))|T1(u)|

θ(p−1)
p

( T1(u)∫
0

e−BH∞(s) ds

)−θ(p−1)
p

|s|
θ(p−1)

p + C ′e(p−2)BH∞(T1(u))|ξ|p−1

≤ Ce−BH∞(T1(u))
|T1(u)|

θ(p−1)
p( T1(u)∫

0

e−BH∞(s) ds
) θ(p−1)

p

(|s|p−1 + 1) + C ′e(p−2)BH∞(T1(u))|ξ|p−1. (5.14)

Since H∞ is increasing, we obtain

|T1(u)|
θ(p−1)

p( T1(u)∫
0

e−BH∞(s) ds
) θ(p−1)

p

≤ 1

(e−BH∞(T1(u)))
θ(p−1)

p

.

By this inequality and (5.14), we obtain

|M(x, s, ξ)| ≤ C1|s|p−1 + C2|ξ|p−1 + C3.

Finally, thanks to (1.7), we can write(
M(x, s, ξ)−M(x, s, ξ′)

)
· (ξ − ξ′) ≥ Cpe

(p−2)BH∞(T1(u))|ξ − ξ′| ≥ 0.

Since g is non-negative and not identically zero, the weak Harnack inequality (see [7]) yields z > 0 in
Ω and so, v > 0. Since T1(u) ≥ v, we conclude that T1(u) > 0 in Ω, which then implies that u > 0
in Ω.

Corollary 5.1. Let 0 < θ < 1. We have |∇u|p
uθ ∈ L1(Ω).

In fact, by passing to the limit in (4.1), we deduce from (5.1), Lemma 5.1 and Fatou’s lemma that

B

∫
Ω

|∇u|p

uθ
dx ≤

∫
Ω

f dx. (5.15)

5.2 Passage to the limit
Let us define

H 1
n
(t) =

t∫
0

B(1 + s)γ

α(s+ 1
n )

θ
ds, H0(t) =

t∫
0

B(1 + s)γ

αsθ
ds, t ≥ 0, n ∈ N.
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For k ∈ N, we use

Rk(s) =


1 if s ≤ k,

k + 1− s if k ≤ s ≤ k + 1,

0 if s > k + 1.

Consider
v = e

−H 1
n
(un)

e
H 1

j
(Tj(u))

Rk(un)φ,

where j ∈ N and φ is a positive C1
0 (Ω) function, as a test function in (3.2). Then∫

Ω

a(x,Tn(un))â
(
x, Tk+1(un),∇Tk+1(un)

)
· ∇φe−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un) dx

+
B

α

∫
Ω

a(x, Tn(un))â
(
x, Tk+1(un),∇Tk+1(un)

)
∇Tj(u)

(1 + Tj(u))
γ

(Tj(u) +
1
j )

θ

× e
−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un)φdx

=
B

α

∫
Ω

[
a(x, Tn(un))â

(
x, Tk+1(un),∇Tk+1(un)

)
· ∇un

(1 + un)
γ

(un + 1
n )

θ
− α

un|∇un|p

(un + 1
n )

θ+1

]
× e

−H 1
n
(un)

e
H 1

j
(Tj(u))

Rk(un)φdx

+

∫
Ω

Tn(f)e
−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un)φdx

−
∫
Ω

a(x, Tn(un))â(x, un,∇un) · ∇une
−H 1

n
(un)

e
H 1

j
(Tj(u))

R′
k(un)φdx. (5.16)

Using (1.4), (1.5) and R′
k(s) ≤ 0, we have

−
∫
Ω

a(x, Tn(un))â(x, un,∇un) · ∇une
−H 1

n
(un)

e
H 1

j
(Tj(u))

R′
k(un)φdx ≥ 0. (5.17)

Combining (1.4) and (1.5), we get[
a(x, Tn(un))â(x, un,∇un) · ∇un

(1 + un)
γ

(un + 1
n )

θ
− α

un|∇un|p

(un + 1
n )

θ+1

]
≥ α

|∇un|p

(un + 1
n )

θ

(
1− un

un + 1
n

)
≥ 0. (5.18)

Letting n→ +∞, using (4.8), (5.16)–(5.18) and Fatou’s lemma, we have∫
Ω

a(x, u)â(x, u,∇u) · ∇φe−H0(u)e
H 1

j
(Tj(u))

Rk(u) dx

+
B

α

∫
Ω

a(x, u)â(x, u,∇u)∇Tj(u)
(1 + Tj(u))

γ

(Tj(u) +
1
j )

θ
e−H0(u)e

H 1
j
(Tj(u))

Rk(u)φdx

≥ B

α

∫
Ω

a(x, u)â(x, u,∇u) · ∇u (1 + u)γ

uθ
e−H0(u)e

H 1
j
(Tj(u))

Rk(u)φdx

−B

∫
Ω

|∇u|p

uθ
e−H0(u)e

H 1
j
(Tj(u))

Rk(u)φdx+

∫
Ω

fe−H0(u)e
H 1

j
(Tj(u))

Rk(u)φdx. (5.19)
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Let j > k + 1. Using (1.4), (1.6), (5.15) and Rk(u) = 0 on {u > k + 1}, we get∣∣∣a(x, u)â(x, u,∇u)∇Tj(u) (1 + Tj(u))
γ

(Tj(u) +
1
j )

θ
e−H0(u)e

H 1
j
(Tj(u))

Rk(u)φ
∣∣∣

≤ β
(
C|u|

θ(p−1)
p + C ′|∇u|p−1

)
|∇u| (1 + u)γ

(u+ 1
j )

θ
Rk(u)φ

≤ β
(
C|u|θ + C ′|∇u|p−1

)
|∇u| (1 + u)γ

uθ
Rk(u)φ

≤ β
(
C|∇u|+ C ′ |∇u|p

uθ

)
(1 + u)γRk(u)φ ∈ L1(Ω). (5.20)

Passing first to the limit as j → ∞ in (5.19), using that e−H0(u)e
H 1

j
(Tj(u)) ≤ 1 (since H 1

j
(Tj(u)) ≤

H 1
j
(u) ≤ H0(u)), (5.20) and Lebesgue’s theorem, and then to the limit as k → +∞, we obtain∫

Ω

a(x, u)â(x, u,∇u)∇φdx+B

∫
Ω

|∇u|p

uθ
φdx ≥

∫
Ω

fφ dx. (5.21)

To prove the opposite inequality, we choose φ ∈ C1
0 (Ω) with φ ≥ 0 as a test function in (3.2), to

obtain ∫
Ω

a(x, Tn(un))â(x, un,∇un)∇φdx+B

∫
Ω

un|∇un|p

(un + 1
n )

θ+1
φdx =

∫
Ω

fnφdx. (5.22)

From (1.6), (5.1), (5.2) and Lemma 4.3, we have

â(x, un,∇un) → â(x, u,∇u) in Lδ(Ω), ∀ δ ∈
(
1,

η

p− 1

)
. (5.23)

Therefore, (5.22), (5.23) and Fatou’s lemma imply∫
Ω

a(x, u)â(x, u,∇u)∇φdx+B

∫
Ω

|∇u|p

uθ
φdx ≤

∫
Ω

fφ dx. (5.24)

Combining (5.21) and (5.24), we deduce that∫
Ω

a(x, u)â(x, u,∇u)∇φdx+

∫
Ω

|∇u|p

uθ
φdx =

∫
Ω

fφ dx (5.25)

for every φ in C1
0 (Ω) with φ ≥ 0. Now, let φ be any function from C1

0 (Ω) and ε > 0. We define
φε
± = ρε ∗ φ± as the convolution of a modifier ρε with φ±. Then φε

± is a positive C1
0 (Ω) function for

ε sufficiently small. By (5.25), we have∫
Ω

a(x, u)â(x, u,∇u)∇(φε
− − φε

+) dx+

∫
Ω

|∇u|p

uθ
(φε

− − φε
+) dx =

∫
Ω

f(φε
− − φε

+) dx.

Since φε
− − φε

+ → φ uniformly in Ω and in W 1,η
0 (Ω) for every η ≥ 1, as ε→ 0, the results follow.

5.3 Proof of Theorem 2.2
By virtue of Lemma 4.2 and Lemma 4.3, there exists a function u belonging to W 1,σ

0 (Ω) such that,
up to the subsequences, {

un ⇀ u in W 1,σ
0 (Ω), and a.e. in Ω ,

Tk(un)⇀ Tk(u) in W 1,p
0 (Ω), and a.e. in Ω .

(5.26)
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Moreover, by repeating the same technique used in the proof of Lemma 5.1, it follows that u > 0 in Ω.
Corollary 5.1 ensures that |∇u|p

uθ belongs to L1(Ω). From Remark 5.1, using (5.26) and

â(x, un,∇un) → â(x, u,∇u) in Lδ(Ω), ∀ δ ∈
(
1,

σ

p− 1

)
, (5.27)

we can pass to the limit in (2.1) exactly as in the proof of Theorem 2.1 to conclude that u is a
distributional solution of problem (1.1).

5.4 Proof of Theorems 2.3 and 2.4
In order to prove these theorems, we modify the proof of Theorem 2.1. We replace (5.26) by{

un ⇀ u in W 1,p
0 (Ω), and a.e. in Ω ,

Tk(un)⇀ Tk(u) in W 1,p
0 (Ω), and a.e. in Ω ,

and (5.27) by
â(x, un,∇un) → â(x, u,∇u) in Lδ(Ω), ∀ δ ∈

(
1,

p

p− 1

)
.

Using the last convergence and (5.2), we can pass to the limit in (5.22) to obtain (2.1). Thus Theo-
rem 2.3 and Theorem 2.4 are proved.
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