Memoirs on Differential Equations and Mathematical Physics Volume 91, 2024, 51-66

Hichem Khelifi

EXISTENCE AND REGULARITY FOR A DEGENERATE PROBLEM WITH SINGULAR GRADIENT LOWER ORDER TERM

Abstract

In this paper we study the existence and regularity results for nonlinear elliptic equation

 with degenerate coercivity and a singular gradient lower order term.2020 Mathematics Subject Classification. 35J70, 35J60.
Key words and phrases. Degenerate problem, singular term, regularity solution, the comparison principle, Harnack inequality.

1 Introduction

Consider the elliptic problem

$$
\begin{cases}-\operatorname{div}(a(x, u) \widehat{a}(x, u, \nabla u))+B \frac{|\nabla u|^{p}}{|u|^{\theta}}=f & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open bounded set of $\mathbb{R}^{N}(N \geq 3), B>0, f$ is a positive function belonging to $L^{m}(\Omega)$ with $m \geq 1$, and

$$
\begin{gather*}
0<\theta<1 \tag{1.2}\\
2 \leq p<N \tag{1.3}
\end{gather*}
$$

Here, we suppose that $a: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, is a Carathéodory function such that for a.e. $x \in \Omega$, for every $s \in \mathbb{R}$, we have

$$
\begin{equation*}
\frac{\alpha}{(1+|s|)^{\gamma}} \leq a(x, s) \leq \beta, \tag{1.4}
\end{equation*}
$$

where α, β are strictly positive real numbers and $\gamma>0$.
We suppose that $\widehat{a}: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function satisfying a.e. $x \in \Omega, \forall s \in \mathbb{R}$ and $\xi, \xi^{\prime} \in \mathbb{R}^{N}$, the following inequalities:

$$
\begin{align*}
\widehat{a}(x, s, \xi) \cdot \xi & \geq|\xi|^{p}, \tag{1.5}\\
|\widehat{a}(x, s, \xi)| & \leq C_{1}|s|^{\frac{\theta(p-1)}{p}}+C_{2}|\xi|^{p-1}, \tag{1.6}\\
\left(\widehat{a}(x, s, \xi)-\widehat{a}\left(x, s, \xi^{\prime}\right)\right)\left(\xi-\xi^{\prime}\right) & \geq C_{3}\left|\xi-\xi^{\prime}\right|^{p}, \tag{1.7}
\end{align*}
$$

where C_{1}, C_{2} and C_{3} are positive real numbers.
As prototype examples, we consider the following models:

$$
\begin{cases}-\operatorname{div}\left(\frac{|u|^{\frac{\theta(p-1)}{p}}(1+|D u|)^{-1} D u+|D u|^{p-2} D u}{(1+|u|)^{\gamma}}\right)+\frac{|\nabla u|^{p}}{|u|^{\theta}}=f & \text { in } \Omega \\ u=0 & \text { in } \partial \Omega\end{cases}
$$

and

$$
\left\{\begin{array}{l}
a(x, s)=\frac{1}{(b(x)+|s|)^{\gamma}}, \quad b(x) \in L^{\infty}(\Omega), \quad \text { and } \quad b(x) \geq c>0 \\
\widehat{a}(x, s, \xi)=|\xi|^{p-2}\left(1+|\xi|^{-\varepsilon}\right) \xi, \quad \varepsilon \in(0, p-1) .
\end{array}\right.
$$

The main difficulty in dealing with problem (1.1) is the fact that the lower order term has a quadratic growth with respect to the gradient and is singular in the variable u, and the differential operator

$$
A u=\operatorname{div}(a(x, u) \widehat{a}(x, u, \nabla u))
$$

is well defined between $W_{0}^{1, p}(\Omega)$ and its dual, but it fails to be coercive if u is large. The corresponding results in the case $A u=\operatorname{div}(a(x, u) \nabla u)$ and $p=2$ are developed in [6]. In the case where $\gamma=B=0$, $f \in L^{1}(\Omega)$, the solution u of problem (1.1) belongs only to $W_{0}^{1, s}(\Omega)$ for every $s<\frac{N(p-1)}{N-1}$ (see $[3,4])$. Once again, the lower order term improves the regularity of solutions of problem (1.1), since $\frac{N(p-1)}{N-1}<\frac{N(p-\theta)}{N-\theta}$ (due to the fact that $\left.0<\theta<1\right)$. In [1], under the assumptions $B \equiv 0, \gamma=\theta(p-1)$ and $\widehat{a}(x, s, \xi)=|\xi|^{p-2} \xi$, the authors proved only the existence of entropy solutions u of problem (1.1) belonging only to the Marcinkiewicz space $M^{\tau}(\Omega)$ for every $\tau=\frac{N(p-1)(1-\theta)}{N-p}$, with $|\nabla u| \in M^{q}(\Omega)$ for $q=\frac{N(p-1)(1-\theta)}{N-1-\theta(p-1)}$. The existence and regularity results for problem (1.1) have been obtained in [8] provided $\gamma>0,1 \leq \theta \leq 2$ and $f \in L^{m}(\Omega)$ with $m>1$.

To prove our main results, we approximate problem (1.1) by a sequence of non-degenerate and non-singular problems. Then we prove both a priori estimates and convergence results on the sequence of approximating solutions. Next, by the strong maximum principle [7], we prove that the weak limit
of the approximate solutions is strictly positive in Ω. Finally, we pass to the limit in the approximate problems.

The paper is organized as follows. In Section 2, we introduce the main results. The approximate problem is presented in Section 3. Estimate uniforms are proved in Section 4. Theorems 2.1-2.4 are proved in Section 5.

2 Statement of main results

Definition. Let $f \in L^{m}(\Omega), m \geq 1$. A measurable function u is said to be a solution in the sense of distributions to problem (1.1) if $u \in W_{0}^{1,1}(\Omega), \widehat{a}(x, u, \nabla u) \in\left(L^{1}(\Omega)\right)^{N}, \frac{|\nabla u|^{p}}{u^{\theta}} \in L^{1}(\Omega), u>0$ in Ω, and

$$
\begin{equation*}
\int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla \varphi d x+B \int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in C_{0}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

Our main results are the following theorems.
Theorem 2.1. Let $f \in L^{1}(\Omega)$ be a positive function and assume that (1.2)-(1.7) hold true. Then problem (1.1) has at least one distributional solution $u \in W_{0}^{1, \eta}(\Omega)$ with

$$
\begin{equation*}
\eta=\frac{N(p-\theta)}{N-\theta} \tag{2.2}
\end{equation*}
$$

Remark 2.1. Hypothesis (1.3) implies that $\eta<p$. Since $p \geq 2>2-\frac{1}{N}$, we can deduce that $\eta>1$.
Theorem 2.2. If hypotheses (1.2)-(1.7) hold and $f \in L^{m}(\Omega)$ is a positive function such that

$$
\begin{equation*}
1<m<\frac{p N}{p N-\theta(N-p)} \tag{2.3}
\end{equation*}
$$

then problem (1.1) has at least one distributional solution $u \in W_{0}^{1, \sigma}(\Omega)$ with

$$
\begin{equation*}
\sigma=\frac{m N(p-\theta)}{N-\theta m} \tag{2.4}
\end{equation*}
$$

Remark 2.2. Notice that condition (2.3) guarantees that $\sigma<p$.
Theorem 2.3. Suppose that assumptions (1.2)-(1.7) hold and $f \in L^{m}(\Omega)$ is a positive function such that

$$
\frac{p N}{p N-\theta(N-p)} \leq m<\frac{N}{p}
$$

Then problem (1.1) has at least one distributional solution $u \in W_{0}^{1, p}(\Omega)$.
Theorem 2.4. Let $0<\gamma<p-1$. Suppose that assumptions (1.2)-(1.7) hold and $f \in L^{m}(\Omega)$ is a positive function such that

$$
\begin{equation*}
m>\frac{N}{p} \tag{2.5}
\end{equation*}
$$

Then problem (1.1) has at least one distributional solution $u \in W_{0}^{1, p}(\Omega) L^{\infty}(\Omega)$.

3 The approximated problem

Hereafter, we denote by T_{k} the truncation function at the level $k>0$ defined by

$$
T_{k}(s)=\max \{-k, \min \{s, k\}\} \text { for every } s \in \mathbb{R}
$$

Let $\left(f_{n}\right)\left(f_{n}>0\right)$ be a sequence of bounded functions defined in Ω that converges to $f>0$ in $L^{1}(\Omega)$, and verifies the inequalities $f_{n} \leq n$ and $f_{n} \leq f$ for every $n \geq 1$ (for example, $f_{n}=T_{n}(f)$). Consider the following non-degenerate and non-singular problem:

$$
\begin{cases}-\operatorname{div}\left(a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right)\right)+B \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(\left|u_{n}\right|+\frac{1}{n}\right)^{\theta+1}}=f_{n} & \text { in } \Omega \tag{3.1}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

Problem (3.1) admits at least one solution $u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ (see [5]).
Proposition 3.1. We have $u_{n} \geq 0$ almost everywhere in Ω.
Proof. Taking $u_{n}^{-}=\min \left(u_{n}, 0\right)$ as a test function in (3.1), using (1.4) and (1.5), we find that

$$
\frac{\alpha}{(1+n)^{\gamma}} \int_{\Omega}\left|\nabla u_{n}^{-}\right|^{p} d x \leq \int_{\Omega} f_{n} u_{n}^{-} d x \leq 0
$$

so, $u_{n} \geq 0$ almost everywhere in Ω.

Therefore, Proposition 3.1 implies that u_{n} satisfies

$$
\begin{cases}-\operatorname{div}\left(a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right)\right)+B \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}=f_{n} & \text { in } \Omega \tag{3.2}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

In the remainder of this paper, we denote by C various positive constants depending only on the data of the problem, but not on n.

4 A priori estimates

We are now going to prove some a priori estimates. The next lemma gives a control of the lower order term.

Lemma 4.1. Let u_{n} be the solutions to problem (3.2). Then

$$
\begin{equation*}
B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} d x \leq \int_{\Omega} f d x \tag{4.1}
\end{equation*}
$$

Proof. For any fixed $h>0$, let us consider $\frac{T_{h}\left(u_{n}\right)}{h}$ as a test function in (3.2), and dropping the nonnegative first term, we obtain

$$
B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} \frac{T_{h}\left(u_{n}\right)}{h} d x \leq \int_{\Omega} f_{n} \frac{T_{h}\left(u_{n}\right)}{h} d x
$$

So,

$$
\begin{equation*}
B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} \frac{T_{h}\left(u_{n}\right)}{h} d x \leq \int_{\Omega} f d x . \tag{4.2}
\end{equation*}
$$

Letting h tend to 0 in (4.2), we deduce (4.1) by Fatou's lemma.
Lemma 4.2. Let $f \in L^{1}(\Omega)$ be a positive function. Then the sequence u_{n} is bounded in $W_{0}^{1, \eta}(\Omega)$, where η is given by (2.2), and $T_{k}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$ for every $k>0$.

Proof. Estimate (4.1) and the fact that $2^{\theta+1} u_{n} u_{n}^{\theta} \geq\left(u_{n}+\frac{1}{n}\right)^{\theta+1}$ in $\left\{u_{n} \geq 1\right\}$ give

$$
\begin{equation*}
B \int_{\left\{u_{n} \geq 1\right\}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} d x \leq B \int_{\left\{u_{n} \geq 1\right\}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} d x \leq\|f\|_{L^{1}(\Omega)} \tag{4.3}
\end{equation*}
$$

Let $\eta<p$ and $G_{1}(t)=t-T_{1}(t)$. Using the Hölder inequality, we have

$$
\begin{align*}
\int_{\Omega}\left|\nabla G_{1}\left(u_{n}\right)\right|^{\eta} d x & =\int_{\left\{u_{n} \geq 1\right\}} \frac{\left|\nabla G_{1}\left(u_{n}\right)\right|^{\eta}}{u_{n}^{\frac{\theta \eta}{p}}} u_{n}^{\frac{\theta \eta}{p}} d x \\
& \leq\left(\int_{\left\{u_{n} \geq 1\right\}} \frac{\left|\nabla G_{1}\left(u_{n}\right)\right|^{p}}{u_{n}^{\theta}} d x\right)^{\frac{\eta}{p}}\left(\int_{\left\{u_{n} \geq 1\right\}} u_{n}^{\frac{\theta \eta}{p-\eta}} d x\right)^{\frac{p-\eta}{p}} \tag{4.4}
\end{align*}
$$

By (4.3), (4.4) and due to $u_{n} \leq G_{1}\left(u_{n}\right)+1$, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla G_{1}\left(u_{n}\right)\right|^{\eta} d x \leq\|f\|_{L^{1}(\Omega)}^{\frac{\eta}{p}}\left(\int_{\left\{u_{n} \geq 1\right\}} u_{n}^{\frac{\theta \eta}{p-\eta}} d x\right)^{\frac{p-\eta}{p}} \leq C\left(\int_{\left\{u_{n} \geq 1\right\}}\left(G_{1}\left(u_{n}\right)\right)^{\frac{\theta \eta}{p-\eta}} d x\right)^{\frac{p-\eta}{p}}+C \tag{4.5}
\end{equation*}
$$

Inequality (2.2) implies that $\eta^{*}=\frac{\eta \theta}{p-\eta}$. By Sobolev embedding, we get

$$
\begin{equation*}
\left(\int_{\left\{u_{n} \geq 1\right\}}\left(G_{1}\left(u_{n}\right)\right)^{\eta^{*}} d x\right)^{\frac{\eta}{\eta^{*}}} \leq C \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla G_{1}\left(u_{n}\right)\right|^{\eta} \leq C\left(\int_{\Omega}\left(G_{1}\left(u_{n}\right)\right)^{\eta^{*}} d x\right)^{\frac{\theta}{\eta^{*}}}+C \tag{4.6}
\end{equation*}
$$

Since $\theta<1<\eta$, inequality (4.6) implies that $G_{1}\left(u_{n}\right)$ is bounded in $L^{\eta^{*}}(\Omega)$. From (4.5) follows the boundedness of $G_{1}\left(u_{n}\right)$ in $W_{0}^{1, \eta}(\Omega)$. Using $T_{k}\left(u_{n}\right)$ as a test function in (3.2), one has

$$
\begin{equation*}
\int_{\left\{u_{n} \leq k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x \leq C k(k+1)^{\gamma} \tag{4.7}
\end{equation*}
$$

for every $n \geq 1$. Taking $k=1$ in (4.7), we deduce that $T_{1}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$ and hence in $W_{0}^{1, \eta}(\Omega)$. Since $u_{n}=G_{1}\left(u_{n}\right)+T_{1}\left(u_{n}\right)$, we deduce that u_{n} is bounded in $W_{0}^{1, \eta}(\Omega)$. Moreover, (4.7) implies that

$$
\begin{equation*}
\left\|T_{k}\left(u_{n}\right)\right\|_{W_{0}^{1, p}(\Omega)} \leq C k(k+1)^{\gamma} \tag{4.8}
\end{equation*}
$$

for all $n \geq 1$.
Lemma 4.3. Suppose that the hypotheses of Theorem 2.2 are satisfied. Then the sequence u_{n} is bounded in $W_{0}^{1, \sigma}(\Omega)$, where σ is given by (2.3).
Proof. Take $\phi=\left(u_{n}+1\right)^{\theta+p s}-1$ with

$$
\begin{equation*}
s=\frac{p^{*}-\theta m^{\prime}}{p m^{\prime}-p^{*}} \tag{4.9}
\end{equation*}
$$

as a test function in problem (3.2) (note that $s<0$ and $\theta+p s>0$). We get

$$
\begin{aligned}
& C \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}\left(u_{n}+1\right)^{\theta+p s-1} d x \\
& \quad+B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}\left(u_{n}+1\right)^{\theta+p s} d x=B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} d x+\int_{\Omega} f_{n}\left(\left(u_{n}+1\right)^{\theta+p s}-1\right) d x
\end{aligned}
$$

Using (1.4), (1.5), (4.1), $f_{n} \leq f$, and dropping the nonnegative first term, we find that

$$
B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}\left(u_{n}+1\right)^{\theta+p s} d x \leq \int_{\Omega} f\left(u_{n}+1\right)^{\theta+p s} d x+C
$$

Using the fact that

$$
\begin{equation*}
2 u_{n}\left(u_{n}+1\right)^{\theta} \geq\left(u_{n}+\frac{1}{n}\right)^{\theta+1} \tag{4.10}
\end{equation*}
$$

on the set $\left\{x \in \Omega, u_{n} \geq 1\right\}$, we write

$$
\begin{align*}
& \frac{B}{2(s+1)^{p}} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla\left(\left(u_{n}+1\right)^{s+1}-2^{s+1}\right)\right|^{p} d x=\frac{B}{2} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{p}\left(u_{n}+1\right)^{p s} d x \\
& \leq \int_{\left\{u_{n} \geq 1\right\}} f\left(u_{n}+1\right)^{\theta+p s} d x+C \leq C\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{(p s+\theta) m^{\prime}} d x\right)^{\frac{1}{m^{\prime}}}+C \tag{4.11}
\end{align*}
$$

Using (4.11) and the Sobolev's inequality on the left-hand side, we have

$$
\begin{aligned}
& \mathcal{S} \frac{B}{2(s+1)^{p}}\left(\int_{\left\{u_{n} \geq 1\right\}}\left|\left(u_{n}+1\right)^{s+1}-2^{s+1}\right|^{p^{*}} d x\right)^{\frac{p}{p^{*}}} \\
& \quad \leq \frac{B}{2(s+1)^{p}} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla\left(\left(u_{n}+1\right)^{s+1}-2^{s+1}\right)\right|^{p} d x \leq C\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{(p s+\theta) m^{\prime}} d x\right)^{\frac{1}{m^{\prime}}}+C .
\end{aligned}
$$

We remark that (4.9) is equivalent to require $(s+1) p^{*}=(p s+\theta) m^{\prime}$, moreover, $\frac{p}{p^{*}}>\frac{1}{m^{\prime}}$, due to the hypotheses on m and θ. Hence

$$
\left(\int_{\left\{u_{n} \geq 1\right\}}\left|\left(u_{n}+1\right)^{s+1}-2^{s+1}\right|^{p^{*}} d x\right)^{\frac{p}{p^{*}}} \leq C\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{(s+1) p^{*}} d x\right)^{\frac{1}{m^{\prime}}}+C
$$

so,

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{(s+1) p^{*}} d x \leq C \tag{4.12}
\end{equation*}
$$

Now, by Hölder's inequality, (2.4), (4.9) and the fact that $-s \frac{\sigma p}{p-\sigma}=(s+1) p^{*}$, we obtain

$$
\begin{align*}
\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{\sigma} d x & =\int_{\left\{u_{n} \geq 1\right\}} \frac{\left|\nabla u_{n}\right|^{\sigma}}{\left(u_{n}+1\right)^{-s \sigma}}\left(u_{n}+1\right)^{-s \sigma} d x \\
& \leq\left(\int_{\left\{u_{n} \geq 1\right\}} \frac{\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1\right)^{-p s}} d x\right)^{\frac{\sigma}{p}}\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{-s \frac{\sigma p}{p-\sigma}} d x\right)^{\frac{p-\sigma}{p}} \\
& \leq\left(\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{p}\left(u_{n}+1\right)^{(p s+\theta) m^{\prime}} d x\right)^{\frac{\sigma}{p}}\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}+1\right)^{(s+1) p^{*}} d x\right)^{\frac{p-\sigma}{p}} . \tag{4.13}
\end{align*}
$$

Using (4.12) and (4.13), we deduce

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{\sigma} d x \leq C \tag{4.14}
\end{equation*}
$$

It remains to analyse the behaviour of ∇u_{n} on $\left\{u_{n} \leq 1\right\}$. Taking $T_{1}\left(u_{n}\right)$ as a test function in (3.2), using (1.4), (1.5), $f_{n} \leq f$ and dropping the non-negative lower order term, we get

$$
\begin{equation*}
\int_{\left\{u_{n} \leq 1\right\}}\left|\nabla T_{1}\left(u_{n}\right)\right|^{p} d x \leq C \tag{4.15}
\end{equation*}
$$

As a consequence of estimates (4.14) and (4.15), the sequence $\left\{u_{n}\right\}_{n}$ is bounded in $W_{0}^{1, \sigma}(\Omega)$.

Lemma 4.4. Suppose that the hypotheses of Theorem 2.3 are satisfied. Then the sequence u_{n} is bounded in $W_{0}^{1, p}(\Omega)$.
Proof. Testing (3.2) with $\phi=\left(u_{n}+1\right)^{\theta}-1$, we get

$$
\begin{aligned}
& \theta \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}\left(u_{n}+1\right)^{\theta-1} d x \\
& \quad+B \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} u_{n}\left(u_{n}+1\right)^{\theta} d x=B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} d x+\int_{\Omega} f_{n}\left(\left(u_{n}+1\right)^{\theta}-1\right) d x
\end{aligned}
$$

Using (1.4), (1.5), (4.1), $f_{n} \leq f$ and dropping the non-negative first term, we obtain

$$
\begin{equation*}
B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}\left(u_{n}+1\right)^{\theta} d x \leq C \int_{\Omega} f u_{n}^{\theta} d x+C \leq C \int_{\left\{u_{n} \geq 1\right\}} f\left(u_{n}-1\right)^{\theta} d x+C \tag{4.16}
\end{equation*}
$$

By (4.16) and (4.10), we deduce

$$
\frac{B}{2} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq C \int_{\left\{u_{n} \geq 1\right\}} f\left(u_{n}-1\right)^{\theta} d x+C .
$$

Using Sobolev's inequality (with exponent $\frac{p^{*}}{\theta}$ on the left-hand side) and Hölder's inequality (on the right-hand side), we obtain

$$
\begin{equation*}
\mathcal{S} \frac{B}{2}\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}-1\right)^{p^{*}}\right)^{\frac{p}{p^{*}}} d x \leq \frac{B}{2} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq C\left(\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}-1\right)^{p^{*}} d x\right)^{\frac{\theta}{p^{*}}}+C \tag{4.17}
\end{equation*}
$$

Since $\theta<p$, we have

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left(u_{n}-1\right)^{p^{*}} d x \leq C \tag{4.18}
\end{equation*}
$$

Inequalities (4.17) and (4.18) imply

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq C \tag{4.19}
\end{equation*}
$$

Let us search for the same kind of estimate in $\left\{u_{n}<1\right\}$. Taking $T_{1}\left(u_{n}\right)$ as a test function in problem (3.2), using hypothesis (1.4) and dropping the non-negative lower order term, we get

$$
\begin{equation*}
\int_{\left\{u_{n}<1\right\}}\left|\nabla T_{1}\left(u_{n}\right)\right|^{p} d x \leq C \tag{4.20}
\end{equation*}
$$

As a consequence of (4.19) and (4.20), the sequence $\left\{u_{n}\right\}_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$.
To prove the L^{∞} a priori estimate, we will need the following result.
Lemma 4.5 ([2, Lemma 2.1]). Let w be a function in $W_{0}^{1, \delta}(\Omega)$ such that for k greater than some k_{0},

$$
\int_{A_{k}}|\nabla w|^{\delta} d x \leq C k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{\delta}{\delta^{*}}+\varepsilon_{1}}
$$

where $\varepsilon_{1}>0,0 \leq \gamma<p-1, \delta^{*}=\frac{N \delta}{N-\delta}$ and $A_{k}=\{x \in \Omega: w(x)>k\}$. Then the norm of w in $L^{\infty}(\Omega)$ is bounded by a constant which depends on $C, \gamma, \delta, N, \varepsilon_{1}, k_{0}$ and $|\Omega|$.

Lemma 4.6. Let $0<\gamma<p-1$. Suppose that the hypotheses of Theorem 2.4 are satisfied. Then the sequence $\left\{u_{n}\right\}_{n}$ is bounded in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.
Proof. Let us start with the estimate in $L^{\infty}(\Omega)$. For x in \mathbb{R} and for $k>0$, define

$$
G_{k}(x)=(|x|-k)_{+} \operatorname{sign}(x)=x-T_{k}(x) .
$$

For $k>0$, if we take $G_{k}\left(u_{n}\right)$ as a test function in (3.2), we get

$$
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} G_{k}^{\prime}\left(u_{n}\right) d x+B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} G_{k}\left(u_{n}\right) d x=\int_{\Omega} f_{n} G_{k}\left(u_{n}\right) d x
$$

By (1.4), (1.5), dropping the non-negative lower order term and using Hölder's inequality, we obtain

$$
\begin{equation*}
\alpha \int_{A_{k}} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+u_{n}\right)^{\gamma}} d x \leq C\left(\int_{A_{k}}\left|G_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x\right)^{\frac{1}{m^{\prime}}} \tag{4.21}
\end{equation*}
$$

where we have set $A_{k}=\left\{x \in \Omega:\left|u_{n}(x)\right| \geq k\right\}$. Let $\delta<p$, using Hölder's inequality and (4.21), we have

$$
\begin{align*}
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x & =\int_{A_{k}} \frac{\left|\nabla u_{n}\right|^{\delta}}{\left(1+u_{n}\right)^{\frac{\gamma \delta}{p}}}\left(1+u_{n}\right)^{\frac{\gamma \delta}{p}} d x \\
& \leq C\left(\int_{A_{k}}\left|G_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x\right)^{\frac{\delta}{p m^{\prime}}}\left(\int_{A_{k}}\left(1+u_{n}\right)^{\frac{\gamma \delta}{p-\delta}} d x\right)^{\frac{p-\delta}{p}} \tag{4.22}
\end{align*}
$$

Choosing δ such that

$$
\begin{equation*}
\delta^{*}=\frac{\delta N}{N-\delta}=m^{\prime} \Longleftrightarrow \delta=\frac{N m}{N m+m-N} \tag{4.23}
\end{equation*}
$$

it is easy to check that the hypotheses on m imply

$$
\begin{equation*}
\delta<\frac{N}{N-p+1}<p \tag{4.24}
\end{equation*}
$$

From (4.22), (4.23) and Sobolev's inequality, we obtain

$$
\begin{equation*}
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x \leq C\left(\int_{A_{k}}\left(1+u_{n}\right)^{\frac{\gamma \delta}{p-\delta}} d x\right)^{\frac{p-\delta}{p-1}} \tag{4.25}
\end{equation*}
$$

By (4.25) and die to $1+u_{n} \leq 2\left(k+G_{k}\left(u_{n}\right)\right)$ on A_{k} if $k \geq 1$, we have

$$
\begin{equation*}
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x \leq C\left[k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}}+\left(\int_{A_{k}} G_{k}\left(u_{n}\right)^{\frac{\gamma \delta}{p-\delta}} d x\right)^{\frac{p-\delta}{p-1}}\right] \tag{4.26}
\end{equation*}
$$

Since $\gamma<p-1$ and (2.5) holds, with our choice of δ we have

$$
\begin{equation*}
\frac{\gamma \delta}{p-\delta}<\delta^{*} \tag{4.27}
\end{equation*}
$$

By (4.26), (4.27), Hôlder's, Sobolev's and Young's inequalities, one obtains

$$
\begin{align*}
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x & \leq C\left[k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}}+\left(\int_{A_{k}} G_{k}\left(u_{n}\right)^{\delta^{*}} d x\right)^{\frac{\gamma \delta}{(p-1) \delta^{*}}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}-\frac{\gamma \delta}{(p-1) \delta^{*}}}\right] \\
& \leq C\left[k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}}+\left(\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x\right)^{\frac{\gamma}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}-\frac{\gamma \delta}{(p-1) \delta^{*}}}\right] \\
& \leq C\left[k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}}+\varepsilon \int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x+\varepsilon(p, \gamma)\left|A_{k}\right|^{\frac{(p-\delta) \delta^{*}-\gamma \delta}{\delta^{*}(p-1-\gamma)}}\right] . \tag{4.28}
\end{align*}
$$

If we choose $\varepsilon=\frac{1}{2 C}$, then we can take on the right hand side in (4.28) the term containing the gradient, obtaining

$$
\begin{equation*}
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x \leq C\left[k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}}+\left|A_{k}\right|^{\frac{(p-\delta) \delta^{*}-\gamma \delta}{\delta^{*}(p-1-\gamma)}}\right] . \tag{4.29}
\end{equation*}
$$

Now, (4.24) implies

$$
\begin{equation*}
\frac{(p-\delta)}{p-1}<\frac{(p-\delta) \delta^{*}-\gamma \delta}{\delta^{*}(p-1-\gamma)} \tag{4.30}
\end{equation*}
$$

Using (4.29), (4.30) and the fact that $\left|A_{k}\right| \leq|\Omega|$, we get

$$
\int_{A_{k}}\left|\nabla u_{n}\right|^{\delta} d x \leq C_{22} k^{\frac{\gamma \delta}{p-1}}\left|A_{k}\right|^{\frac{p-\delta}{p-1}} .
$$

Let now $\varepsilon_{1}=\frac{p-\delta}{p-1}-\frac{\delta}{\delta^{*}}>0$. Therefore, by Lemma 4.5, we find that $w=u_{n}$ is bounded in $L^{\infty}(\Omega)$.
The estimate in $W_{0}^{1, p}(\Omega)$ is now very easy. Taking u_{n} as a test function in (3.2), using hypotheses (1.4), (1.5), dropping the non-negative lower order term and using $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \leq c$, we get

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq \frac{c \alpha}{(1+c)^{\gamma}} \int_{\Omega} f d x
$$

and the right-hand side is trivially bounded, since f belongs to $L^{1}(\Omega)$.

5 Proof of main results

5.1 Proof of Theorem 2.1

By Lemma 4.2, the sequence $\left\{u_{n}\right\}_{n}$ is bounded in $W_{0}^{1, \eta}(\Omega)$. Therefore, there exists a function $u \in$ $W_{0}^{1, \eta}(\Omega)$ such that (up to a subsequence)

$$
\begin{cases}u_{n} \rightharpoonup u & \text { in } W_{0}^{1, \eta}(\Omega) \tag{5.1}\\ u_{n} \rightarrow u & \text { a.e. in } \Omega\end{cases}
$$

Now, we have to prove

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega \tag{5.2}
\end{equation*}
$$

Let $h, k>0$. We use $T_{h}\left(u_{n}-T_{k}(u)\right)$ as a test function in (3.2), by hypothesis (1.4) and estimate (4.1), we get

$$
\begin{equation*}
\int_{\Omega} \frac{\alpha}{\left(1+T_{n}\left(u_{n}\right)\right)^{\gamma}} \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{h}\left(u_{n}-T_{k}(u)\right) d x \leq C h \tag{5.3}
\end{equation*}
$$

whence by virtue of $\frac{1}{\left(1+u_{n}\right)^{\gamma}} \leq \frac{1}{\left(1+T_{n}\left(u_{n}\right)\right)^{\gamma}}$, (1.7) and (5.3), it follows that

$$
\begin{align*}
& \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}} \frac{\left|\nabla\left(u_{n}-T_{k}(u)\right)\right|^{p}}{\left(1+u_{n}\right)^{\gamma}} d x \\
& \leq \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}} C_{p} \frac{\left(\widehat{a}\left(x, u_{n}, \nabla u_{n}\right)-\widehat{a}\left(x, u_{n}, \nabla T_{k}(u)\right)\right) \nabla T_{h}\left(u_{n}-T_{k}(u)\right)}{\left(1+T_{n}\left(u_{n}\right)\right)^{\gamma}} d x \\
& \leq C_{p} \frac{C h}{\alpha}-C_{p} \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}} \frac{\widehat{a}\left(x, u_{n}, \nabla T_{k}(u)\right) \nabla T_{h}\left(u_{n}-u\right)}{\left(1+T_{n}\left(u_{n}\right)\right)^{\gamma}} d x \\
& \quad=-C_{p} \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}} \frac{\widehat{a}\left(x, T_{h+k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{h}\left(u_{n}-u\right)}{\left(1+T_{n}\left(u_{n}\right)\right)^{\gamma}} d x+C_{p} \frac{C h}{\alpha} . \tag{5.4}
\end{align*}
$$

Combining (1.6), (4.8) and (5.1), we obtain

$$
\begin{cases}\nabla T_{h}\left(u_{n}-u\right) \rightharpoonup 0 & \text { in } L^{p}(\Omega) \tag{5.5}\\ \widehat{a}\left(x, T_{k+h}\left(u_{n}\right), \nabla T_{k}(u)\right) \rightarrow \widehat{a}\left(x, u, \nabla T_{k}(u)\right) & \text { in } L^{p^{\prime}}(\Omega)\end{cases}
$$

According to (5.4) and (5.5), we have

$$
\limsup _{n \rightarrow+\infty} \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}} \frac{\left|\nabla\left(u_{n}-T_{k}(u)\right)\right|^{p}}{\left(1+u_{n}\right)^{\gamma}} d x \leq C h .
$$

This implies

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq h,|u| \leq k\right\}}\left|\nabla\left(u_{n}-T_{k}(u)\right)\right|^{p} d x \leq C h(1+k+h)^{\gamma} \tag{5.6}
\end{equation*}
$$

Let now τ be such that $1<\tau<\eta<p$. It is clear that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x \leq & \int_{\left\{\left|u_{n}-u\right| \leq h,|u| \leq k\right\}}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x \\
& +\int_{\left\{\left|u_{n}-u\right| \leq h,|u|>k\right\}}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x+\int_{\left\{\left|u_{n}-u\right|>h\right\}}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x
\end{aligned}
$$

By Hölder's inequality and the fact that u_{n} is uniformly bounded in $W_{0}^{1, \eta}(\Omega)$, we obtain

$$
\begin{align*}
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x \leq C\left(\int_{\left\{\left|u_{n}-u\right| \leq h,|u| \leq k\right\}}\right. & \left.\left|\nabla\left(u_{n}-u\right)\right|^{p} d x\right)^{\frac{\tau}{p}} \\
& +C\left((\mu(\{|u|>k\}))^{1-\frac{\tau}{\eta}}+\left(\mu\left(\left\{\left|u_{n}-u\right|>h\right\}\right)\right)^{1-\frac{\tau}{\eta}}\right) . \tag{5.7}
\end{align*}
$$

Thus we deduce from (5.6) and (5.7) that

$$
\limsup _{h \rightarrow 0} \limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{\tau} d x \leq C(\mu(\{|u|>k\}))^{1-\frac{\tau}{\eta}}, \quad \forall k>0
$$

At the limit as $k \rightarrow+\infty, \mu(\{|u|>k\})$ converges to 0 . Therefore (up to subsequences), $\nabla u_{n} \rightarrow \nabla u$ a.e. in Ω.

Remark 5.1. The technique used for the proof of (5.2) under the hypotheses of Theorem 2.1 is the same as compared to Theorem 2.2 and Theorem 2.3.

Now, we are going to prove the strict positivity of the weak limit u of the sequence of approximated solutions u_{n}.

Lemma 5.1. Let $0<\theta<1$. Let u_{n} and u be as in (5.2). Then $u>0$.
Proof. For $s \geq 0$, define

$$
H_{n}(s)=\int_{0}^{s} \frac{t\left(1+T_{n}(t)\right)^{\gamma}}{\alpha\left(t+\frac{1}{n}\right)^{\theta+1}} d t, \quad H_{\infty}(s)=\int_{0}^{s} \frac{(1+t)^{\gamma}}{\alpha t^{\theta}} d t
$$

Observe that H is well-defined, since $\theta<1$. Let $\phi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ be a positive function. We choose $e^{-B H_{n}\left(u_{n}\right)} \phi$ as a test function in (3.1). Using hypotheses (1.4), (1.5) and $f_{n} \geq T_{1}(f), \forall n \geq 1$, we get

$$
\begin{equation*}
\beta \int_{\Omega} \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \phi e^{-B H_{n}\left(u_{n}\right)} d x \geq \int_{\Omega} T_{1}(f) e^{-B H_{n}\left(u_{n}\right)} \phi d x \tag{5.8}
\end{equation*}
$$

Now, let us define for $\lambda>0$, the function

$$
\psi_{\lambda}(t)= \begin{cases}1 & \text { if } 0 \leq t<1 \\ -\frac{1}{\lambda}(t-1-\lambda) & \text { if } 1 \leq t<\lambda+1 \\ 0 & \text { if } \lambda+1 \leq t\end{cases}
$$

and fix a function φ in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ with $\varphi \geq 0$. Taking $\phi=\psi_{\lambda}\left(u_{n}\right) \varphi$ in (5.8), using (1.5) and $\psi_{\lambda}^{\prime}(t) \leq 0$, we obtain

$$
\begin{align*}
& \int_{\Omega} T_{1}(f) \varphi \psi_{\lambda}\left(u_{n}\right) e^{-B H_{n}\left(u_{n}\right)} \chi_{\left\{0 \leq u_{n} \leq \lambda+1\right\}} d x \\
& \leq \beta \int_{\Omega} \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \varphi \psi_{\lambda}\left(u_{n}\right) e^{-B H_{n}\left(u_{n}\right)} \chi_{\left\{0 \leq u_{n} \leq \lambda+1\right\}} d x \tag{5.9}
\end{align*}
$$

Then, letting $\lambda \rightarrow 0$, Lebesgue's theorem yields

$$
\begin{equation*}
\psi_{\lambda}\left(u_{n}\right) \chi_{\left\{0 \leq u_{n} \leq \lambda+1\right\}} \rightarrow \chi_{\left\{0 \leq u_{n} \leq 1\right\}} \text { in } L^{1}(\Omega) \tag{5.10}
\end{equation*}
$$

Equations (5.9) and (5.10) imply that

$$
\begin{equation*}
\beta \int_{\left\{0 \leq u_{n} \leq 1\right\}} \widehat{a}\left(x, T_{1}\left(u_{n}\right), \nabla T_{1}\left(u_{n}\right)\right) \cdot \nabla \varphi e^{-B H_{n}\left(T_{1}\left(u_{n}\right)\right)} d x \geq \int_{\left\{0 \leq u_{n} \leq 1\right\}} T_{1}(f) \varphi e^{-B H_{n}\left(T_{1}\left(u_{n}\right)\right)} d x \tag{5.11}
\end{equation*}
$$

According to (1.6), (4.8), (5.1) and (5.2), we have

$$
\begin{equation*}
\widehat{a}\left(x, T_{1}\left(u_{n}\right), \nabla T_{1}\left(u_{n}\right)\right) \rightharpoonup \widehat{a}\left(x, T_{1}(u), \nabla T_{1}(u)\right) \text { in } L^{p^{\prime}}(\Omega) . \tag{5.12}
\end{equation*}
$$

Now, we pass to the limit as $n \rightarrow+\infty$ in (5.11) and deduce from (5.12) that

$$
\begin{equation*}
\int_{\Omega} \widehat{a}\left(x, T_{1}(u), \nabla T_{1}(u)\right) \cdot \nabla \varphi e^{-B H_{\infty}\left(T_{1}(u)\right)} d x \geq \frac{1}{\beta} \int_{\{0 \leq u \leq 1\}} T_{1}(f) \varphi e^{-B H_{\infty}\left(T_{1}(u)\right)} d x \tag{5.13}
\end{equation*}
$$

for all φ in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ with $\varphi \geq 0$, and then, by density, for every non-negative φ in $W_{0}^{1, p}(\Omega)$. Now, we define the function

$$
P(t)=\int_{0}^{t} e^{-B H_{\infty}(s)} d s
$$

inequality (5.13) is equivalent to

$$
\int_{\Omega} M(x, v, \nabla v) \cdot \nabla \varphi d x \geq \frac{1}{\beta} \int_{\Omega} g(x) \varphi d x
$$

where

$$
\begin{gathered}
M(x, s, \xi)=e^{-B H_{\infty}\left(T_{1}(u)\right)} \widehat{a}\left(x, s T_{1}(u)\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{-1}, \frac{\xi}{e^{-B H_{\infty}\left(T_{1}(u)\right)}}\right), \\
g(x)=\frac{1}{\beta} T_{1}(f) e^{-B H_{\infty}(1)} \chi_{\{0 \leq u(x) \leq 1\}}, \quad v=P\left(T_{1}(u)\right) .
\end{gathered}
$$

The comparison principle in $W_{0}^{1, p}(\Omega)$ says that $v(x) \geq z(x)$ (see [7]), where z is the bounded weak solution of

$$
-\operatorname{div}(M(x, z, \nabla z))=g(x), \quad z \in W_{0}^{1, p}(\Omega)
$$

Indeed, using (1.5)-(1.7), for almost every $x \in \Omega$ and for every ξ, ξ^{\prime} in \mathbb{R}^{N}, M satisfies

$$
\begin{gathered}
M(x, s, \xi) \cdot \xi \geq|\xi|^{p}, \quad|M(x, s, \xi)| \leq C_{1}|s|^{p-1}+C_{2}|\xi|^{p-1}+C_{3} \\
\left(\widehat{a}(x, s, \xi)-\widehat{a}\left(x, s, \xi^{\prime}\right)\right)\left(\xi-\xi^{\prime}\right) \geq 0
\end{gathered}
$$

To check this, from (1.5), $p \geq 2$ and that $u \geq 0$ a.e. in Ω, we have

$$
\begin{aligned}
M(x, s, \xi) \cdot \xi & =\frac{e^{-2 B H_{\infty}\left(T_{1}(u)\right)}}{e^{-B H_{\infty}\left(T_{1}(u)\right)}} \widehat{a}\left(x, s T_{1}(u)\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{-1}, \frac{\xi}{e^{-B H_{\infty}\left(T_{1}(u)\right)}}\right) \cdot \xi \\
& \geq e^{(p-2) B H_{\infty}\left(T_{1}(u)\right)}|\xi|^{p} \geq|\xi|^{p} .
\end{aligned}
$$

In view of (1.6) and $\theta<p$, we get

$$
\begin{align*}
& |M(x, s, \xi)|=e^{-B H_{\infty}\left(T_{1}(u)\right)}\left|\widehat{a}\left(x, s T_{1}(u)\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{-1}, \frac{\xi}{e^{-B H_{\infty}\left(T_{1}(u)\right)}}\right)\right| \\
& \leq C e^{-B H_{\infty}\left(T_{1}(u)\right)}\left|T_{1}(u)\right|^{\frac{\theta(p-1)}{p}}\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{\frac{-\theta(p-1)}{p}}|s|^{\frac{\theta(p-1)}{p}}+C^{\prime} e^{(p-2) B H_{\infty}\left(T_{1}(u)\right)}|\xi|^{p-1} \\
& \leq C e^{-B H_{\infty}\left(T_{1}(u)\right)} \frac{\left|T_{1}(u)\right|^{\frac{\theta(p-1)}{p}}}{\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{\frac{\theta(p-1)}{p}}}\left(|s|^{p-1}+1\right)+C^{\prime} e^{(p-2) B H_{\infty}\left(T_{1}(u)\right)}|\xi|^{p-1} . \tag{5.14}
\end{align*}
$$

Since H_{∞} is increasing, we obtain

$$
\frac{\left|T_{1}(u)\right|^{\frac{\theta(p-1)}{p}}}{\left(\int_{0}^{T_{1}(u)} e^{-B H_{\infty}(s)} d s\right)^{\frac{\theta(p-1)}{p}}} \leq \frac{1}{\left(e^{-B H_{\infty}\left(T_{1}(u)\right)}\right)^{\frac{\theta(p-1)}{p}}} .
$$

By this inequality and (5.14), we obtain

$$
|M(x, s, \xi)| \leq C_{1}|s|^{p-1}+C_{2}|\xi|^{p-1}+C_{3} .
$$

Finally, thanks to (1.7), we can write

$$
\left(M(x, s, \xi)-M\left(x, s, \xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right) \geq C_{p} e^{(p-2) B H_{\infty}\left(T_{1}(u)\right)}\left|\xi-\xi^{\prime}\right| \geq 0
$$

Since g is non-negative and not identically zero, the weak Harnack inequality (see [7]) yields $z>0$ in Ω and so, $v>0$. Since $T_{1}(u) \geq v$, we conclude that $T_{1}(u)>0$ in Ω, which then implies that $u>0$ in Ω.
Corollary 5.1. Let $0<\theta<1$. We have $\frac{|\nabla u|^{p}}{u^{\theta}} \in L^{1}(\Omega)$.
In fact, by passing to the limit in (4.1), we deduce from (5.1), Lemma 5.1 and Fatou's lemma that

$$
\begin{equation*}
B \int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} d x \leq \int_{\Omega} f d x \tag{5.15}
\end{equation*}
$$

5.2 Passage to the limit

Let us define

$$
H_{\frac{1}{n}}(t)=\int_{0}^{t} \frac{B(1+s)^{\gamma}}{\alpha\left(s+\frac{1}{n}\right)^{\theta}} d s, \quad H_{0}(t)=\int_{0}^{t} \frac{B(1+s)^{\gamma}}{\alpha s^{\theta}} d s, \quad t \geq 0, \quad n \in \mathbb{N}
$$

For $k \in \mathbb{N}$, we use

$$
R_{k}(s)= \begin{cases}1 & \text { if } s \leq k \\ k+1-s & \text { if } k \leq s \leq k+1 \\ 0 & \text { if } s>k+1\end{cases}
$$

Consider

$$
v=e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}\left(u_{n}\right) \varphi
$$

where $j \in \mathbb{N}$ and φ is a positive $C_{0}^{1}(\Omega)$ function, as a test function in (3.2). Then

$$
\begin{align*}
& \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, T_{k+1}\left(u_{n}\right), \nabla T_{k+1}\left(u_{n}\right)\right) \cdot \nabla \varphi e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}\left(u_{n}\right) d x \\
& + \\
& +\frac{B}{\alpha} \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, T_{k+1}\left(u_{n}\right), \nabla T_{k+1}\left(u_{n}\right)\right) \nabla T_{j}(u) \frac{\left(1+T_{j}(u)\right)^{\gamma}}{\left(T_{j}(u)+\frac{1}{j}\right)^{\theta}} \\
& \quad \times e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}\left(u_{n}\right) \varphi d x \\
& =\frac{B}{\alpha} \int_{\Omega}\left[a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, T_{k+1}\left(u_{n}\right), \nabla T_{k+1}\left(u_{n}\right)\right) \cdot \nabla u_{n} \frac{\left(1+u_{n}\right)^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}-\alpha \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}\right] \\
& \quad \times e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}\left(u_{n}\right) \varphi d x \\
& \quad+\int_{\Omega} T_{n}(f) e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}\left(u_{n}\right) \varphi d x \tag{5.16}
\end{align*}
$$

Using (1.4), (1.5) and $R_{k}^{\prime}(s) \leq 0$, we have

$$
\begin{equation*}
-\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} e^{-H_{\frac{1}{n}}\left(u_{n}\right)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}^{\prime}\left(u_{n}\right) \varphi d x \geq 0 \tag{5.17}
\end{equation*}
$$

Combining (1.4) and (1.5), we get

$$
\begin{align*}
& {\left[a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \frac{\left(1+u_{n}\right)^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}-\alpha \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}}\right]} \\
& \qquad \geq \alpha \frac{\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}\left(1-\frac{u_{n}}{u_{n}+\frac{1}{n}}\right) \geq 0 \tag{5.18}
\end{align*}
$$

Letting $n \rightarrow+\infty$, using (4.8), (5.16)-(5.18) and Fatou's lemma, we have

$$
\begin{align*}
& \int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \cdot \nabla \varphi e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) d x \\
& \quad+\frac{B}{\alpha} \int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla T_{j}(u) \frac{\left(1+T_{j}(u)\right)^{\gamma}}{\left(T_{j}(u)+\frac{1}{j} \theta^{\theta}\right.} e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) \varphi d x \\
& \geq \frac{B}{\alpha} \int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \cdot \nabla u \frac{(1+u)^{\gamma}}{u^{\theta}} e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) \varphi d x \\
& \quad-B \int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) \varphi d x+\int_{\Omega} f e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) \varphi d x . \tag{5.19}
\end{align*}
$$

Let $j>k+1$. Using (1.4), (1.6), (5.15) and $R_{k}(u)=0$ on $\{u>k+1\}$, we get

$$
\begin{align*}
\mid a(x, u) \widehat{a}(x, u, \nabla u) \nabla T_{j}(u) & \left.\frac{\left(1+T_{j}(u)\right)^{\gamma}}{\left(T_{j}(u)+\frac{1}{j}\right)^{\theta}} e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} R_{k}(u) \varphi \right\rvert\, \\
& \leq \beta\left(C|u|^{\frac{\theta(p-1)}{p}}+C^{\prime}|\nabla u|^{p-1}\right)|\nabla u| \frac{(1+u)^{\gamma}}{\left(u+\frac{1}{j}\right)^{\theta}} R_{k}(u) \varphi \\
& \leq \beta\left(C|u|^{\theta}+C^{\prime}|\nabla u|^{p-1}\right)|\nabla u| \frac{(1+u)^{\gamma}}{u^{\theta}} R_{k}(u) \varphi \\
& \leq \beta\left(C|\nabla u|+C^{\prime} \frac{|\nabla u|^{p}}{u^{\theta}}\right)(1+u)^{\gamma} R_{k}(u) \varphi \in L^{1}(\Omega) . \tag{5.20}
\end{align*}
$$

Passing first to the limit as $j \rightarrow \infty$ in (5.19), using that $e^{-H_{0}(u)} e^{H_{\frac{1}{j}}\left(T_{j}(u)\right)} \leq 1$ (since $H_{\frac{1}{j}}\left(T_{j}(u)\right) \leq$ $\left.H_{\frac{1}{j}}(u) \leq H_{0}(u)\right),(5.20)$ and Lebesgue's theorem, and then to the limit as $k \rightarrow+\infty$, we obtain

$$
\begin{equation*}
\int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla \varphi d x+B \int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi d x \geq \int_{\Omega} f \varphi d x \tag{5.21}
\end{equation*}
$$

To prove the opposite inequality, we choose $\varphi \in C_{0}^{1}(\Omega)$ with $\varphi \geq 0$ as a test function in (3.2), to obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \nabla \varphi d x+B \int_{\Omega} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+\frac{1}{n}\right)^{\theta+1}} \varphi d x=\int_{\Omega} f_{n} \varphi d x . \tag{5.22}
\end{equation*}
$$

From (1.6), (5.1), (5.2) and Lemma 4.3, we have

$$
\begin{equation*}
\widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow \widehat{a}(x, u, \nabla u) \text { in } L^{\delta}(\Omega), \quad \forall \delta \in\left(1, \frac{\eta}{p-1}\right) \tag{5.23}
\end{equation*}
$$

Therefore, (5.22), (5.23) and Fatou's lemma imply

$$
\begin{equation*}
\int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla \varphi d x+B \int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi d x \leq \int_{\Omega} f \varphi d x \tag{5.24}
\end{equation*}
$$

Combining (5.21) and (5.24), we deduce that

$$
\begin{equation*}
\int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla \varphi d x+\int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi d x=\int_{\Omega} f \varphi d x \tag{5.25}
\end{equation*}
$$

for every φ in $C_{0}^{1}(\Omega)$ with $\varphi \geq 0$. Now, let φ be any function from $C_{0}^{1}(\Omega)$ and $\varepsilon>0$. We define $\varphi_{ \pm}^{\varepsilon}=\rho^{\varepsilon} * \varphi_{ \pm}$as the convolution of a modifier ρ^{ε} with $\varphi_{ \pm}$. Then $\varphi_{ \pm}^{\varepsilon}$ is a positive $C_{0}^{1}(\Omega)$ function for ε sufficiently small. By (5.25), we have

$$
\int_{\Omega} a(x, u) \widehat{a}(x, u, \nabla u) \nabla\left(\varphi_{-}^{\varepsilon}-\varphi_{+}^{\varepsilon}\right) d x+\int_{\Omega} \frac{|\nabla u|^{p}}{u^{\theta}}\left(\varphi_{-}^{\varepsilon}-\varphi_{+}^{\varepsilon}\right) d x=\int_{\Omega} f\left(\varphi_{-}^{\varepsilon}-\varphi_{+}^{\varepsilon}\right) d x
$$

Since $\varphi_{-}^{\varepsilon}-\varphi_{+}^{\varepsilon} \rightarrow \varphi$ uniformly in Ω and in $W_{0}^{1, \eta}(\Omega)$ for every $\eta \geq 1$, as $\varepsilon \rightarrow 0$, the results follow.

5.3 Proof of Theorem 2.2

By virtue of Lemma 4.2 and Lemma 4.3, there exists a function u belonging to $W_{0}^{1, \sigma}(\Omega)$ such that, up to the subsequences,

$$
\begin{cases}u_{n} \rightharpoonup u & \text { in } W_{0}^{1, \sigma}(\Omega), \text { and a.e. in } \Omega \tag{5.26}\\ T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { in } W_{0}^{1, p}(\Omega), \text { and a.e. in } \Omega\end{cases}
$$

Moreover, by repeating the same technique used in the proof of Lemma 5.1, it follows that $u>0$ in Ω. Corollary 5.1 ensures that $\frac{|\nabla u|^{p}}{u^{\theta}}$ belongs to $L^{1}(\Omega)$. From Remark 5.1, using (5.26) and

$$
\begin{equation*}
\widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow \widehat{a}(x, u, \nabla u) \text { in } L^{\delta}(\Omega), \quad \forall \delta \in\left(1, \frac{\sigma}{p-1}\right) \tag{5.27}
\end{equation*}
$$

we can pass to the limit in (2.1) exactly as in the proof of Theorem 2.1 to conclude that u is a distributional solution of problem (1.1).

5.4 Proof of Theorems 2.3 and 2.4

In order to prove these theorems, we modify the proof of Theorem 2.1. We replace (5.26) by

$$
\begin{cases}u_{n} \rightharpoonup u & \text { in } W_{0}^{1, p}(\Omega), \text { and a.e. in } \Omega \\ T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { in } W_{0}^{1, p}(\Omega), \text { and a.e. in } \Omega\end{cases}
$$

and (5.27) by

$$
\widehat{a}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow \widehat{a}(x, u, \nabla u) \text { in } L^{\delta}(\Omega), \quad \forall \delta \in\left(1, \frac{p}{p-1}\right)
$$

Using the last convergence and (5.2), we can pass to the limit in (5.22) to obtain (2.1). Thus Theorem 2.3 and Theorem 2.4 are proved.

Acknowledgments

The author would like to thank the referees for their comments and suggestions.

References

[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl. (4) 182 (2003), no. 1, 53-79.
[2] L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity. Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996). Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51-81.
[3] L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L^{1} data. Nonlinear Anal. 19 (1992), no. 6, 573-579.
[4] L. Boccardo and T. Gallouët, $W_{0}^{1,1}$ solutions in some borderline cases of Calderon-Zygmund theory. J. Differential Equations 253 (2012), no. 9, 2698-2714.
[5] L. Boccardo, F. Murat and J.-P. Puel, L^{∞} estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23 (1992), no. 2, 326-333.
[6] G. Croce, An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 507-530.
[7] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721-747.
[8] H. Khelifi, Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan J. of Pure and Appl. Anal. (MJPAA) 8 (2022), no. 3, 310-327.
(Received 20.03.2022; revised 10.01.2023; accepted 08.02.2023)

Author's addresses:

1. Department of Mathematics, Faculty of Sciences, University of Algiers, Algiers, Algeria.
2. Laboratory of Mathematical Analysis and Applications, University of Algiers 1, Algiers, Algeria.

E-mail: khelifi.hichemedp@gmail.com

