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Abstract. In this paper, we prove the existence of mild solutions for a second-order impulsive
semilinear stochastic differential inclusion with an infinite-dimensional standard cylindrical Wiener
process and Lévy noise. We consider the non convex-valued cases.
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1 Introduction
There has recently been increasing interest in the theory of stochastic equations with the Lévy noise
that have discontinuous jumps. In this case, the noise is obtained from the Lévy process via its Lévy-
Itô decomposition into Brownian motion (continuous part) and independent Poisson random measure
(jump part), and it has attracted particular interest (see, e.g., Applebaum [3]). Note that the Poisson
noise is a special non-Gaussian Lévy noise.

Recently, stochastic differential and partial differential inclusions have been extensively studied.
For instance, in [1, 5], the authors investigated the existence of solutions of nonlinear stochastic dif-
ferential inclusions by means of a Banach fixed point theorem and a semigroup approach. Balasub-
ramaniam [4] obtained the existence of solutions of functional stochastic differential inclusions by
Kakutani’s fixed point theorem, the authors in [5] initiated the study of the existence of solutions of
semilinear stochastic evolution inclusions in a Hilbert space by using the nonlinear alternative of Leray–
Schauder type. In [18], some existence results for impulsive neutral stochastic evolution inclusions in
the Hilbert Space, where a class of second-order evolution inclusions with a convex and nonconvex
cases are considered. In [22], Henriquez studied the existence of solutions of non-autonomous second
order functional differential equations with infinite delay by using Leray–Schauder’s Alternative fixed
point theorem.

That is why in the recent years they have been the objective of many investigations. We refer
to the monographs by Benchohra et al. [6], amongst others, to see several studies on the properties
of their solutions. The reader can also find a detailed and extensive bibliography in the previously
mentioned books (see also Da Prato and Zabczyk [11], Gard [15], Gikhman and Skorokhod [16],
Sobzyk [34]). As a motivating example, let us refer to a stochastic model for drug distribution in a
biological system which was described by Tsokos and Padgett [36] as a closed system with a simplified
heart, one organ or capillary bed, and recirculation of a blood with a constant rate of flow, where
the heart is considered as a mixing chamber of constant volume. For the basic theory concerning
stochastic differential inclusions, see the monographs of Bharucha–Reid [8], Mao [25], Øksendal [29],
Tsokos and Padgett [36], Sobczyk [34] and Da Prato and Zabczyk [11].

In many realistic cases, it is advantageous to treat the second-order stochastic differential directly
rather than to convert them to first order differential (see Henriquez [22]). For instance, it is useful
for engineers to model mechanical vibrations or charge on a capacitor or condenser subjected to white
noise excitation through a second-order stochastic differential (see Da Prato and Zabczyk [12]).

In this paper, we consider the following second-order system of stochastic impulsive differential
inclusions and Lévy noise of the following type:

d(x′(t)− g1(t, x(t), y(t))) ∈ (Ax(t) + F 1(t, x(t), y(t)) dt+ f1(t, x(t), y(t)) dW (t)

+

∫
Z

k1(t, x(t−), y(t−), z) Ñ(dt, dz), t ∈ [0, b], a.e., t 6= tk,

d(y′(t)− g2(t, x(t), y(t))) ∈ (Ax(t) + F 2(t, x(t), y(t))) dt+ f2(t, x(t), y(t)) dW (t)

+

∫
Z

k2(t, x(t−), y(t−), z) Ñ(dt, dz), t ∈ [0, b], a.e., t 6= tk,

∆x(t) = Ik(x(tk), y(tk)), ∆x′(t) = I1k(x(tk), y(tk)), t = tk, k = 1, 2, . . . ,m,

∆y(t) = Ik(x(tk), y(tk)), ∆y′(t) = I
2

k (x(tk), y(tk)), t = tk, k = 1, 2, . . . ,m,

x(0) = x0, y(0) = y0,

x′(0) = x1, y′(0) = y1,

(1.1)

where the state (x( · ), y( · )) takes values in a separable real Hilbert space X with inner product
〈 · , · 〉 induced by the norm ‖ · ‖, where A is the infinitesimal generator of a strongly continuous
cosine family of linear operators {C(t), t ≥ 0}, {W (t) : t ∈ [0, b]} is a standard cylindrical Wiener
process on Y – an arbitrary separable Hilbert space, and F i : [0, b] × X × X → P(X) and ki :
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[0, b] × X × X × (Z − {0}) → X are given set-valued functions, where P(X) denotes the family
of nonempty subsets of X, Ik, Ik, I

1
k , I

2

k ∈ C(X × X,X) (k = 1, 2, . . . ,m), LQ(Y,X) denotes the
space of all Q-Hilbert–Schmidt operators from Y into X, f i : J × X × X → LQ(Y,X). Here,
LQ(Y,X) = L0(Y,X) = L2(Q

1/2Y,X) is a separable Hilbert space with respect to the Hilbert–
Schmidt norm ‖ · ‖L0 and Q-Wiener process on (Ω,F ,P) with a linear bounded covariance operator
Q such that trQ < ∞. Let {W (t), t ∈ R} be a standard cylindrical Wiener process with values
in Y and, defined on (Ω,F ,P), be a complete probability space. Suppose {p(t), t > 0} is a σ-finite
stationary Ft-adapted Poisson point process taking values in a measurable space (U,B(U)), which will
also be defined in the next section. Moreover, the fixed times tk satisfy 0 < t1 < t2 < · · · < tm < b,
y(t−k ) and y(t+k ) denote the left and right limits of y(t) at t = tk, respectively.

Several significant results concerning SDEs with Lévy noise have been presented in the existing
literature [7,19,32,33]. The existence of solutions to SDEs driven by time and space Poisson random
measure were considered by, amongst others, Mueller [27], Hausenblas [20], Kallianpur and Xiong [23],
Wu, Zhang [2] and Mytnik [28].

The rest of this paper is organized as follows. In Section 2, we briefly present some basic notation
and preliminary information. In Section 3, we introduce all the background material used, such as
stochastic calculus, some properties of generalized Banach spaces and the Covitz and Nadler fixed
point theorem for contraction multi-valued maps in a generalized metric space (in the nonconvex
case).

2 Preliminaries
In this section, we introduce some notations, recall some definitions and preliminary facts which are
used throughout this paper. Actually, we borrow them from [9, 26]. Although we could simply refer
to this paper whenever we need it, we prefer to include this summary here in order to make our paper
as much self-contained as possible and to make easier its reading.

Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying the usual
conditions (i.e., right continuous and F0 containing all P-null sets). For a stochastic process x( · , · ) :
[0, T ] × Ω → X, we write x(t) (or, simply, x when no confusion is possible) instead of x(t, ω). Let
W be a Q-Wiener process on (Ω,F ,P) with the linear bounded covariance operator Q such that
Tr(Q) < ∞. We assume that there exists a complete orthonormal system {en} in Y , a bounded
sequence of nonnegative real numbers {λn} such that Qen = λe, n = 1, 2, . . . , and a sequence {βn} of
independent Wiener processes such that

〈W (t), e〉 =
∑

λn〈e, en〉βn(t), e ∈ Y.

Let ϕ ∈ L(X,Y ) and define

|ϕ|2Q = Tr(ϕQϕ∗) =

∞∑
n=1

∣∣∣√λn ϕ en

∣∣∣2.
If |ϕ|Q < +∞, then ϕ is called a Q-Hilbert–Schmidt operator. Let LQ(X,Y ) denote the space of all
Q-Hilbert–Schmidt operators ϕ : Y → X. The completion LQ(Y,X) of L(K,H) with respect to the
topology is induced by the norm | · |Q, where |ϕ|2Q = 〈ϕ, ϕ〉 is a Hilbert space with the above norm
topology. We assume that the filtration is generated by the Q-Weiner process W ( · ). The random
measure Np defined by Np((0, t] × Λ) :=

∑
s∈(0,t]

1Λ(p(s)) for Λ ∈ B(U) is called the Poisson random

measure induced by p( · ); thus we can define the measure Ñ by

Ñ(dt, dz) = Np(dt, dz)− ν (dz) dt,

where ν is the characteristic measure of Np, which is called the compensated Poisson random measure
for a Borel set Z ∈ B(U − {0}), that is,

Ft = σ{W (t); s ≤ t} ∨ σ
{
Np((0, s]× Λ); s ≤ t, Λ ∈ B(U)

}
∨N , t ∈ J,
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where N is the class of P-null sets.
The next result is known as the Burholder–Davis–Gundy inequalities.

Theorem 2.1 ([31]). For each p > 0, there exist the constants cp, Cp ∈ (0,∞) such that for any

process x with the property that for some t ∈ [0,∞),
t∫
0

|X|2(s) ds < ∞ a.s., we have

cpE
( t∫

0

|X|2(s) ds
) p

2

≤ E
∣∣∣∣ sup
s∈[0,t]

t∫
0

X(s) dW (s)

∣∣∣∣p ≤ CpE
( t∫

0

|X|2(s) ds
) p

2

. (2.1)

In order to prove the main theorem of this paper, we also need a key lemma which is stated below
and whose proof can be found in [35].

Lemma 2.1. Let p = 1 or 2. Assume that the function σ : R+×U → X is a progressively measurable
function satisfying

t∫
0

E
(∫

Z

|σ(s, x)|pν (dx) ds

)
< ∞.

Then, for c > 0, the Burkholder inequality holds:

E
(

sup
0≤s≤t

∣∣∣∣
s∫

0

∫
Z

σ(s, x) Ñ(ds, dx)

∣∣∣∣p) ≤ cE
t∫

0

∫
Z

|σ(s, x)|pν (dx) ds. (2.2)

2.1 Some results on fixed point theorems and set-valued analysis
We note that for generalized metric space, the notation of open subset, closed set, convergence, Cauchy
sequence and completeness are similar to those in usual metric spaces.

Definition 2.1. A generalized metric space (X, d), where d(x, y) :=

d1(x, y)
· · ·

dn(x, y)

, is complete if (X, di)

is a complete metric space for every i = 1, . . . , n.

Definition 2.2. A square matrix of real numbers Mtrix is said to be convergent to zero if its spectral
radius ρ(Mtrix) is strictly less than 1. In other words, this means that all the eigenvalues of Mtrix are
in the open unit disc (i.e., |λ| < 1 for every λ ∈ C with det(Mtrix − λI) = 0, where I denotes the unit
matrix of Mn×n(R)).

Denote

Pcl(X) =
{
y ∈ P(X) : y closed

}
,

Pb(X) =
{
y ∈ P(X) : y bounded

}
,

Pc(X) =
{
y ∈ P(X) : y convex

}
,

Pcp(X) =
{
y ∈ P(X) : y compact

}
.

Consider Hd : P(X)× P(X) → Rn
+ ∪ {∞} defined by

Hd(A,B) :=

Hd1
(A,B)

. . . . . . . . . .
Hdn

(A,B)

 .

Let (X, d) be a generalized metric space with

d(x, y) :=

d1(x, y)
. . . . . . .
dn(x, y)

 .



26 Tayeb Blouhi, Mohamed Ferhat

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , n, are metrics on X,

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where
d(A, b) = inf

a∈A
d(a, b), d(a,B) = inf

b∈B
d(a, b).

Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized metric space.
A multi-valued map F : X → P(X) is convex (closed) valued if F (y) is convex (closed) for all

y ∈ X, F is bounded on bounded sets if F (B) =
⋃

y∈B

F (y) is bounded in X for all B ∈ Pb(X). F is

called upper semi-continuous (u.s.c., for short) on X if for each y0 ∈ X, the set F (y0) is a nonempty,
closed subset of X, and for each open set U of X containing F (y0), there exists an open neighborhood
V of y0 such that F (V) ∈ U . F is said to be completely continuous if F (B) is relatively compact for
every B ∈ Pb(X).

If the multi-valued map F is completely continuous with nonempty compact values, then F is
u.s.c. if and only if F has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ F (xn) imply y∗ ∈ F (x∗).

A multi-valued map F : J → Pcp,c is said to be measurable if for each y ∈ X, the mean-square
distance between y and F (t) is measurable.

Lemma 2.2 ([24]). Let I be a compact interval and X be a Hilbert space. Let F be an L2-Carathéodory
multi-valued map with SF,y 6= ∅, and let Γ be a linear continuous mapping from L2(I,X) to C(I,X).
Then the operator

Γ ◦ SF : C(I,X) → Pcp,c(L
2([0, T ], X)), y 7→ (Γ ◦ SF )(y) = Γ(SF , y),

is a closed graph operator in C(I,X)×C(I,X), where SF,y is known as the selectors set from F and
is given by

SF,y =
{
f ∈ L2([0, T ], X) : f(t) ∈ F (t, y) for a.e. t ∈ [0, T ]

}
.

We denote the graph of G to be the set

gr(G) =
{
(x, y) ∈ X × Y, y ∈ G(x)

}
.

Lemma 2.3 ([13]). If G : X → Pcl(Y ) is u.s.c., then gr(G) is a closed subset of X × Y . Conversely,
if G is locally compact and has nonempty compact values and a closed graph, then it is u.s.c.

Definition 2.3. A set-valued operator G : J → Pcl(X) is said to be a contraction if there exists
0 ≤ γ < 1 such that

Hd(G(x), G(y)) ≤ γd(x, y) for all x, y ∈ X.

Now, we present a second result of problem (1.1) with a nonconvex valued right-hand side. Our
considerations are based on a fixed point theorem for contraction multi-valued operators given by
Covitz and Nadler in 1970 (see also Deimling [13, Theorem 11.1]). In this section, we provide a
multi-valued version of Perov’s fixed point theorem (see [30]).

Definition 2.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be
contractive if there exists a convergent to zero a matrix M such that

d(N(x), N(y)) ≤ Mtrixd(x, y) for all x, y ∈ X.

Theorem 2.2 ([30]). Let (X, d) be a complete generalized metric space and F : X → Pcl,b(X) be a
contractive multi-valued operator with Lipschitz matrix M . Then N has at least one fixed point.

Now, let us recall some facts about cosine families of operators.

Definition 2.5. The one-parameter family {C(t) : t ∈ R} of operators from X to X satisfying the
conditions
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(i) C(0) = I,

(ii) C(t)x is continuous in t on R, for all x ∈ X,

(iii) C(t+ s)− C(t− s) = 2C(t)C(s) for all t, s ∈ R

is called a strongly continuous cosine family.

The corresponding strongly continuous sine family {S(t) : t ∈ R} associated to the given strongly
continuous cosine family {C(t) : t ∈ R} is defined by

S(t)x =

t∫
0

C(s)x ds for allx ∈ X, t ∈ R.

The infinitesimal generator A : X → X of a cosine family {C(t) : t ∈ R} is defined by

Ax =
d2

dt2
C(t)x

∣∣
t=0

for all x ∈ D(A),

where
D(A) =

{
x ∈ X : C( · )x ∈ C2(R;X)

}
.

It is well known that the infinitesimal generator A is a closed, densely defined operator on X. Such co-
sine and its corresponding sine families and their generators satisfy the following properties appearing,
for instance, in Fattorini [14].

Proposition 2.1. Suppose that A is the infinitesimal generator of a cosine family of operators
{C(t) : t ∈ R}. Then:

(i) There exist M∗ ≥ 1 and α ≥ 0 such that ‖C(t)‖ ≤ M∗eα|t| and hence ‖S(t)‖ ≤ M∗eα|t|.

(ii) A
r∫
s

S(u)x du = (C(r)− C(s))x for all 0 ≤ s ≤ r < ∞.

(iii) There exists N∗ ≥ 1 such that

‖S(s)− S(r)‖ ≤ N∗
r∫

s

eα|s| ds for all 0 ≤ s ≤ r < ∞.

The uniform boundedness principle, together with Proposition 2.1 part (i), imply that both {C(t) :
t ∈ [0, b]} and {S(t) : t ∈ [0, b]} are uniformly bounded by a positive constant M .

2.2 Main result
Let Jk = (tk, tk+1], k = 1, 2, . . . ,m. In order to define a solution for problem (1.1), consider the
following space of picewise continuous functions.

Let us introduce the spaces

H2([0, b];L
2(Ω, X)) =

{
x : J → L2(Ω, X),

x
∣∣
(tk,tk+1]

∈ C((tk, tk+1], L
2(Ω, X)), k = 1, 2, . . . ,m and there exist x(t+k ) for k = 1, 2, . . . ,m

}
,

and

H ′
2([0, b];L

2(Ω, X)) =
{
x : J → L2(Ω, X),

x
∣∣
(tk,tk+1]

∈ C1((tk, tk+1], L
2(Ω, X)), k = 1, 2, . . . ,m and there exist x(t+k ) for k = 1, 2, . . . ,m

}
.
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It is clear that H2([0, b];L
2(Ω, X)) endowed with the norm

‖x‖H2 = E
(

sup
s∈[0,b]

‖x(s, · )‖2
) 1

2

.

It is easy to see that H ′
2 is a Banach space with the norm ‖x‖H′

2
= ‖x‖H2

+ ‖x′‖H2
, let the space

M2 =
{
x : [0, b] → L2(Ω, X) and x

∣∣
J
∈ H ′

2, E
(

sup
t∈[0,b]

‖x(t, · )‖2
)
< ∞ almost surely

}
,

be endowed with the norm
‖x‖M2

= E
(

sup
s∈[0,b]

‖x(s, · )‖2
) 1

2

.

It is not difficult to check that M2 is a Banach space with the norm ‖ · ‖M2 .
Now, we first define the concept of a mild solution to our problem. It is worth mentioning that we

can use several types of solutions (weak, strong, etc.), each of them needs a different set of assumptions
like absolutely continuous, differentiable absolutely continuous. We refer the reader to the book [21]
for a detailed explanation of different types of solutions as well as to some results concerning their
relationships. Our interest in this paper is the so-called mild solution which will be defined below.
However, it is also possible to consider a similar analysis for the classical concept of a solution. An
important feature is that, in the deterministic case, every classical solution becomes a mild solution
(see, e.g., [21, p. 436 ff.]), so it is expected that the same result holds in this stochastic framework.
But it is not our objective in this paper to prove this kind of results, and that is why we will prove
directly the existence and eventual uniqueness of a mild solution to our problem.

Definition 2.6. An X−valued stochastic process u = (x, y) ∈ M2 ×M2 is said to be a solution of
(1.1) with respect to the probability space (Ω,F ,P) if:

(1) u(t) is Ft-adapted for all t ∈ Jk = (tk, tk+1], k = 1, 2, . . . ,m;

(2) u(t) is right continuous and has limit on the left, and there exist selections f i, i = 1, 2, such
that f i

∗(t) ∈ F i(t, u(t)) a.e. t ∈ J with

P
( t∫

0

∫
Z

∣∣ki(s, x(s−), y(s−), z)
∣∣2
X
ν (dz) ds < ∞

)
= 1;

(3) u(t) satisfies for each t ∈ J , a.e. ω ∈ Ω,

x(t) = C(t)x0 + S(t)(x1 − g1(0, x0, y0)

+

t∫
0

C(t− s)g1(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k1(t, x(s), y(s), z) dÑ(ds, dz)

+

t∫
0

S(t− s)f1
∗ (s) ds+

t∫
0

S(t− s)f1(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(x(tk), y(tk)), a.e. t ∈ J,

and

y(t) = C(t)y0 + S(t)(y1 − g2(0, x0, x0)

+

t∫
0

C(t− s)g2(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k2(t, x(s), y(s), z) Ñ(ds, dz)
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+

t∫
0

S(t− s)f2
∗ (s) ds+

t∫
0

S(t− s)f2(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(x(tk), y(tk)), a.e. t ∈ J.

In this paper, we will work under the following assumptions which will be imposed in our main
theorem. In this section, we assume that there exists M > 0 such that the cosine family of operators
{C(t) : t ∈ [0, b]} on X and the corresponding sine family {S(t) : t ∈ [0, b]} satisfy

‖S(t)‖ ≤ M, ‖C(t)‖ ≤ M for every t ∈ [0, b],

and S(t), C(t) are compact in X for t ≥ 0.

(H1) F i : J ×X ×X → Pcp(X); (t, y) → F i(t, x, y) is measurable for each (x, y) ∈ X ×X.

(H2) There exist the constants ai, bi ∈ R+ such that

H2
di

(
F i(t, x, y), F i(t, x, y)

)
≤ ai|x− x|2X + bi|y − y|2X

for all x, y, x, y ∈ X for each i = 1, 2.

(H3) There exist the constants afi , bfi , agi , bgi , αki
, βki

∈ R+ such that∣∣f i(t, x, y)− f i(t, x, y)
∣∣2
X

≤ afi |x− x|2X + bfi |y − y|2X

and ∣∣gi(t, x, y)− gi(t, x, y)
∣∣2
X

≤ agi |x− x|2X + bgi |y − y|2X ,∫
Z

∣∣ki(t, x, y, z)− ki(t, x, y, z)
∣∣2
X
ν(dz) ≤ αki

|x− x|2X + βki
|y − y|2X

for all x, y, x, y ∈ X.

(H4) There exist the constants dik ≥ 0 and d
i

k ≥ 0, k = 1, . . . ,m and i = 1, 2 such that∣∣I1k(x, y)− I1k(x, y)
∣∣2
X
∨
∣∣Ik(x, y)− Ik(x, y)

∣∣2
X

≤ d1k|x− x|2X + d2k|x− x|2X

and ∣∣I2k(x, y)− I2k(x, y)
∣∣2
X
∨
∣∣Ik(x, y)− Ik(x, y)

∣∣2 ≤ d
1

k |x− x|2X + d
2

k |y − y|2X ,

for all x, y, x, y ∈ X.

Consider the multi-valued operator N : M2 ×M2 → P(M2 ×M2) defined by

N(x, y) = (N1(x, y), N2(x, y)), (x, y) ∈ M2 ×M2

and given by
N(x, y) =

{
(h1, h2) ∈ M2 ×M2

}
,

where

h1(t) = C(t)x0 + S(t)
(
x1 − g1(0, x0, y0)

)
+

t∫
0

C(t− s)g1(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k1(t, x(s), y(s), z) Ñ(ds, dz)



30 Tayeb Blouhi, Mohamed Ferhat

+

t∫
0

S(t− s)f1
∗ (s) ds+

t∫
0

S(t− s)f1(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(x(tk), y(tk)) if t ∈ [0, b],

h2(t) = C(t)y0 + S(t)
(
y1 − g2(0, x0, y0)

)
+

t∫
0

C(t− s)g2(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k2(t, x(s), y(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f2
∗ (s) ds+

∞∑
l=1

t∫
0

S(t− s)f2(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(x(tk), y(tk)) if t ∈ [0, b];

here,

f i
∗ ∈ SF i,u =

{
f i
∗ ∈ L2(J,X) : f i

∗(t) ∈ F i(t, x, y) for each t ∈ J, x, y ∈ M2

}
, i = 1, 2.

Theorem 2.3. Assume that hypotheses (H1)− (H4) are satisfied. If the matrix

Mtrix =

(
B1 B2

B3 B4

)
,

where

B1 = M

√
6ag1 + 6cbαk1

+ 6a1 + af1C2 + 12m
∑

0<tk<t

d1k ,

B2 = M

√
6bg1 + 6cbβk1

+ 6b1 + 6M2bf1C2 + 12m
∑

0<tk<t

d2k ,

and

B3 = M

√
6ag2 + 6cbαk2

+ 6M2a2 + af2C2 + 12m
∑

0<tk<t

d
1

k ,

B4 = M

√
6bg2 + 6cbβk2 + 6b2 + 6bf2C2 + 12m

∑
0<tk<t

d
2

k ,

converges to zero, then problem (1.1) has at least one mild solution.

Proof. In order to transform problem (1.1) into a fixed point one, show that N satisfies the assumptions
of Theorem 2.3. Note that (H2) implies that F i for each i = 1, 2 has at most linear growth, i.e.m.,

E|F i(t, x, y)|2X ≤ aiE|x|2X + biE|y|2X

for a.e. t ∈ J and all x, y ∈ X.

(a) N(x, y) ∈ Pcl(M2 × M2) for each (x, y) ∈ M2 × M2. Let un = (xn, yn) → z∗ = (x∗, y∗),
(h1n, h2n) ∈ N(un) and (h1n, h2n) → (h1∗, h2∗) as n → ∞. We prove that h∗ ∈ N1(u∗). The
facts that h1n ∈ N1(un) and h2n ∈ N2(un) means that there exists f i

∗,n ∈ SF i,un
for each i = 1, 2

such that
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h1n = C(t)x0 + S(t)
(
x1 − g1(0, x0, y0)

)
+

t∫
0

C(t− s)g1(s, xn(s), yn(s)) ds+

t∫
0

S(t− s)

∫
Z

k1(t, x(s), y(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f1
∗,n(s) ds+

t∫
0

S(t− s)f1(t, xn(s), yn(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(xn(tk), yn(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(xn(tk), yn(tk)).

First, notice that as n → ∞,

∥∥∥∥∥h1n − C(t)x0 − S(t)(x1 − g1(0, x0, y0))−
t∫

0

C(t− s)g1(s, xn(s), yn(s)) ds

−
t∫

0

S(t− s)

∫
Z

k1(s, xn(s), yn(s), z)Ñ (ds, dz)−
t∫

0

S(t− s)f1(s, xn(s), yn(s)) dW (s)

−
∑

0<tk<t

C(t− tk)Ik(xn(tk), yn(tk))−
∑

0<tk<t

S(t− tk)I
1
k(xn(tk), yn(tk))

−
(
h1∗ − C(t)x0 − S(t)(x1 − g1(0, x0, y0))

)
−

t∫
0

C(t− s)g1(s, x∗(s), y∗(s)) ds

−
∞∑
l=1

t∫
0

S(t− s)

∫
Z

k1(s, x∗(s), y∗(s), z) Ñ(ds, dz)−
t∫

0

S(t− s)f1(t, x∗(s), y∗(s)) dW (s)

−
∑

0<tk<t

C(t− tk)Ik(x∗(tk), x∗(tk))−
∑

0<tk<t

S(t− tk)I
1
k(x∗(tk), y∗(tk))

∥∥∥∥∥
M2

−→ 0.

Now, consider the continuous linear operator Γ : L2(J,X) → M2 defined for each i = 1, 2 by

Γ(υi)(t) =

t∫
0

S(t− s)υi(s) ds.

From the definition of Γ we know that

h1n −

(
C(t)x0 + S(t)(x1 − g1(0, x0, y0)) +

t∫
0

C(t− s)g1(s, xn(s), yn(s)) ds

+

t∫
0

S(t− s)

∫
Z

k1(s, xn(s), yn(s), z) Ñ(ds, dz) +

t∫
0

S(t− s)f1(t, xn(s), yn(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(xn(tk), yn(tk))−
∑

0<tk<t

S(t− tk)I
1
k(xn(tk), yn(tk))

)
∈ Γ(SF 1,un

)

and

h1n −

(
C(t)x0 + S(t)(y1 − g2(0, x0, y0)) +

t∫
0

C(t− s)g2(s, xn(s), yn(s)) ds
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+

t∫
0

S(t− s)

∫
Z

k2(s, xn(s), yn(s), z) Ñ(ds, dz) +

t∫
0

S(t− s)f2(t, xn(s), yn(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(yn(tk), xn(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(xn(tk), yn(tk))

)
∈ Γ(SF 2,un

).

Since un = (xn, yn) → z∗ = (x∗, y∗) and Γ ◦SF i is a closed graph operator by Lemma 2.2, there
exists f i

∗∗ ∈ SF i,u∗ for each i = 1, 2 such that

h1∗ = C(t)x0 + S(t)(x1 − g1(0, x0, y0))

+

t∫
0

C(t− s)g1(s, x∗(s), y∗(s)) ds+

∞∑
l=1

t∫
0

S(t− s)

∫
Z

k1(t, x∗(s), y∗(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f1
∗∗(s) ds+

t∫
0

S(t− s)f1(t, x∗(s), y∗(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x∗(tk), y∗(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(x∗(tk), y∗(tk)).

Similarly,

h2∗ = C(t)y0 + S(t)(y1 − g2(0, x0, y0))

+

t∫
0

C(t− s)g2(s, x∗(s), y∗(s)) ds+

t∫
0

S(t− s)

∫
Z

k2(s, x∗(s), y∗(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f2
∗∗(s) ds+

t∫
0

S(t− s)f2(t, x∗(s), y∗(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x∗(tk), yn(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(x∗(tk), y∗(tk)).

Hence (h1∗, h2∗) ∈ (N1(u∗), N2(u∗)), proving our claim.

(b) There exists a matrix Mtrix with ‖Mtrix‖ < 1 such that

EHd(N(x, y), N(x, y)) ≤ Mtrix

(
‖x− x‖M2

‖y − y‖M2

)
for any x, y, x, y ∈ M2 and hi ∈ Ni(x, y). Then there exists f i

∗( · ) ∈ SF i,x,y (f i
∗ is a measurable

selection) such that for each i = 1, 2 and t ∈ [0, b], we have

h1(t) = C(t)x0 + S(t)
(
x1 − g1(0, x0, y0)

)
+

t∫
0

C(t− s)g1(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k1(t, x(s), y(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f1
∗ (s) ds+

t∫
0

S(t− s)f1(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(x(tk), y(tk))

and
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h2(t) = C(t)y0 + S(t)(y1 − g2(0, x0, y0)
)

+

t∫
0

C(t− s)g2(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k2(t, x(s), y(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f2
∗ (s) ds+

t∫
0

S(t− s)f2(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(x(tk), y(tk)).

From (H1) and (H2),

EH2
di

(
F i(t, x, y), F i(t, x, y)

)
≤ aiE|x− x|2X + biE|y − y|2X , a.e.t ∈ J.

Hence there is (w,w) ∈ F 1(t, x(t), y(t))× F 2(t, x(t), y(t)) such that

E|f1
∗ (t)− w|2X ≤ a1E|x− x|2X + b1E|y − y|2X , t ∈ [0, b],

and

E|f2
∗ (t)− w|2 ≤ a2E|x− x|2X + b2E|y − y|2X , t ∈ [0, b].

Consider the multi-valued maps Ui : [0, b] → P(X), i = 1, 2, defined by

U1(t) =
{
w ∈ F 1(t, x(t), y(t)) : E|f1(t)− w|2 ≤ a1E|x− x|2X + b1E|y − y|2X a.e. t ∈ [0, b]

}
,

and similarly,

U2(t) =
{
w ∈ F 2(t, x(t), y(t)) : E|f2(t)− w|2 ≤ a2E|x− x|2X + b2E|y − y|2X , a.e. t ∈ [0, b]

}
,

that is,
U1 = B

(
f1
∗ (t), a1E|x− x|2X + b1E|y − y|2X

)
and

U2 = B
(
f2
∗ (t), a2E|x− x|2X + b2E|y − y|2X

)
.

Since f i, ai, bi, x, y, x, y are measurable for each i = 1, 2, Theorem III.4.1 in [10] tells us that the
closed ball Ui is measurable. In addition, (H1) and (H2) imply that for each (x, y) ∈ M2×M2,
F i(t, x(t), y(t)) is measurable. Finally, the set Vi( · ) = Ui( · ) ∩ F i( · , x( · ), y( · )) is nonempty,
since it contains w, w. Therefore, the intersection multi-valued operator Vi is measurable with
nonempty, closed values [17], there exists a function f i(t) which is a measurable selection for
Vi( · ). Thus f

i

∗(t) ∈ F i(t, x(t), y(t)) and

E
∣∣f1

∗ (t)− f 1
∗ (t)

∣∣2
X

≤ a1E|x− x|2X + b1E|y − y|2X for a.e. t ∈ J

and
E
∣∣f2

∗ (t)− f
2

∗ (t)
∣∣2
X

≤ a2E|x− x|2X + b2E|y − y|2X , for a.e. t ∈ J.

Let (h1, h2) be defined by

h1(t) = C(t)x0 + S(t)(x1 − g1(0, x0, y0))

+

t∫
0

C(t− s)g1(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k1(t, x(s), y(s), z) Ñ(ds, dz)
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+

t∫
0

S(t− s)f
1

∗ (s) ds+

t∫
0

S(t− s)f1(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
1
k(x(tk), y(tk))

and

h2(t) = C(t)y0 + S(t)(y1 − g2(0, x0, y0))

+

t∫
0

C(t− s)g2(s, x(s), y(s)) ds+

t∫
0

S(t− s)

∫
Z

k2(t, x(s), y(s), z) Ñ(ds, dz)

+

t∫
0

S(t− s)f
2

∗ (s) ds+

t∫
0

S(t− s)f1(t, x(s), y(s)) dW (s)

+
∑

0<tk<t

C(t− tk)Ik(x(tk), y(tk)) +
∑

0<tk<t

S(t− tk)I
2
k(yx(tk), y(tk)).

This implies that

E
∣∣h1(t)− h1(t)

∣∣2
X

≤ 6E
∣∣∣∣

t∫
0

C(t− s)(g1(s, x(s), y(s))− g1(s, x(s), y(s))) ds

∣∣∣∣2
X

+ 6E
∣∣∣∣

t∫
0

∫
Z

S(t− s)
(
k1(t, x(s), y(s), z)− k1(s, x(s), y(s), z)

)
Ñ(ds, dz)

∣∣∣∣2
X

+6E
∣∣∣∣

t∫
0

S(t−s)(f1
∗ (s)−f

1

∗ (s)) ds

∣∣∣∣2
X

+6E
∣∣∣∣

t∫
0

S(t−s)
(
f1(t, x(s), y(s))−f1(t, x(s), y(s))

)
dW (s)

∣∣∣∣2
X

+ 6E
∣∣∣ ∑
0<tk<t

C(t− tk)
(
Ik(x(tk), y(tk))− Ik(x(tk), y(tk))

)∣∣∣2
X

+ 6E
∣∣∣ ∑
0<tk<t

S(t− tk)
(
I1k(x(tk), y(tk))− I1k(x(tk), y(tk))

)∣∣∣2
X
.

Firstly, applying inequalities (2.1), (2.2) and (H2)–(H4), we get

E
(

sup
t∈J

|h1(t)− h1(t)|2X
)
≤ 6M2ag1

t∫
0

E|x(s)− x(s)|2X + bg16M
2

t∫
0

E|y(s)− y(s)|2X

+ 6M2cbαk1

t∫
0

E|x(s)− x(s)|2X + 6M2cbβk1

t∫
0

E|y(s)− y(s)|2X ds

+ 6M2a1

t∫
0

E|x(s)− x(s)|2X ds+ 6M2b1

t∫
0

E|y(s)− y(s)|2X ds

+ 6M2af1C2

t∫
0

E|x(s)− x(s)|2X ds+ 6M2bf1C2

t∫
0

E|y(s)− y(s)|2X ds

+ 12M2m
∑

0<tk<t

d1kE|x(tk)− x(tk)|2X + 12M2m
∑

0<tk<t

d2kE|y(tk)− y(tk)|2X .
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Taking the supremum, we have

E
(

sup
t∈J

|h1(t)− h1(t)|2X
)

≤ 6M2ag1

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6bg1M

2

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 6M2cbαk1

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6M2cbβk1

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 6M2a1

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6M2b1

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 6M2af1C2

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6M2bf1C2

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 12M2m
∑

0<tk<t

d1kE
(

sup
0≤θ≤t

|x(θ)− x(θ)|2X
)
+ 12M2m

∑
0<tk<t

d2kE
(

sup
0≤θ≤t

|y(θ)− y(θ)|2X
)
.

It is easy to get the estimations for h2:

E
(

sup
t∈J

|h2(t)− h2(t)|2X
)

≤ 6M2ag2

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ bg26M

2

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 6M2cbαk2

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6M2cbβk2

t∫
0

E
(

sup
0≤θ≤s

∣∣∣y(θ)− y(θ)
∣∣∣2
X

)
ds

+ 6M2a2

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X
)
ds+ 6M2b2

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 6M2af2C2

t∫
0

E
(

sup
0≤θ≤s

|x(θ)− x(θ)|2X) ds+ 6M2bf2C2

t∫
0

E
(

sup
0≤θ≤s

|y(θ)− y(θ)|2X
)
ds

+ 12M2m
∑

0<tk<t

d
1

kE
(

sup
0≤θ≤t

|x(θ)− x(θ)|2X
)
+ 12M2m

∑
0<tk<t

d
2

kE
(

sup
0≤θ≤t

|y(θ)− y(θ)|2X
)
.

So, we prove that

E
(

sup
t∈J

|h1(t)− h1(t)|X
)
≤ B1‖x− x‖M2

+B2‖y − y‖M2
.

On the other hand,

E
(

sup
t∈J

|h2(t)− h2(t)|X
)
≤ B3‖x− x‖M2

+B4‖y − y‖M2
.

An analogous relation obtained by exchanging the roles of x, y and x, y results in

EHd

(
N(t, x, y), N(t, x, y)

)
=

(
EHd1

(N1((x, y)−N1(x, y))

EHd2(N2(x, y)−N2(x, y))

)
≤ Mtrix

(
‖x− x‖M2

‖y − y‖M2

)
,
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where
Mtrix =

(
B1 B2

B3 B4

)
.

Therefore, combining the above relations, we obtain

EHd

(
N(t, x, y), N(t, x, y)

)
≤ Mtrix

(
‖x− x‖M2

‖y − y‖M2

)
.

As Mtrix converges to zero, by Theorem 2.2, N has a fixed point (x, y), which is a mild solution
to (1.1). This completes the proof.
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