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Abstract. Our goal of this paper is the identification of an initial condition in a heat equation that
contains a memory term from final data. To this aim, we first establish the well-posedness of the
direct problem. Then we prove the continuity and the G-derivability of the cost function. Finally, we
validate the results numerically by using a deep neural network. Our algorithm is meshfree.
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ტოლებაში, რომელიც შეიცავს მეხსიერების წევრს საბოლოო მონაცემებიდან. ამ მიზნით,
თავდაპირველად დადგენილია პირდაპირი ამოცანის კორექტულობა. შემდეგ დამტკიცებულია
ხარჯების ფუნქციის უწყვეტობა და G-წარმოებადობა. ბოლოს, ღრმა ნერვული ქსელის გამო-
ყენებით რიცხობრივად შემოწმებულია შედეგები. ეს არის ბადისგარეშე ალგორითმი.
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1 Introduction
Several physical phenomena are described by partial differential equations where the model’s dynam-
ics is influenced by the past history of some variable(s). This means that some quantities are averaged
by means of an integral with respect to a positive summable function, called the memory kernel.
The presence of memory can, in some cases, make the description of the phenomena more accurate.
On the other hand, equations with memory are generally much more difficult to handle than the
corresponding equations without memory. However, the integral term may appear in the boundary
conditions or in the partial differential equation itself. Problems of this type can involve a wide range
of scientific and technical fields, for example, chemical diffusion, thermoelasticity, heat conduction
processes, population dynamics, vibration problems, nuclear reactor dynamics, medical sciences, bio-
chemistry and some biological processes. Generally, the thermal flow in memory materials is governed
by parabolic integrodifferential equations containing time-dependent and, in the non-homogeneous
case, also space-dependent memory kernels.

Due to the great importance of this type of equations, the interest in the study of inverse problems
and the identification of the parameters associated with them began in the early 20th century with the
works of H. Grabmueller [11], M. F. Zedan [24] and A. Lorenzi [17]. Until now, interest in this model
is still presented. But almost all studies deal with identifying the memory kernel [4,5,12,13,15,21–23],
the source term [6, 16], velocity or another parameter in the equation [7, 14] using various methods
and approaches carried out in different theoretical and numerical aspects of inverse problems, such as
the existence, uniqueness, stability and validation of results by numerical simulations, and so on.

Nevertheless, works dealing with the recovery of initial conditions in this case are still rare (to our
knowledge, they have not been considered before).

Among the papers that considered equations similar to our one, we refer, for example, to [8], where
the authors investigated two inverse problems related to the one-dimensional equation

ut − a2uxx =

t∫
0

k(τ)u(x, t− τ) dτ + h(x, t), x ∈ (0, l), 0 < t ≤ T ; (1.1)

the first problem consists in identifying the kernel k of the integral term by using additional information
about the solution of the direct problem

l∫
0

u(x, t) dx = f(t). (1.2)

In the second problem, using the additional information

u(x0, t) = f(t), x0 ∈ (0, l), t ∈ (0, T ], (1.3)

they proved the unique solvability of this inverse problem by using the principle of contracting map-
ping.

Another example is the problem discussed in [14] by K. Karuppiah et al. reconstructed the time-
independent coefficient q in the integrodifferential equation

yt −∇(d(x)∇y) +

t∫
0

K(t, τ)y(x, τ) dτ + q(x)y = f(x, t), (x, t) ∈ (0, l)× [0, T ],

y(0, t) = y(l, t) = 0, t ∈ [0, T ],

y(x, 0) = y0(x), x ∈ (0, l),

(1.4)

from the final time overspecified data

y(x, T ) = m(x) for all x ∈ (0, l). (1.5)



4 Soufiane Abid, Khalid Atifi, El-Hassan Essoufi

They transformed the parameter reconstruction problem into a minimization problem through the
optimal control. They ended up with a stability estimate of the coefficient with the upper bound in
terms of the final measurement derived by minimizing the cost function.

Regarding the numerical part, the presence of the integral term makes the problem complicated
and difficult to discretize, mentioning that the discretization of the problem is not easy, a work
similar to ours. In [18], the authors used a backwards Euler’s method in combination with the rule of
integration of Euler’s product in time and cubic B-spline in space, while in [9], they applied Euler’s
method backwards in the time direction and, in addition, used the trapezoidal product integration rule.
Here, to validate our results, we propose a meshfree deep learning algorithm. The method is similar in
spirit to the Galerkin method, but with several key changes using ideas from machine learning. The
Galerkin method is a widely-used computational method which seeks a reduced-form solution to a PDE
as a linear combination of basis functions. The deep learning algorithm, or “Deep Galerkin Method”
(DGM), uses a deep neural network instead of a linear combination of basis functions. The deep neural
network is trained to satisfy the differential operator, initial condition and boundary conditions using
stochastic gradient descent at randomly sampled spatial points. By randomly sampling spatial points,
the authors avoid the need to form a mesh and instead convert the PDE problem into a machine
learning problem.

Here, we study the inverse problem of determining the initial state in a parabolic equation with
a memory term from the theoretical analysis and numerical computation angles. More precisely, we
consider the following problem:

∂tu+A(u) = f in Q,

u(x, t) = 0, x ∈ ∂Ω, t ∈ ]0;T [ ,

u(x, 0) = u0(x), x ∈ Ω.

(1.6)

A is the operator defined as

A(u) = −uxx(x, t)− a(x)

t∫
0

u(x, s) ds,

where Ω := (0, 1), Q := Ω×(0, T ), T > 0 is a fixed moment of time, u0 ∈ L2(Ω) is the initial condition,
a ∈ L∞(Ω) is a positive coefficient depending on the space and f ∈ L2(Q) is the source term.

In the case a(x) = 0, problem (1.6) is already treated in [2] and more generally in [3] even in the
degenerate case.

Let us assume

Aad =
{
h ∈ H1(Ω) : ∥h∥H1(Ω) ⩽ r

}
, where r is a real strictly positive constant.

Evidently, the set Aad is a bounded, closed and convex subset of L2(Ω).
We have H1(Ω) �

�

compact
// L2(Ω) . Since the set Aad is bounded in H1(Ω), Aad is a compact in L2(Ω).

Let us define our inverse problem.
Inverse Source Problem (ISP). Let u be a solution to (1.6). Determine the initial state u0 from the
measured data at the final time u(T, · ).

Remark 1.1. It should be mentioned that we do not need the supplement distributed measurements
to obtain the numerical solution of the inverse problem.

We treat Problem (ISP) by interpreting its solution as a minimizer of the following problem:

find u⋆
0 ∈ Aad such that E(u⋆

0) = min
u0∈Aad

E(u0), (1.7)

where the cost function E, defined as

E(u0) =
1

2T
∥u(T )− uobs∥2L2(Ω)
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and subject to u, is the weak solution of the parabolic problem (1.6) with the initial state u0. Let
uobs ∈ L2(Ω) be the observation data with a noise.

Problem (1.7) is ill-posed in the sense of Hadamard, some regularization technique is needed in
order to guarantee numerical stability of the computational procedure even with noisy input data [20].
The problem thus consists in minimizing a functional of the form

J(u0) =
1

2T
∥u(T )− uobs∥2L2(Ω) +

ε

2
∥u0 − ub∥2L2(Ω),

here, ε is a small positive regularizing coefficient that provides extra convexity to the functional J ; ub

is an a priori (background state) knowledge of the state uexact
0 . The background error is then defined

as err = ∥uexact
0 − ub∥f2. uexact

0 is called the true state, and is the state to estimate.

2 Well-posedness
Theorem 2.1. Assume that u0 ∈ L2(Ω) and f ∈ L2(Q). There exists a unique weak solution which
solves problem (1.6) such that

u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

and we have the estimate

sup
t∈[0,T ]

∥u(x, t)∥2L2(Ω) +

T∫
0

∥ux(x, t)∥2L2(Ω) dt ≤ CT

(
∥f∥2L2(Q) + ∥u0(x)∥2L2(Ω)

)
(2.1)

with the constant C1 depending on Ω, and T .

Proof. The existence and uniqueness of the weak solution of (1.6) is already seen in Proposition 3.1
in [1] (with the particular case µ = 0), here we show only estimate (2.1).

We multiply the first equation of (1.6) by u and integrate over Ω, thus we get

1∫
0

ut(x, t)u(x, t) dx−
1∫

0

uxx(x, t)u(x, t) dx

=

1∫
0

(
a(x)u(x, t)

t∫
0

u(x, s) ds

)
dx+

1∫
0

f(x, t)u(x, t) dx. (2.2)

By integration by parts, we obtain

1

2

d

dt
∥u(x, t)∥2L2(Ω) +

1∫
0

u2
x(x, t) dx =

1∫
0

(
a(x)u(x, t)

t∫
0

u(x, s) ds

)
dx+

1∫
0

f(x, t)u(x, t) dx. (2.3)

We have
1∫

0

(
a(x)u(x, t)

t∫
0

u(x, s) ds

)
dx ≤

( 1∫
0

(a(x)u(x, t))2 dx

) 1
2
( 1∫

0

( t∫
0

u(x, s) ds

)2

dx

) 1
2

≤ 1

2
∥a(x)∥2L∞(Ω)∥u(x, t)∥

2
L2(Ω) +

T

2

t∫
0

∥u(x, s)∥2L2(Ω) ds, (2.4)

and by the Cauchy–Schwarz inequality, for every t ∈ [0, T ] we obtain
1∫

0

f(x, t)u(x, t) dx ≤ 1

2
∥f(x, t)∥2L2(Ω) +

1

2
∥u(x, t)∥2L2(Ω).
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By returning to equation (2.3), we obtain

1

2

d

dt
∥u(x, t)∥2L2(Ω) + ∥ux(x, t)∥2L2(Ω)

≤ 1

2
∥f(x, t)∥L2(Ω) +

1

2

(
1 + ∥a(x)∥2L∞(Ω)

)
∥u(x, t)∥2L2(Ω) +

T

2

t∫
0

∥u(x, s)∥2L2(Ω) ds. (2.5)

We integrate over [0, t] for all t ∈ [0, T ],

∥u(x, t)∥2L2(Ω) + 2

t∫
0

∥ux(x, s)∥2L2(Ω) ds

≤ ∥f(x, t)∥2L2(Q) + ∥u0(x)∥2L2(Ω) +
(
1 + ∥a(x)∥2L∞(Ω) + T 2

) t∫
0

∥u(x, s)∥2L2(Ω) ds. (2.6)

Since

2

t∫
0

∥ux(x, s)∥2L2(Ω) ds ≥ 0,

we have

∥u(x, t)∥2L2(Ω) ≤ ∥f(x, t)∥2L2(Q) + ∥u0(x)∥2L2(Ω) +
(
1 + ∥a(x)∥2L∞(Ω) + T 2

) t∫
0

∥u(x, s)∥2L2(Ω) ds.

Using Gronwall’s inequality, we get

∥u(x, t)∥2L2(Ω) ≤
(
1 + ∥a(x)∥2L∞(Ω) + T 2

)
eT

(
∥f(x, t)∥2L2(Q) + ∥u0(x)∥2L2(Ω)

)
. (2.7)

From (2.6) and (2.7), there exists a constant M > 0 such that

T∫
0

∥ux(x, t)∥2L2(Ω) dt ≤ M
(
∥f(x, t)∥2L2(Q) + ∥u0(x)∥2L2(Ω)

)
. (2.8)

From (2.7) and (2.8), there exists a constant CT > 0 such that

sup
t∈[0,T ]

∥u(x, t)∥2L2(Ω) +

T∫
0

∥ux(x, t)∥2L2(Ω) dt ≤ CT

(
∥f∥2L2(Q) + ∥u0(x)∥2L2(Ω)

)
.

Lemma 2.1. Let u be a weak solution of (1.6) with the initial condition u0. The function

ϕ : u0 ∈ L2(Ω) −→ u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))

is Lipschitz continuous.

An automatic result of Lemma 2.1 is the following

Theorem 2.2. Under the same assumptions of Theorem 2.1, the functional J is continuous on Aad,
and there exists a unique minimizer u⋆

0 ∈ Aad, i.e.,

J(u⋆
0) = min

u0∈Aad

J(u0).
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Proof of Lemma 2.1. Let δu0 ∈ L2(Ω) be a small perturbation of u0 such that u0 + δu0 ∈ Aad.
Consider δu = uδ − u, where uδ and u are, respectively, the weak solutions of (1.6) with initial

conditions uδ
0 = u0 + δu0 and u0. Consequently, δu is the solution of the variational problem

1∫
0

(δu)tv dx+

1∫
0

(δu)x vx dx =

1∫
0

(
av

t∫
0

δu ds

)
dx ∀ v ∈ H1

0 (Ω),

δu(0, t) = δu(1, t) = 0 ∀ t ∈ [0, T ],

δu(x, 0) = δu0 ∀x ∈ Ω.

(2.9)

Hence δu is the weak solution of (1.6) with the initial condition δu0 and source term δf = 0. Applying
the estimate in Theorem 2.1, we find that there is a constant CT > 0 such that

sup
t∈[0,T ]

∥δu∥2L2(Ω) +

T∫
0

∥δu(t)∥2L2(Ω) dt ≤ CT ∥δu0∥2L2(Ω).

Then
∥δu∥2C(0,T ;L2(Ω)) ≤ CT ∥δu0∥2L2(Ω)

and
∥δu∥2L2(0,T ;H1

0 )
≤ CT ∥δu0∥2L2(Ω).

This ends the demonstration.

Proof of Theorem 2.2. Let u and uδ be respectively the weak solutions of (1.6) with the initial condi-
tions u0 and uδ

0.
We know that

J(uδ
0)− J(u0)

=
1

2T

(
∥uδ(T )− uobs∥2L2(Ω) − ∥u(T )− uobs∥2L2(Ω)

)
+

ε

2

(
∥uδ

0 − ub∥2L2(Ω) − ∥u0 − ub∥2L2(Ω)

)
.

Then

|J(uδ
0)− J(u0)|

≤ 1

2T

∣∣∣∥uδ(T )− uobs∥2L2(Ω) − ∥u(T )− uobs∥2L2(Ω)

∣∣∣+ ε

2

∣∣∣∥uδ
0 − ub∥2L2(Ω) − ∥u0 − ub∥2L2(Ω)

∣∣∣.
We have∣∣∣∥uδ

0 − ub∥2L2(Ω) − ∥u0 − ub∥2L2(Ω)

∣∣∣
=

∣∣∣∥uδ
0 − ub∥L2(Ω) − ∥u0 − ub∥L2(Ω)

∣∣∣ ∣∣∣∥uδ
0 − ub∥L2(Ω) + ∥u0 − ub∥L2(Ω)

∣∣∣.
Let us recall that ∀ a, b ∈ E, where E is a normed space,∣∣∥a∥ − ∥b∥

∣∣ ≤ ∥a− b∥.

This gives∣∣∣∥uδ
0 − ub∥2L2(Ω) − ∥u0 − ub∥2L2(Ω)

∣∣∣ ≤ (
∥uδ

0 − ub∥L2(Ω) + ∥u0 − ub∥L2(Ω)

)
∥uδ

0 − u0∥L2(Ω)

≤
(
∥u0 − ub + uδ

0 − u0∥L2(Ω) + ∥u0 − ub∥L2(Ω)

)
∥uδ

0 − u0∥L2(Ω)

≤
(
∥uδ

0 − ub∥L2(Ω) + 2∥u0 − ub∥L2(Ω)

)
∥uδ

0 − u0∥L2(Ω).
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Also, we have∣∣∣∥uδ(T )− uobs∥2L2(Ω) − ∥u(T )− uobs∥2L2(Ω)

∣∣∣
=

∣∣∣∥uδ(T )− uobs∥L2(Ω) − ∥u(T )− uobs∥L2(Ω)

∣∣∣ ∣∣∣∥uδ(T )− uobs∥L2(Ω) + ∥u(T )− uobs∥L2(Ω)

∣∣∣.
Then

∥uδ(T )− uobs∥2L2(Ω) − ∥u(T )− uobs∥2L2(Ω)|

≤
(
∥uδ(T )− uobs∥L2(Ω) + ∥u(T )− uobs∥L2(Ω)

)
∥uδ(T )− u(T )∥L2(Ω)

≤
(
∥u(T )− uobs + uδ(T )− u(T )∥L2(Ω) + ∥u(T )− uobs∥L2(Ω)

)
∥uδ(T )− u(T )∥L2(Ω)

≤
(
∥uδ(T )− u(T )∥L2(Ω) + 2∥u(T )− uobs∥L2(Ω)

)
∥uδ(T )− u(T )∥L2(Ω). (2.10)

Since the evolution function

ϕ : u0 ∈ L2(Ω) −→ u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))

is Lipschitz continuous (Lemma 2.1), we deduce that there is a constant C > 0 such that

∥uδ(T )− u(T )∥L2(Ω) ≤ C∥uδ
0 − u0∥L2(Ω). (2.11)

Therefore,

|J(uδ
0)− J(u0)| ≤

ε

2

(
∥uδ

0 − ub∥L2(Ω) + 2∥u0 − ub∥L2(Ω)

)
∥uδ

0 − u0∥L2(Ω)

+
C

2T

(
C∥uδ

0 − ub∥L2(Ω) + 2∥u0 − ub∥L2(Ω)

)
∥uδ

0 − u0∥L2(Ω). (2.12)

When uδ
0 tends to u0, the right-hand side of the inequality tends to 0. Accordingly, J is continuous

on the compact Aad and there exists a unique minimizer u⋆
0 ∈ Aad for J .

Proposition 2.1. Let u be a weak solution of (1.6) with the initial condition u0. The function

ϕ : u0 ∈ L2(Ω) −→ u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))

is G-differentiable, which implies that the functional J is G-derivable on Aad.

Proof. Let δu0 be a small amount such that u0 + δu0 ∈ Aad, we define the function

F ′(u0) := δu0 ∈ Aad → δu, (2.13)

where δu is the solution of the following variational problem:

1∫
0

(δu)tv dx+

1∫
0

(δu)xvx dx =

1∫
0

(
av

t∫
0

δu ds

)
dx ∀ v ∈ H1

0 (Ω),

δu(0, t) = δu(1, t) = 0 ∀ t ∈ [0, T ],

δu(x, 0) = δu0 ∀x ∈ Ω.

(2.14)

We pose
Φ(u0) = F (u0 + δu0)− F (u0)− F ′(u0)δu0. (2.15)

We have to show that
Φ(u0) = O(δu0). (2.16)
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It is easy to see that Φ verifies the following variational problem:

1∫
0

Φtv dx+

1∫
0

Φxvx dx =

1∫
0

(
av

t∫
0

Φ ds

)
dx ∀ v ∈ H1

0 (Ω),

Φ(0, t) = Φ(1, t) = 0 ∀ t ∈ [0, T ],

Φ(x, 0) = δu0 − (δu0)
2 ∀x ∈ Ω.

(2.17)

In the same way as used in the proof of continuity, we deduce that

∥Φ∥2C(0,T ;L2(Ω)) ≤ CT ∥δu0 − (δu0)
2∥2L2(Ω)

and
∥Φ∥2L2(0,T ;H1

0 )
≤ CT ∥δu0 − (δu0)

2∥2L2(Ω).

This completes the proof of the proposition.

3 Stability
In this section, we establish the stability of the solution of the inverse problem.

Lemma 3.1. Let u⋆
0 be a minimizer of the functional J , then there exists a set of functions (u⋆, w, u0)

such that 
u⋆
t (x, t)− u⋆

xx(x, t) = a(x)

t∫
0

u⋆(x, s) ds+ f(x, t) ∀ (x, t) ∈ Q,

u⋆(0, t) = u⋆(1, t) = 0 ∀ t ∈ (0, T ),

u⋆(x, 0) = u0(x) ∀x ∈ (0, 1),

(3.1)


wt(x, t)− wxx(x, t) = a(x)

t∫
0

w(x, s) ds ∀ (x, t) ∈ Q,

w(0, t) = w(1, t) = 0 ∀ t ∈ (0, T ),

w(x, 0) = κ(x)− u⋆
0(x) ∀x ∈ (0, 1),

(3.2)

and
T∫

0

1∫
0

w(x, T )(u⋆(x, T )− ũ(T )) dx dt+ ε

1∫
0

u⋆
0(κ− u⋆

0 dx ≥ 0 (3.3)

for any κ ∈ Aad.

Proof. For any κ ∈ Aad and 0 ≤ δ ≤ 1, we pose

uδ
0 = (1− δ)u⋆

0 + δκ ∈ Aad.

Then there exists a solution uδ of equation (1.6) with the initial condition uδ
0 satisfying

Jδ = J(uδ) =
1

2

T∫
0

∥∥uδ(x, T )− ũ(T )
∥∥2
L2(Ω)

dt+
ε

2
∥uδ

0∥2L2(Ω).

Now, taking the Fréchet derivative of Jδ with optimal solution u⋆
0, we have

dJδ
dδ

∣∣∣∣
δ=0

=

T∫
0

1∫
0

(u⋆(x, T )− ũ)ûδ dx dt+ ε

1∫
0

u⋆
0(κ− u⋆

0) dx ≥ 0, (3.4)
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where ûδ = du
dδ |δ=0 is the Fréchet derivative of u, which verifies the following equation:

(ûδ)t(x, t)− (ûδ)xx(x, t)− a(x)

t∫
0

ûδ(x, s) ds = 0, (x, t) ∈ Ω× [0, T ],

ûδ(0, t) = ûδ(1, t) = 0 ∀ t ∈ [0;T ],

ûδ(x, 0) = κ(x)− u⋆
0(x) ∀x ∈ [0; 1].

(3.5)

Set w = ûδ, then w satisfies
wt(x, t)− wxx(x, t) = a(x)

t∫
0

w(x, s) ds ∀ (x, t) ∈ Q,

w(0, t) = w(1, t) = 0 ∀ t ∈ (0, T ) ,

w(x, 0) = κ(x)− u⋆
0(x) ∀x ∈ (0, 1) .

(3.6)

Combining (3.4) and (3.6), one can easily obtain
T∫

0

1∫
0

w(x, T )
(
u⋆(x, T )− ũ(T )

)
dx dt+ ε

1∫
0

u⋆
0(κ− u⋆

0) dx ≥ 0.

Theorem 3.1. Suppose that ũ1(T ) and ũ2(T ) are two given functions in L2(Ω). Let v1 and v2 be the
minimizers of J corresponding to ũ1(T ) and ũ2(T ), respectively. If there exists a point x0 ∈ Ω such
that v1(x0) = v2(x0), we have the following estimate:

∥v1(x)− v2(x)∥2L2(Ω) ≤ Λ

T∫
0

∥ũ1(T )− ũ2(T )∥L2(Ω) dt,

where the constant Λ depends only on Ω and ε.
Proof. In estimate (3.3) of Lemma 3.1, we take κ = v2 and u⋆

0 = v1 and also κ = u1
0 and u2

0 = u⋆
0. We

get
T∫

0

1∫
0

w1(x, T )
(
u⋆
1(x, T )− ũ1(T )

)
dx dt+ ε

1∫
0

v1(v2 − v1) dx ≥ 0 (3.7)

and
T∫

0

1∫
0

w2(x, T )
(
u⋆
2(x, T )− ũ2(T )

)
dx dt+ ε

1∫
0

v2(v1 − v2) dx ≥ 0, (3.8)

where {u⋆
i ;wi} (i = 1, 2) are the solutions of systems (3.1) and (3.2) with the initial condition u⋆

0 = vi
(i = 1, 2), respectively. Setting

U = u⋆
1 − u⋆

2, W = w1 + w2,

and taking κ = v2 and κ = v1, U and W satisfy
Ut(x, t)− Uxx(x, t)− a(x)

t∫
0

U(x, s) ds = 0 ∀ (x, t) ∈ Q,

U(0, t) = U(1, t) = 0 ∀ t ∈ (0, T ) ,

U(x, 0) = v1 − v2 ∀x ∈ (0, 1) ,

(3.9)


Wt(x, t)−Wxx(x, t)− a(x)

t∫
0

W (x, s) ds = 0 ∀ (x, t) ∈ Q,

W (0, t) = W (1, t) = 0 ∀ t ∈ (0, T ),

W (x, 0) = 0 ∀x ∈ (0, 1),

(3.10)
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By the extremum principle, we know that (3.10) has only a zero solution and thus

w1(x, t) = −w2(x, t). (3.11)

Moreover, w1 satisfies the following equation:
(w1)t(x, t)− (w1)xx(x, t) = a(x)

t∫
0

w1(x, s) ds ∀ (x, t) ∈ Q,

w1(0, t) = w1(1, t) = 0 ∀ t ∈ (0, T ) ,

w1(x, 0) = v2 − v1 ∀x ∈ (0, 1) ,

(3.12)

Due to (3.9) and (3.12), we have
U(x, t) = −w1(x, t). (3.13)

From (3.7), (3.8), (3.11) and (3.13), we obtain

ε

1∫
0

|v1(x)− v2(x)|2 dx

≤
T∫

0

1∫
0

w1(x, T )
(
u⋆
1(x, T )− ũ1(T )

)
dx dt+

T∫
0

1∫
0

w2(x, T )
(
u⋆
2(x, T )− ũ2(T )

)
dx dt

≤
T∫

0

1∫
0

U(x, T )w1(x, t) dx dt+

T∫
0

1∫
0

(ũ2(T )− ũ1(T ))w1(x, T ) dx dt

≤ −
T∫

0

1∫
0

|w1(x, t)|2 dx dt+
1

2

T∫
0

1∫
0

|w1(x, t)|2 dx dt+
1

2

T∫
0

1∫
0

|ũ1(T )− ũ2(T )|2 dx dt

≤ −1

2

T∫
0

1∫
0

|w1(x, t)|2 dx dt+
1

2

T∫
0

1∫
0

|ũ1(T )− ũ2(T )|2 dx dt. (3.14)

Then

∥v1(x)− v2(x)∥2L2(Ω) ≤ Λ

T∫
0

∥ũ1(T )− ũ2(T )∥2L2(Ω) dt, (3.15)

with Λ = 1
2ε .

Remark 3.1. From Theorem 3.1 we can easily deduce that if the final measurements of systems (1.6)
and (3.1) are equal, then the data u0 can be determined uniquely almost everywhere.

4 Numerical experiments
Consider the objective function

J̃(y) =
1

2
∥A(y)− f(x, t)∥2L2(Ω) +

1

2
∥y(x = 0)∥2L2(0,T )

+
1

2
∥y(x = 1)∥2L2(0,T ) +

1

2
∥y(t = T )− uobs∥2L2(Ω) +

ε

2
∥y(t = 0)− ub∥2L2(Ω). (4.1)

The DGM algorithm approximates u(t, x) with a deep neural network y(t, x; θ) where θ ∈ Rk

are the neural network’s parameters. The goal is to find a set of parameters θ such that the function
y(t, x; θ) minimizes the error J̃(y). If the error J̃(y) is small, then y(t, x; θ) will closely satisfy the PDE
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differential operator, boundary conditions and initial condition. Therefore, θ minimizing J̃(y( · ; θ))
produces a reduced-form model y(t, x; θ) which approximates the PDE solution u(t, x).

In this sense, we recall the following

Theorem 4.1 ( [19]). Let the L2 error J(f) measure how well the neural network f satisfies the
differential operator, boundary, initial and observability conditions.

Define Cn as the class of neural networks with n hidden units and let fn be a neural network with
n hidden units which minimizes J(f).

There exists fn ∈ Cn such that J(fn) → 0 as n → ∞, and fn → u as n → ∞.

Network architecture:
The first layer and the last of this neural network are fully connected. The rest is made up of GRU
cells [10], which is a simplified version of the LSTM cell (Figure 1):

Figure 1: GRU cell

We have found the following network architecture:

z(t) = tanh
(
θTxzx(t) + θThzh(t−1) + bz

)
,

r(t) = tanh
(
θTxrx(t) + θThrh(t−1) + br

)
,

g(t) = tanh
(
θTxgx(t) + θThg(r(t) ⊗ h(t−1)) + bg

)
,

h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t).

The full algorithm is:

Algorithm 1. DL-IP Algorithm:

(1) Define the boundary conditions,

(2) Define the architecture of neutral networks by setting the number of layers, number of neurons
in each layer and activation functions,

(3) Generate random training set DM ,

(4) Initialize the parameter set θ0 and the learning rate α0,

(5) Repeat until convergence criterion is satisfied

1. Randomly sample a mini-batch dm of training examples from DM ,
2. Compute the loss functional for the sampled mini-batch dm:

J̃(θn, dm), (4.2)
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3. Compute the gradient ∇θn J̃(θn, dm) for the sampled mini-batch dm using backpropagation,
4. Use the estimated gradient to take a descent step at dm with learning rates to update θn+1:

θn+1 = θn − αn∇θn J̃(θn, dm)

The parameters are updated by using the well-known ADAM algorithm with a decaying
learning rate schedule.

(6) Save the model to be used for any x ∈ Ω and t ∈ ]0, T [ .

The derivatives of y(t, x; θ) can be evaluated by using automatic differentiation since it is para-
metrizing as a neural network.

We implement the algorithm using TensorFlow, which is software libraries for deep learning. Ten-
sorFlow has reverse mode automatic differentiation which allows calculation of derivatives for a broad
range of functions. For example, TensorFlow can be used to calculate the gradient of our neural net-
work with respect to x or t, or θ. TensorFlow also allows the training of models on graphic processing
units (GPUs).

4.1 The noise resistance of the proposed method
The data ub and uobs are assumed to be corrupted by measurement errors, which we will refer to as
noise. In particular, we suppose that

ub = uexact(t = 0) + e and uobs = uexact(t = T ) + eobs.

Let
err =

∥e∥2
∥uexact(t = 0)∥2

and errobs =
∥eobs∥2
∥uexact∥2

.

To study the impact of err and errobs on the construction of initial state, we consider uexact =
x(x−1)
T+t and perfom two tests. First, we suppose errobs = 0 and err ∈ {0%; 3%; 5%} and then we take

err = 0 and errobs ∈ {3%; 5%; 10%}.
For the applications, we have found that the hyperparameter L = 4 (i.e., four hidden layers) is

effective. The neural network parameters are initialized by using the keras.initializers.glorot_normal
initialization .

In all tests below, the constructed state is drawing in red and the exact in blue. After 1000 epoch,
we have found the following results.

4.1.1 Impact of err on construction of initial state

The tests (Figures 2 to 10) show that the proposed algorithm is uniformly stable to noise.

Case err = 0%.

Figure 2: u0 constructed and uexact
0 (left), absolute errors between exact and predicted

initial states (right).
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Figure 3: u constructed and uexact (left), absolute error construction (right).

Figure 4: Value of the cost J . This figure shows that J converges to 0.

Case err = 3%.

Figure 5: u0 constructed and uexact
0 (left), absolute errors between exact and predicted

initial states (right).

Figure 6: u constructed and uexact (left), absolute error construction (right).
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Figure 7: Values of the cost J .

Case err = 5%.

Figure 8: u0 constructed and uexact
0 (left), absolute errors between exact and predicted

initial states (right).

Figure 9: u constructed and uexact (left), absolute error construction (right).

Figure 10: Values of the cost J .

4.1.2 Impact of errobs on the construction of the initial state

The tests (Figures 11 to 16) show that the proposed algorithm is uniformly stable to observation noises.
We observe that errobs has an effect on the construction of final state and hasn’t impact on the ini-
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tial condition.

Case errobs = 3%.

Figure 11: u(t = T ) constructed and uexact(t = T ) (left), absolute errors between exact and
predicted state at t = T (right).

Figure 12: u constructed and uexact (left), absolute error construction (right).

Case errobs = 5%.

Figure 13: u(t = T ) constructed and uexact(t = T ) (left), absolute errors between exact and
predicted state at t = T (right).

Figure 14: u constructed and uexact (left), absolute error construction (right).
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Case errobs = 10%.

Figure 15: u(t = T ) constructed and uexact(t = T ) (left), absolute errors between exact and
predicted state at t = T (right).

Figure 16: u constructed and uexact (left), absolute error construction (right).

4.1.3 Other tests

Case uexact = (x− 1)(t+ 1)(ex − 1).

Figure 17: u0 constructed and uexact(t = 0) (left), absolute errors between exact and
predicted initial state (right).

Figure 18: u constructed and uexact (left), absolute error construction (right).
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Case uexact = (x− 1)(t+ 1)(cos(x)− 1).

Figure 19: u0 constructed and uexact(t = 0) (left), absolute errors between exact and
predicted initial state (right).

Figure 20: u constructed and uexact (left), absolute error construction (right).

5 Conclusion
Our deep learning algorithm for solving PDEs is meshfree, which is a key since meshes become
infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches
of randomly sampled time and space points.

Moreover, deep learning algorithm doesn’t have a rounding errors caused by the discretization
which plays a very important roll for the construction of a solution.

The ease of implementing a deep learning algorithm and the independence of this algorithm to
EDP equations make the method very efficient and easy to handle.

But there remains the problem of parametrization of a deep learning algorithm. The choice of a
number of layers and a number of units in each layer turns out to be very important to have a good
approximation of the solution.
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