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city conditions of nonlinear terms. New existence results of rapidly decaying positive solutions are
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1 Introduction and statement of the results
Let us consider the ordinary differential equation(

p(t)|y′|α−1y′
)′
+ q(t)f(y) = 0, t ≥ t0 (> 0), (1.1)

without assuming monotonicity conditions on f(y). The following conditions (A1)–(A4) are assumed
throughout the paper without further mention:

(A1) α > 0 is a positive constant;

(A2) f : (0,∞) → (0,∞) is a continuous function satisfying∫
0

f(y) dy < ∞;

(A3) p : [t0,∞) → (0,∞) is a continuous function satisfying
∞∫

dt

p(t)1/α
< ∞;

(A4) q : [t0,∞) → R is a continuous function such that p(t)1/αq(t) is of class C1.

A C1 positive-valued function y = y(t) defined for sufficiently large t is called a positive solution
of equation (1.1) if p(t)|y′|α−1y′ is also of class C1 and satisfies (1.1) for sufficiently large t.

By the assumptions (A2) and (A3), we can introduce the auxiliary functions π(t) and F (y) by

π(t) ≡
∞∫
t

ds

p(s)1/α
and F (y) ≡

y∫
0

f(z) dz,

respectively. Note that F : (0,∞) → (0,∞) becomes automatically an increasing function. This fact
is essentially employed in this paper.

Let q(t) ≥ 0 and y(t) be an arbitrary positive solution of (1.1). Then (p(t)|y′|α−1y′)′ ≤ 0, which
shows that y(t) satisfies the estimates

c1π(t) ≤ y(t) ≤ c2 for sufficiently large t

for some positive constants c1 and c2 [2]. So, to investigate those positive solutions which behave like
positive constant multiples of π(t) is of some theoretical interest. In the present paper, we call such
positive solutions as rapidly decaying solutions.

Definition. A positive solution y of equation (1.1) is called a rapidly decaying positive solution if

0 < lim inf
t→∞

y(t)

π(t)
≤ lim sup

t→∞

y(t)

π(t)
< ∞. (1.2)

Remark.

(i) Even though q(t) changes the sign near ∞, we call positive solutions y(t) satisfying (1.2) rapidly
decaying positive solutions.

(ii) As will be seen in the sequel, some rapidly decaying positive solutions y may satisfy the property

lim
t→∞

y(t)

π(t)
= const > 0, (1.3)

which shows more precise behavior than (1.2).
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(iii) When q(t) ≥ 0, equation (1.1) may have positive solutions y(t) which decay slower than rapidly
decaying positive solutions (see [2] for the details).

The main object of this article is to present a new existence criterion of rapidly decaying positive
solutions of (1.1) without assuming monotonicity conditions on f(y). Such a problem was discussed
in [5] under the conditions that p(t) = tβ , β > α and q(t) ≥ 0 without the integrability assumption of
f in (A2). In the present paper, we intend to consider this problem based on the other calculation.
Note that related results are found in [1].

As an initial result of this problem, we can introduce the following [2]
Theorem 1.1. Suppose that q(t) ≥ 0 and there is a nondecreasing continuous function f∗ : (0,∞) →
(0,∞) satisfying f(y) ≤ f∗(y) and

∞∫
q(t)f∗(kπ(t)) dt < ∞ for some constant k > 0.

Then equation (1.1) has a rapidly decaying positive solution y satisfying (1.3).
Though Theorem 1.1 itself is not given explicitly in [2], the close look at the proof of [2, Theo-

rem 1.2] enables us to establish Theorem 1.1.
Our main results are as follows:

Theorem 1.2. Suppose that there is a constant k > 0 satisfying

lim sup
t→∞

p(t)1/α|q(t)|F (kπ(t)) <
α

2(α+ 1)
kα+1

and
∞∫ ∣∣(p(t)1/αq(t))′∣∣F (kπ(t)) dt < ∞.

Then, equation (1.1) has a rapidly decaying positive solution.
Corollary 1.1. Suppose that there is a constant k > 0 satisfying

lim
t→∞

p(t)1/αq(t)F (kπ(t)) = 0

and
∞∫ ∣∣(p(t)1/αq(t))′∣∣F (kπ(t)) dt < ∞.

Then equation (1.1) has a rapidly decaying positive solution y satisfying (1.3).
Corollary 1.2. Suppose that

q(t) ≥ 0 and
[
p(t)1/αq(t)

]′ ≤ 0.

Then equation (1.1) has a rapidly decaying positive solution y satisfying (1.3).
This paper is organized as follows. In Section 2, the proofs of our results are given. Section 3

provides illustrative examples.

2 Proof of the results
Proof of Theorem 1.2. A rapidly decaying positive solution y(t) will be obtained as a positive solution
of the following integral equation:

y(t) =
(α+ 1

α

) 1
α+1

∞∫
t

p(s)1/α
[
C0 − p(s)1/αq(s)F (y(s))

+

∞∫
s

[
− p(r)1/αq(r)

]′
F (y(r))dr

] 1
α+1

ds, t ≥ T0,
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with some constants C0 > 0 and T0 ≥ t0. We employ the fixed point theorem to solve this equation.
For t ≥ t0, we put

I(t) =

∞∫
t

∣∣(p(s)1/αq(s))′∣∣F (kπ(s)) ds.

Let m2 > 0 be a constant satisfying

p(t)1/α|q(t)|F (kπ(t)) < m2 <
α

2(α+ 1)
kα+1, t ≥ T1,

where T1 ≥ t0 is a sufficiently large number. For this m2, we can choose a constant m1 > 0 satisfying

m1 +m2 <
α

α+ 1
kα+1 and m1 −m2 > 0.

Then there is a sufficiently large T ≥ T1 satisfying

m1 +m2 + I(T ) ≤ α

α+ 1
kα+1 (2.1)

and
m1 −m2 − I(T ) > 0.

We put
m1 −m2 − I(T ) =

α

α+ 1
kα+1
1 . (2.2)

(Note that automatically 0 < k1 < k.)
Let C[T,∞) be the Frechét space with the topology of uniform convergence of functions on every

compact subinterval of [T,∞). We define the closed convex subset Y ⊂ C[T,∞) as

Y =
{
y ∈ C[T,∞) | k1π(t) ≤ y(t) ≤ kπ(t) for t ≥ T

}
.

For y ∈ Y , we put

Φy(t) = m1 − p(t)1/αq(t)F (y(t))−
∞∫
t

[
p(s)1/αq(s)

]′
F (y(s)) ds, t ≥ T,

and

Fy(t) =
(α+ 1

α

) 1
α+1

∞∫
t

p(s)−1/α[Φy(s)]
1

α+1 ds, t ≥ T.

Below, we will show that the Schauder–Tychonoff fixed point theorem [4, Theorems 2.3.8 and 4.5.1]
is applicable to F and Y .
(i) We show that F(Y ) ⊂ Y . Let y ∈ Y . By (2.1), we have

Φy(t) ≤ m1 + p(t)1/α|q(t)|F (kπ(t))

+

∞∫
T

∣∣[p(s)1/αq(s)]′∣∣F (kπ(s)) ds ≤ m1 +m2 + I(T ) ≤ α

α+ 1
kα+1, t ≥ T.

Similarly, we find from (2.2) that

Φy(t) ≥ m1 −m2 − I(T ) =
α

α+ 1
kα+1
1 , t ≥ T.

Therefore, we have

Fy(t) ≤
(α+ 1

α

) 1
α+1

k
( α

α+ 1

) 1
α+1

∞∫
t

p(s)−1/α ds = kπ(t), t ≥ T,
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and

Fy(t) ≥
(α+ 1

α

) 1
α+1

k1

( α

α+ 1

) 1
α+1

∞∫
t

p(s)−1/α ds = k1π(t), t ≥ T.

Consequently, Fy ∈ Y , and hence F(Y ) ⊂ Y .
(ii) We show that F is a continuous mapping. Let {yn} ⊂ Y and y ∈ Y be, respectively, a sequence
and an element which satisfy lim

n→∞
yn(t) = y(t) uniformly on every finite interval of [T,∞). Let T ′ > T

be an arbitrary constant. We show that lim
n→∞

Fyn(t) = Fy(t) uniformly on [T, T ′].
As a first step, we show that

lim
n→∞

∞∫
T

∣∣[p(s)1/αq(s)]′∣∣ ∣∣F (yn(s))− F (y(s))
∣∣ ds = 0. (2.3)

In fact, since ∣∣[p(s)1/αq(s)]′∣∣ ∣∣F (yn(s))− F (y(s))
∣∣ ≤ 2

∣∣[p(s)1/αq(s)]′∣∣F (kπ(s)), s ≥ T,

and
∞∫
T

∣∣[p(s)1/αq(s)]′∣∣F (kπ(s)) ds < ∞,

the Lebesgue dominated convergence theorem implies (2.3). Therefore,

lim
n→∞

Φyn(t) = Φy(t) uniformly on [T, T ′].

Next, we notice that

|Fyn(t)−Fy(t)| ≤
(α+ 1

α

) 1
α+1

∞∫
T

p(s)−1/α
∣∣∣[Φyn(s)] 1

α+1 − [Φy(s)]
1

α+1

∣∣∣ ds, t ≥ T.

Since 0 ≤ Φyn(t),Φy(t) ≤ m1 +m2 + I(T ), we find that

p(s)−1/α
∣∣∣[Φyn(s)] 1

α+1 − [Φy(s)]
1

α+1

∣∣∣ ≤ 2(m1 +m2 + I(T ))
1

α+1 p(s)−1/α, s ≥ T.

By assumption (A3), the Lebesgue dominated convergence theorem implies that

lim
n→∞

sup
[T,∞)

|Fyn(t)−Fy(t)| = 0.

Therefore, {Fyn} converges to Fy uniformly on [T, T ′].
(iii) We show that FY is relatively compact. Since F(Y ) ⊂ Y, the set F(Y ) is bounded on every
compact subinterval of [T,∞). Next, let y ∈ Y . Then we obtain

|(Fy)′(t)| =
(α+ 1

α

) 1
α+1

p(t)−1/α[Φy(t)]
1

α+1

≤
(α+ 1

α

) 1
α+1

p(t)−1/α
( α

α+ 1
kα+1

) 1
α+1

= kp(t)−1/α, t ≥ T.

So, the set {(Fy)′ | y ∈ Y } is bounded on every compact subinterval of [T,∞). By the Ascoli–Arzelà
theorem, we find that FY is relatively compact.

By the above consideration, the Schauder-Tychonoff fixed point theorem shows that there is a
fixed element y ∈ Y : Fy = y. The element y satisfies

y(t) =
(α+ 1

α

) 1
α+1

∞∫
t

p(s)−1/α[Φy(s)]
1

α+1 ds, t ≥ T.
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We show that y(t) is a solution of (1.1). From this formula, we know that

p(t)(−y′(t))α =
(α+ 1

α

) α
α+1

[Φy(t)]
α

α+1 , t ≥ T.

So,

[
p(t)(−y′)α

]α+1
α =

α+ 1

α

[
m1 − p(t)1/αq(t)F (y)−

∞∫
t

[
p(s)1/αq(s)

]′
F (y(s)) ds

]
, t ≥ T. (2.4)

Differentiating both sides, we obtain
α+ 1

α

[
p(t)(−y′)α

]1/α ·
(
p(t)(−y′)α

)′
=

α+ 1

α
p(t)1/αq(t)f(y)(−y′), t ≥ T.

Since y′(t) < 0, we get (
p(t)(−y′)α

)′
= q(t)f(y), t ≥ T,

which is equivalent to equation (1.1).
Since y ∈ Y , y(t) satisfies (1.2) by the definition of Y . This completes the proof.

Proof of Corollary 1.1. Since the assumptions imply those of Theorem 1.2, we can find a rapidly
decaying positive solution y(t) of (1.1) satisfying (2.4). We show that actually (1.3) holds. Since

lim
t→∞

p(t)1/αq(t)F (y(t)) = 0,

we find from (2.4) that
lim
t→∞

p(t)[−y′(t)]α =
(α+ 1

α
m1

) α
α+1

.

By L’Hôspital’s rule, we find that

lim
t→∞

y(t)

π(t)
= lim

t→∞
p(t)1/α(−y′(t)) = lim

t→∞

[
p(t)(−y′(t))α

]1/α
=

(α+ 1

α
m1

) 1
α+1

.

This completes the proof.

Proof of Corollary 1.2. Recall that lim
t→∞

F (kπ(t)) = 0 for any constant k > 0. The assumptions imply
that there is a limit lim

t→∞
p(t)1/αq(t) ∈ [0,∞). So, the assumptions of Corollary 1.1 hold.

This completes the proof.

3 Examples
Example 3.1. Let β > 0, δ > 2 and r > 1 be the constants. Let us define the sequence of closed
intervals {In} by

In =
[ 1
n
− 1

nδ
,
1

n
+

1

nδ

]
for sufficiently large n ∈ N. There is a sufficiently large n0 ∈ N such that

In ∩ In+1 = ∅, and r−n <
1

(n+ 1)β
for n ≥ n0.

Define the function f1(y) on (0, (1/n0) + (1/nδ
0)) by

f1(y) =



nδ−β
(
y − 1

n

)
+

1

nβ
if 1

n
− 1

nδ
≤ y ≤ 1

n
, n ≥ n0,

−nδ−β
(
y − 1

n

)
+

1

nβ
if 1

n
≤ y ≤ 1

n
+

1

nδ
, n ≥ n0,

0 if y ̸∈
∞⋃

n=n0

In.
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Further, define the function f2(y) by

f2(y) = r−n if 1

n+ 1
< y ≤ 1

n
, n ≥ n0.

Put
f(y) = max

{
f1(y), f2(y)

}
for y ∈

(
0,

1

n0

]
,

and for y ∈ [1/n0,∞) we define f(y) in such a way that f(y) is a continuous positive function. Then
it is found that f : (0,∞) → (0,∞), f(+0) = 0, f is continuous and f(y) ≤ yβ near +0. Further, we
find that for some constants C1, C2 > 0,

C1y
δ+β−1 ≤ F (y) ≡

y∫
0

f(z) dz ≤ C2y
δ+β−1 for y near +0. (3.1)

Note that f(y) is not a monotone function near +0.
Let us consider the equation(

tρ|y′|α−1y′
)′
+ t−λf(y) = 0, t ≥ t0(> 0), (3.2)

where ρ > α > 0 and λ ∈ R. This equation satisfies conditions (A1)–(A4). We find that for equation
(3.2), π(t) is given by

π(t) =
α

ρ− α
t−

ρ−α
α .

Since f(y) ≤ yβ near +0 and yβ is an increasing function, Theorem 1.1 asserts that equation (3.2)
has a rapidly decaying positive solution if

λ > 1− β(ρ− α)

α
.

On the other hand, in view of (3.1), Corollary 1.1 asserts that equation (3.2) has a rapidly decaying
positive solution if

λ > 1− (β + δ − 2)(ρ− α)

α
.

Since δ > 2, the latter condition is weaker than the former.

Example 3.2. This example gives an application of our results to the semilinear Laplace equations
via the supersolution-subsolution method in [3]. (See [3] for the definitions of supersolutions and
subsolutions of elliptic equations under consideration.)

Suppose that N > 2 is an integer, and put ΩR = {x ∈ RN | |x| > R} for large R > 0. Let us
consider the following semilinear Laplace equation near the ∞ of RN :

∆u+ b(x)f(u) = 0, (3.3)

where x = (xi) ∈ RN and

∆u = ∆u(x) =

N∑
i=1

∂2u

∂x2
i

.

We assume that b(x) is a nonnegative and locally Hölder continuous function (with exponent θ ∈
(0, 1)), and f : (0,∞) → (0,∞) is a locally Lipschitz continuous function satisfying∫

0

f(u)du < ∞. (3.4)

Let b∗ : [R0,∞) → [0,∞) be a C1-function such that

0 ≤ b(x) ≤ b∗(|x|), x ∈ ΩR0 ,
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where R0 > 0 is a sufficiently large number, and(
r2(N−1)b∗(r)

)′ ≤ 0.

Then we can show that equation (3.3) has a positive solution u ∈ C2+θ
loc (ΩR), R ≥ R0, satisfying

0 < lim inf
|x|→∞

|x|N−2u(x) ≤ lim sup
|x|→∞

|x|N−2u(x) < ∞. (3.5)

To see this, we employ the supersolution-subsolution method in [3]. It is easily seen that a radial
positive function v(r), r = |x| satisfying

(rN−1v′)′ + rN−1b∗(r)f(v) = 0, near ∞, (3.6)

is a supersolution of equation (3.3). By assumption (3.4), we find that assumptions (A1)–(A4) hold for
equation (3.6). Employing Corollary 1.2, we find that equation (3.6) has a rapidly decaying positive
solution v(r) satisfying

lim
r→∞

rN−2v(r) = c ∈ (0,∞).

On the other hand, the function

w(x) ≡ c1|x|−(N−2), 0 < c1 < c,

is a subsolution of equation (3.3) satisfying

w(x) ≤ v(|x|), near ∞.

Therefore, [3, Theorem 3.3] implies that there is a solution u(x) of equation (3.3) of the class C2+θ

loc
satisfying

w(x) ≤ u(x) ≤ v(|x|), near ∞.

Consequently, u satisfies (3.5).

References
[1] Y. Kabeya, E. Yanagida and S. Yotsutani, Number of zeros of solutions to singular initial value

problems. Tôhoku Math. J. (2) 50 (1998), no. 1, 1–22.
[2] T. Kusano, A. Ogata and H. Usami, Oscillation theory for a class of second order quasilinear

ordinary differential equations with application to partial differential equations. Japan. J. Math.
(N.S.) 19 (1993), no. 1, 131–147.

[3] E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior
domains. J. Math. Anal. Appl. 75 (1980), no. 1, 121–133.

[4] D. R. Smart, Fixed Point Theorems. Cambridge Tracts in Mathematics, no. 66. Cambridge Uni-
versity Press, London–New York, 1974.

[5] T. Teramoto and H. Usami, Oscillation theorems of quasilinear elliptic equations with arbitrary
nonlinearities. Differential Integral Equations 20 (2007), no. 5, 577–600.

(Received 26.06.2023; accepted 20.09.2023)

Author’s address:

Hiroyuki Usami
Gifu University, Faculty of Engineering, Applied Physics Course, Gifu 501-1193, Japan.
E-mail: usami.hiroyuki.f3@f.gifu-u.ac.jp


	Introduction and statement of the results
	Proof of the results
	Examples

